Input: corgi_ts - mark probe function as __devinit
[linux-2.6] / drivers / pci / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34
35 #undef PREFIX
36 #define PREFIX "DMAR:"
37
38 /* No locks are needed as DMA remapping hardware unit
39  * list is constructed at boot time and hotplug of
40  * these units are not supported by the architecture.
41  */
42 LIST_HEAD(dmar_drhd_units);
43
44 static struct acpi_table_header * __initdata dmar_tbl;
45
46 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
47 {
48         /*
49          * add INCLUDE_ALL at the tail, so scan the list will find it at
50          * the very end.
51          */
52         if (drhd->include_all)
53                 list_add_tail(&drhd->list, &dmar_drhd_units);
54         else
55                 list_add(&drhd->list, &dmar_drhd_units);
56 }
57
58 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
59                                            struct pci_dev **dev, u16 segment)
60 {
61         struct pci_bus *bus;
62         struct pci_dev *pdev = NULL;
63         struct acpi_dmar_pci_path *path;
64         int count;
65
66         bus = pci_find_bus(segment, scope->bus);
67         path = (struct acpi_dmar_pci_path *)(scope + 1);
68         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
69                 / sizeof(struct acpi_dmar_pci_path);
70
71         while (count) {
72                 if (pdev)
73                         pci_dev_put(pdev);
74                 /*
75                  * Some BIOSes list non-exist devices in DMAR table, just
76                  * ignore it
77                  */
78                 if (!bus) {
79                         printk(KERN_WARNING
80                         PREFIX "Device scope bus [%d] not found\n",
81                         scope->bus);
82                         break;
83                 }
84                 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
85                 if (!pdev) {
86                         printk(KERN_WARNING PREFIX
87                         "Device scope device [%04x:%02x:%02x.%02x] not found\n",
88                                 segment, bus->number, path->dev, path->fn);
89                         break;
90                 }
91                 path ++;
92                 count --;
93                 bus = pdev->subordinate;
94         }
95         if (!pdev) {
96                 printk(KERN_WARNING PREFIX
97                 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
98                 segment, scope->bus, path->dev, path->fn);
99                 *dev = NULL;
100                 return 0;
101         }
102         if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
103                         pdev->subordinate) || (scope->entry_type == \
104                         ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
105                 pci_dev_put(pdev);
106                 printk(KERN_WARNING PREFIX
107                         "Device scope type does not match for %s\n",
108                          pci_name(pdev));
109                 return -EINVAL;
110         }
111         *dev = pdev;
112         return 0;
113 }
114
115 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
116                                        struct pci_dev ***devices, u16 segment)
117 {
118         struct acpi_dmar_device_scope *scope;
119         void * tmp = start;
120         int index;
121         int ret;
122
123         *cnt = 0;
124         while (start < end) {
125                 scope = start;
126                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
127                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
128                         (*cnt)++;
129                 else
130                         printk(KERN_WARNING PREFIX
131                                 "Unsupported device scope\n");
132                 start += scope->length;
133         }
134         if (*cnt == 0)
135                 return 0;
136
137         *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
138         if (!*devices)
139                 return -ENOMEM;
140
141         start = tmp;
142         index = 0;
143         while (start < end) {
144                 scope = start;
145                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
146                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
147                         ret = dmar_parse_one_dev_scope(scope,
148                                 &(*devices)[index], segment);
149                         if (ret) {
150                                 kfree(*devices);
151                                 return ret;
152                         }
153                         index ++;
154                 }
155                 start += scope->length;
156         }
157
158         return 0;
159 }
160
161 /**
162  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
163  * structure which uniquely represent one DMA remapping hardware unit
164  * present in the platform
165  */
166 static int __init
167 dmar_parse_one_drhd(struct acpi_dmar_header *header)
168 {
169         struct acpi_dmar_hardware_unit *drhd;
170         struct dmar_drhd_unit *dmaru;
171         int ret = 0;
172
173         dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
174         if (!dmaru)
175                 return -ENOMEM;
176
177         dmaru->hdr = header;
178         drhd = (struct acpi_dmar_hardware_unit *)header;
179         dmaru->reg_base_addr = drhd->address;
180         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
181
182         ret = alloc_iommu(dmaru);
183         if (ret) {
184                 kfree(dmaru);
185                 return ret;
186         }
187         dmar_register_drhd_unit(dmaru);
188         return 0;
189 }
190
191 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
192 {
193         struct acpi_dmar_hardware_unit *drhd;
194         static int include_all;
195         int ret = 0;
196
197         drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
198
199         if (!dmaru->include_all)
200                 ret = dmar_parse_dev_scope((void *)(drhd + 1),
201                                 ((void *)drhd) + drhd->header.length,
202                                 &dmaru->devices_cnt, &dmaru->devices,
203                                 drhd->segment);
204         else {
205                 /* Only allow one INCLUDE_ALL */
206                 if (include_all) {
207                         printk(KERN_WARNING PREFIX "Only one INCLUDE_ALL "
208                                 "device scope is allowed\n");
209                         ret = -EINVAL;
210                 }
211                 include_all = 1;
212         }
213
214         if (ret) {
215                 list_del(&dmaru->list);
216                 kfree(dmaru);
217         }
218         return ret;
219 }
220
221 #ifdef CONFIG_DMAR
222 LIST_HEAD(dmar_rmrr_units);
223
224 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
225 {
226         list_add(&rmrr->list, &dmar_rmrr_units);
227 }
228
229
230 static int __init
231 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
232 {
233         struct acpi_dmar_reserved_memory *rmrr;
234         struct dmar_rmrr_unit *rmrru;
235
236         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
237         if (!rmrru)
238                 return -ENOMEM;
239
240         rmrru->hdr = header;
241         rmrr = (struct acpi_dmar_reserved_memory *)header;
242         rmrru->base_address = rmrr->base_address;
243         rmrru->end_address = rmrr->end_address;
244
245         dmar_register_rmrr_unit(rmrru);
246         return 0;
247 }
248
249 static int __init
250 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
251 {
252         struct acpi_dmar_reserved_memory *rmrr;
253         int ret;
254
255         rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
256         ret = dmar_parse_dev_scope((void *)(rmrr + 1),
257                 ((void *)rmrr) + rmrr->header.length,
258                 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
259
260         if (ret || (rmrru->devices_cnt == 0)) {
261                 list_del(&rmrru->list);
262                 kfree(rmrru);
263         }
264         return ret;
265 }
266 #endif
267
268 static void __init
269 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
270 {
271         struct acpi_dmar_hardware_unit *drhd;
272         struct acpi_dmar_reserved_memory *rmrr;
273
274         switch (header->type) {
275         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
276                 drhd = (struct acpi_dmar_hardware_unit *)header;
277                 printk (KERN_INFO PREFIX
278                         "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
279                         drhd->flags, (unsigned long long)drhd->address);
280                 break;
281         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
282                 rmrr = (struct acpi_dmar_reserved_memory *)header;
283
284                 printk (KERN_INFO PREFIX
285                         "RMRR base: 0x%016Lx end: 0x%016Lx\n",
286                         (unsigned long long)rmrr->base_address,
287                         (unsigned long long)rmrr->end_address);
288                 break;
289         }
290 }
291
292 /**
293  * dmar_table_detect - checks to see if the platform supports DMAR devices
294  */
295 static int __init dmar_table_detect(void)
296 {
297         acpi_status status = AE_OK;
298
299         /* if we could find DMAR table, then there are DMAR devices */
300         status = acpi_get_table(ACPI_SIG_DMAR, 0,
301                                 (struct acpi_table_header **)&dmar_tbl);
302
303         if (ACPI_SUCCESS(status) && !dmar_tbl) {
304                 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
305                 status = AE_NOT_FOUND;
306         }
307
308         return (ACPI_SUCCESS(status) ? 1 : 0);
309 }
310
311 /**
312  * parse_dmar_table - parses the DMA reporting table
313  */
314 static int __init
315 parse_dmar_table(void)
316 {
317         struct acpi_table_dmar *dmar;
318         struct acpi_dmar_header *entry_header;
319         int ret = 0;
320
321         /*
322          * Do it again, earlier dmar_tbl mapping could be mapped with
323          * fixed map.
324          */
325         dmar_table_detect();
326
327         dmar = (struct acpi_table_dmar *)dmar_tbl;
328         if (!dmar)
329                 return -ENODEV;
330
331         if (dmar->width < PAGE_SHIFT - 1) {
332                 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
333                 return -EINVAL;
334         }
335
336         printk (KERN_INFO PREFIX "Host address width %d\n",
337                 dmar->width + 1);
338
339         entry_header = (struct acpi_dmar_header *)(dmar + 1);
340         while (((unsigned long)entry_header) <
341                         (((unsigned long)dmar) + dmar_tbl->length)) {
342                 dmar_table_print_dmar_entry(entry_header);
343
344                 switch (entry_header->type) {
345                 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
346                         ret = dmar_parse_one_drhd(entry_header);
347                         break;
348                 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
349 #ifdef CONFIG_DMAR
350                         ret = dmar_parse_one_rmrr(entry_header);
351 #endif
352                         break;
353                 default:
354                         printk(KERN_WARNING PREFIX
355                                 "Unknown DMAR structure type\n");
356                         ret = 0; /* for forward compatibility */
357                         break;
358                 }
359                 if (ret)
360                         break;
361
362                 entry_header = ((void *)entry_header + entry_header->length);
363         }
364         return ret;
365 }
366
367 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
368                           struct pci_dev *dev)
369 {
370         int index;
371
372         while (dev) {
373                 for (index = 0; index < cnt; index++)
374                         if (dev == devices[index])
375                                 return 1;
376
377                 /* Check our parent */
378                 dev = dev->bus->self;
379         }
380
381         return 0;
382 }
383
384 struct dmar_drhd_unit *
385 dmar_find_matched_drhd_unit(struct pci_dev *dev)
386 {
387         struct dmar_drhd_unit *drhd = NULL;
388
389         list_for_each_entry(drhd, &dmar_drhd_units, list) {
390                 if (drhd->include_all || dmar_pci_device_match(drhd->devices,
391                                                 drhd->devices_cnt, dev))
392                         return drhd;
393         }
394
395         return NULL;
396 }
397
398 int __init dmar_dev_scope_init(void)
399 {
400         struct dmar_drhd_unit *drhd, *drhd_n;
401         int ret = -ENODEV;
402
403         list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
404                 ret = dmar_parse_dev(drhd);
405                 if (ret)
406                         return ret;
407         }
408
409 #ifdef CONFIG_DMAR
410         {
411                 struct dmar_rmrr_unit *rmrr, *rmrr_n;
412                 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
413                         ret = rmrr_parse_dev(rmrr);
414                         if (ret)
415                                 return ret;
416                 }
417         }
418 #endif
419
420         return ret;
421 }
422
423
424 int __init dmar_table_init(void)
425 {
426         static int dmar_table_initialized;
427         int ret;
428
429         if (dmar_table_initialized)
430                 return 0;
431
432         dmar_table_initialized = 1;
433
434         ret = parse_dmar_table();
435         if (ret) {
436                 if (ret != -ENODEV)
437                         printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
438                 return ret;
439         }
440
441         if (list_empty(&dmar_drhd_units)) {
442                 printk(KERN_INFO PREFIX "No DMAR devices found\n");
443                 return -ENODEV;
444         }
445
446 #ifdef CONFIG_DMAR
447         if (list_empty(&dmar_rmrr_units))
448                 printk(KERN_INFO PREFIX "No RMRR found\n");
449 #endif
450
451 #ifdef CONFIG_INTR_REMAP
452         parse_ioapics_under_ir();
453 #endif
454         return 0;
455 }
456
457 void __init detect_intel_iommu(void)
458 {
459         int ret;
460
461         ret = dmar_table_detect();
462
463         {
464 #ifdef CONFIG_INTR_REMAP
465                 struct acpi_table_dmar *dmar;
466                 /*
467                  * for now we will disable dma-remapping when interrupt
468                  * remapping is enabled.
469                  * When support for queued invalidation for IOTLB invalidation
470                  * is added, we will not need this any more.
471                  */
472                 dmar = (struct acpi_table_dmar *) dmar_tbl;
473                 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
474                         printk(KERN_INFO
475                                "Queued invalidation will be enabled to support "
476                                "x2apic and Intr-remapping.\n");
477 #endif
478 #ifdef CONFIG_DMAR
479                 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
480                     !dmar_disabled)
481                         iommu_detected = 1;
482 #endif
483         }
484         dmar_tbl = NULL;
485 }
486
487
488 int alloc_iommu(struct dmar_drhd_unit *drhd)
489 {
490         struct intel_iommu *iommu;
491         int map_size;
492         u32 ver;
493         static int iommu_allocated = 0;
494
495         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
496         if (!iommu)
497                 return -ENOMEM;
498
499         iommu->seq_id = iommu_allocated++;
500
501         iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
502         if (!iommu->reg) {
503                 printk(KERN_ERR "IOMMU: can't map the region\n");
504                 goto error;
505         }
506         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
507         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
508
509         /* the registers might be more than one page */
510         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
511                 cap_max_fault_reg_offset(iommu->cap));
512         map_size = VTD_PAGE_ALIGN(map_size);
513         if (map_size > VTD_PAGE_SIZE) {
514                 iounmap(iommu->reg);
515                 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
516                 if (!iommu->reg) {
517                         printk(KERN_ERR "IOMMU: can't map the region\n");
518                         goto error;
519                 }
520         }
521
522         ver = readl(iommu->reg + DMAR_VER_REG);
523         pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
524                 (unsigned long long)drhd->reg_base_addr,
525                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
526                 (unsigned long long)iommu->cap,
527                 (unsigned long long)iommu->ecap);
528
529         spin_lock_init(&iommu->register_lock);
530
531         drhd->iommu = iommu;
532         return 0;
533 error:
534         kfree(iommu);
535         return -1;
536 }
537
538 void free_iommu(struct intel_iommu *iommu)
539 {
540         if (!iommu)
541                 return;
542
543 #ifdef CONFIG_DMAR
544         free_dmar_iommu(iommu);
545 #endif
546
547         if (iommu->reg)
548                 iounmap(iommu->reg);
549         kfree(iommu);
550 }
551
552 /*
553  * Reclaim all the submitted descriptors which have completed its work.
554  */
555 static inline void reclaim_free_desc(struct q_inval *qi)
556 {
557         while (qi->desc_status[qi->free_tail] == QI_DONE) {
558                 qi->desc_status[qi->free_tail] = QI_FREE;
559                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
560                 qi->free_cnt++;
561         }
562 }
563
564 /*
565  * Submit the queued invalidation descriptor to the remapping
566  * hardware unit and wait for its completion.
567  */
568 void qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
569 {
570         struct q_inval *qi = iommu->qi;
571         struct qi_desc *hw, wait_desc;
572         int wait_index, index;
573         unsigned long flags;
574
575         if (!qi)
576                 return;
577
578         hw = qi->desc;
579
580         spin_lock_irqsave(&qi->q_lock, flags);
581         while (qi->free_cnt < 3) {
582                 spin_unlock_irqrestore(&qi->q_lock, flags);
583                 cpu_relax();
584                 spin_lock_irqsave(&qi->q_lock, flags);
585         }
586
587         index = qi->free_head;
588         wait_index = (index + 1) % QI_LENGTH;
589
590         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
591
592         hw[index] = *desc;
593
594         wait_desc.low = QI_IWD_STATUS_DATA(2) | QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
595         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
596
597         hw[wait_index] = wait_desc;
598
599         __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
600         __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
601
602         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
603         qi->free_cnt -= 2;
604
605         spin_lock(&iommu->register_lock);
606         /*
607          * update the HW tail register indicating the presence of
608          * new descriptors.
609          */
610         writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
611         spin_unlock(&iommu->register_lock);
612
613         while (qi->desc_status[wait_index] != QI_DONE) {
614                 /*
615                  * We will leave the interrupts disabled, to prevent interrupt
616                  * context to queue another cmd while a cmd is already submitted
617                  * and waiting for completion on this cpu. This is to avoid
618                  * a deadlock where the interrupt context can wait indefinitely
619                  * for free slots in the queue.
620                  */
621                 spin_unlock(&qi->q_lock);
622                 cpu_relax();
623                 spin_lock(&qi->q_lock);
624         }
625
626         qi->desc_status[index] = QI_DONE;
627
628         reclaim_free_desc(qi);
629         spin_unlock_irqrestore(&qi->q_lock, flags);
630 }
631
632 /*
633  * Flush the global interrupt entry cache.
634  */
635 void qi_global_iec(struct intel_iommu *iommu)
636 {
637         struct qi_desc desc;
638
639         desc.low = QI_IEC_TYPE;
640         desc.high = 0;
641
642         qi_submit_sync(&desc, iommu);
643 }
644
645 int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
646                      u64 type, int non_present_entry_flush)
647 {
648
649         struct qi_desc desc;
650
651         if (non_present_entry_flush) {
652                 if (!cap_caching_mode(iommu->cap))
653                         return 1;
654                 else
655                         did = 0;
656         }
657
658         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
659                         | QI_CC_GRAN(type) | QI_CC_TYPE;
660         desc.high = 0;
661
662         qi_submit_sync(&desc, iommu);
663
664         return 0;
665
666 }
667
668 int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
669                    unsigned int size_order, u64 type,
670                    int non_present_entry_flush)
671 {
672         u8 dw = 0, dr = 0;
673
674         struct qi_desc desc;
675         int ih = 0;
676
677         if (non_present_entry_flush) {
678                 if (!cap_caching_mode(iommu->cap))
679                         return 1;
680                 else
681                         did = 0;
682         }
683
684         if (cap_write_drain(iommu->cap))
685                 dw = 1;
686
687         if (cap_read_drain(iommu->cap))
688                 dr = 1;
689
690         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
691                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
692         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
693                 | QI_IOTLB_AM(size_order);
694
695         qi_submit_sync(&desc, iommu);
696
697         return 0;
698
699 }
700
701 /*
702  * Enable Queued Invalidation interface. This is a must to support
703  * interrupt-remapping. Also used by DMA-remapping, which replaces
704  * register based IOTLB invalidation.
705  */
706 int dmar_enable_qi(struct intel_iommu *iommu)
707 {
708         u32 cmd, sts;
709         unsigned long flags;
710         struct q_inval *qi;
711
712         if (!ecap_qis(iommu->ecap))
713                 return -ENOENT;
714
715         /*
716          * queued invalidation is already setup and enabled.
717          */
718         if (iommu->qi)
719                 return 0;
720
721         iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL);
722         if (!iommu->qi)
723                 return -ENOMEM;
724
725         qi = iommu->qi;
726
727         qi->desc = (void *)(get_zeroed_page(GFP_KERNEL));
728         if (!qi->desc) {
729                 kfree(qi);
730                 iommu->qi = 0;
731                 return -ENOMEM;
732         }
733
734         qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL);
735         if (!qi->desc_status) {
736                 free_page((unsigned long) qi->desc);
737                 kfree(qi);
738                 iommu->qi = 0;
739                 return -ENOMEM;
740         }
741
742         qi->free_head = qi->free_tail = 0;
743         qi->free_cnt = QI_LENGTH;
744
745         spin_lock_init(&qi->q_lock);
746
747         spin_lock_irqsave(&iommu->register_lock, flags);
748         /* write zero to the tail reg */
749         writel(0, iommu->reg + DMAR_IQT_REG);
750
751         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
752
753         cmd = iommu->gcmd | DMA_GCMD_QIE;
754         iommu->gcmd |= DMA_GCMD_QIE;
755         writel(cmd, iommu->reg + DMAR_GCMD_REG);
756
757         /* Make sure hardware complete it */
758         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
759         spin_unlock_irqrestore(&iommu->register_lock, flags);
760
761         return 0;
762 }