Merge branch 'drm-radeon-kms' of git://git.kernel.org/pub/scm/linux/kernel/git/airlie...
[linux-2.6] / fs / dlm / lowcomms.c
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55 #include <net/ipv6.h>
56
57 #include "dlm_internal.h"
58 #include "lowcomms.h"
59 #include "midcomms.h"
60 #include "config.h"
61
62 #define NEEDED_RMEM (4*1024*1024)
63 #define CONN_HASH_SIZE 32
64
65 struct cbuf {
66         unsigned int base;
67         unsigned int len;
68         unsigned int mask;
69 };
70
71 static void cbuf_add(struct cbuf *cb, int n)
72 {
73         cb->len += n;
74 }
75
76 static int cbuf_data(struct cbuf *cb)
77 {
78         return ((cb->base + cb->len) & cb->mask);
79 }
80
81 static void cbuf_init(struct cbuf *cb, int size)
82 {
83         cb->base = cb->len = 0;
84         cb->mask = size-1;
85 }
86
87 static void cbuf_eat(struct cbuf *cb, int n)
88 {
89         cb->len  -= n;
90         cb->base += n;
91         cb->base &= cb->mask;
92 }
93
94 static bool cbuf_empty(struct cbuf *cb)
95 {
96         return cb->len == 0;
97 }
98
99 struct connection {
100         struct socket *sock;    /* NULL if not connected */
101         uint32_t nodeid;        /* So we know who we are in the list */
102         struct mutex sock_mutex;
103         unsigned long flags;
104 #define CF_READ_PENDING 1
105 #define CF_WRITE_PENDING 2
106 #define CF_CONNECT_PENDING 3
107 #define CF_INIT_PENDING 4
108 #define CF_IS_OTHERCON 5
109         struct list_head writequeue;  /* List of outgoing writequeue_entries */
110         spinlock_t writequeue_lock;
111         int (*rx_action) (struct connection *); /* What to do when active */
112         void (*connect_action) (struct connection *);   /* What to do to connect */
113         struct page *rx_page;
114         struct cbuf cb;
115         int retries;
116 #define MAX_CONNECT_RETRIES 3
117         int sctp_assoc;
118         struct hlist_node list;
119         struct connection *othercon;
120         struct work_struct rwork; /* Receive workqueue */
121         struct work_struct swork; /* Send workqueue */
122 };
123 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
124
125 /* An entry waiting to be sent */
126 struct writequeue_entry {
127         struct list_head list;
128         struct page *page;
129         int offset;
130         int len;
131         int end;
132         int users;
133         struct connection *con;
134 };
135
136 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
137 static int dlm_local_count;
138
139 /* Work queues */
140 static struct workqueue_struct *recv_workqueue;
141 static struct workqueue_struct *send_workqueue;
142
143 static struct hlist_head connection_hash[CONN_HASH_SIZE];
144 static DEFINE_MUTEX(connections_lock);
145 static struct kmem_cache *con_cache;
146
147 static void process_recv_sockets(struct work_struct *work);
148 static void process_send_sockets(struct work_struct *work);
149
150
151 /* This is deliberately very simple because most clusters have simple
152    sequential nodeids, so we should be able to go straight to a connection
153    struct in the array */
154 static inline int nodeid_hash(int nodeid)
155 {
156         return nodeid & (CONN_HASH_SIZE-1);
157 }
158
159 static struct connection *__find_con(int nodeid)
160 {
161         int r;
162         struct hlist_node *h;
163         struct connection *con;
164
165         r = nodeid_hash(nodeid);
166
167         hlist_for_each_entry(con, h, &connection_hash[r], list) {
168                 if (con->nodeid == nodeid)
169                         return con;
170         }
171         return NULL;
172 }
173
174 /*
175  * If 'allocation' is zero then we don't attempt to create a new
176  * connection structure for this node.
177  */
178 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
179 {
180         struct connection *con = NULL;
181         int r;
182
183         con = __find_con(nodeid);
184         if (con || !alloc)
185                 return con;
186
187         con = kmem_cache_zalloc(con_cache, alloc);
188         if (!con)
189                 return NULL;
190
191         r = nodeid_hash(nodeid);
192         hlist_add_head(&con->list, &connection_hash[r]);
193
194         con->nodeid = nodeid;
195         mutex_init(&con->sock_mutex);
196         INIT_LIST_HEAD(&con->writequeue);
197         spin_lock_init(&con->writequeue_lock);
198         INIT_WORK(&con->swork, process_send_sockets);
199         INIT_WORK(&con->rwork, process_recv_sockets);
200
201         /* Setup action pointers for child sockets */
202         if (con->nodeid) {
203                 struct connection *zerocon = __find_con(0);
204
205                 con->connect_action = zerocon->connect_action;
206                 if (!con->rx_action)
207                         con->rx_action = zerocon->rx_action;
208         }
209
210         return con;
211 }
212
213 /* Loop round all connections */
214 static void foreach_conn(void (*conn_func)(struct connection *c))
215 {
216         int i;
217         struct hlist_node *h, *n;
218         struct connection *con;
219
220         for (i = 0; i < CONN_HASH_SIZE; i++) {
221                 hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
222                         conn_func(con);
223                 }
224         }
225 }
226
227 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
228 {
229         struct connection *con;
230
231         mutex_lock(&connections_lock);
232         con = __nodeid2con(nodeid, allocation);
233         mutex_unlock(&connections_lock);
234
235         return con;
236 }
237
238 /* This is a bit drastic, but only called when things go wrong */
239 static struct connection *assoc2con(int assoc_id)
240 {
241         int i;
242         struct hlist_node *h;
243         struct connection *con;
244
245         mutex_lock(&connections_lock);
246
247         for (i = 0 ; i < CONN_HASH_SIZE; i++) {
248                 hlist_for_each_entry(con, h, &connection_hash[i], list) {
249                         if (con && con->sctp_assoc == assoc_id) {
250                                 mutex_unlock(&connections_lock);
251                                 return con;
252                         }
253                 }
254         }
255         mutex_unlock(&connections_lock);
256         return NULL;
257 }
258
259 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
260 {
261         struct sockaddr_storage addr;
262         int error;
263
264         if (!dlm_local_count)
265                 return -1;
266
267         error = dlm_nodeid_to_addr(nodeid, &addr);
268         if (error)
269                 return error;
270
271         if (dlm_local_addr[0]->ss_family == AF_INET) {
272                 struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
273                 struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
274                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
275         } else {
276                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
277                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
278                 ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
279         }
280
281         return 0;
282 }
283
284 /* Data available on socket or listen socket received a connect */
285 static void lowcomms_data_ready(struct sock *sk, int count_unused)
286 {
287         struct connection *con = sock2con(sk);
288         if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
289                 queue_work(recv_workqueue, &con->rwork);
290 }
291
292 static void lowcomms_write_space(struct sock *sk)
293 {
294         struct connection *con = sock2con(sk);
295
296         if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
297                 queue_work(send_workqueue, &con->swork);
298 }
299
300 static inline void lowcomms_connect_sock(struct connection *con)
301 {
302         if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
303                 queue_work(send_workqueue, &con->swork);
304 }
305
306 static void lowcomms_state_change(struct sock *sk)
307 {
308         if (sk->sk_state == TCP_ESTABLISHED)
309                 lowcomms_write_space(sk);
310 }
311
312 int dlm_lowcomms_connect_node(int nodeid)
313 {
314         struct connection *con;
315
316         if (nodeid == dlm_our_nodeid())
317                 return 0;
318
319         con = nodeid2con(nodeid, GFP_NOFS);
320         if (!con)
321                 return -ENOMEM;
322         lowcomms_connect_sock(con);
323         return 0;
324 }
325
326 /* Make a socket active */
327 static int add_sock(struct socket *sock, struct connection *con)
328 {
329         con->sock = sock;
330
331         /* Install a data_ready callback */
332         con->sock->sk->sk_data_ready = lowcomms_data_ready;
333         con->sock->sk->sk_write_space = lowcomms_write_space;
334         con->sock->sk->sk_state_change = lowcomms_state_change;
335         con->sock->sk->sk_user_data = con;
336         con->sock->sk->sk_allocation = GFP_NOFS;
337         return 0;
338 }
339
340 /* Add the port number to an IPv6 or 4 sockaddr and return the address
341    length */
342 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
343                           int *addr_len)
344 {
345         saddr->ss_family =  dlm_local_addr[0]->ss_family;
346         if (saddr->ss_family == AF_INET) {
347                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
348                 in4_addr->sin_port = cpu_to_be16(port);
349                 *addr_len = sizeof(struct sockaddr_in);
350                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
351         } else {
352                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
353                 in6_addr->sin6_port = cpu_to_be16(port);
354                 *addr_len = sizeof(struct sockaddr_in6);
355         }
356         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
357 }
358
359 /* Close a remote connection and tidy up */
360 static void close_connection(struct connection *con, bool and_other)
361 {
362         mutex_lock(&con->sock_mutex);
363
364         if (con->sock) {
365                 sock_release(con->sock);
366                 con->sock = NULL;
367         }
368         if (con->othercon && and_other) {
369                 /* Will only re-enter once. */
370                 close_connection(con->othercon, false);
371         }
372         if (con->rx_page) {
373                 __free_page(con->rx_page);
374                 con->rx_page = NULL;
375         }
376
377         con->retries = 0;
378         mutex_unlock(&con->sock_mutex);
379 }
380
381 /* We only send shutdown messages to nodes that are not part of the cluster */
382 static void sctp_send_shutdown(sctp_assoc_t associd)
383 {
384         static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
385         struct msghdr outmessage;
386         struct cmsghdr *cmsg;
387         struct sctp_sndrcvinfo *sinfo;
388         int ret;
389         struct connection *con;
390
391         con = nodeid2con(0,0);
392         BUG_ON(con == NULL);
393
394         outmessage.msg_name = NULL;
395         outmessage.msg_namelen = 0;
396         outmessage.msg_control = outcmsg;
397         outmessage.msg_controllen = sizeof(outcmsg);
398         outmessage.msg_flags = MSG_EOR;
399
400         cmsg = CMSG_FIRSTHDR(&outmessage);
401         cmsg->cmsg_level = IPPROTO_SCTP;
402         cmsg->cmsg_type = SCTP_SNDRCV;
403         cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
404         outmessage.msg_controllen = cmsg->cmsg_len;
405         sinfo = CMSG_DATA(cmsg);
406         memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
407
408         sinfo->sinfo_flags |= MSG_EOF;
409         sinfo->sinfo_assoc_id = associd;
410
411         ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
412
413         if (ret != 0)
414                 log_print("send EOF to node failed: %d", ret);
415 }
416
417 static void sctp_init_failed_foreach(struct connection *con)
418 {
419         con->sctp_assoc = 0;
420         if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
421                 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
422                         queue_work(send_workqueue, &con->swork);
423         }
424 }
425
426 /* INIT failed but we don't know which node...
427    restart INIT on all pending nodes */
428 static void sctp_init_failed(void)
429 {
430         mutex_lock(&connections_lock);
431
432         foreach_conn(sctp_init_failed_foreach);
433
434         mutex_unlock(&connections_lock);
435 }
436
437 /* Something happened to an association */
438 static void process_sctp_notification(struct connection *con,
439                                       struct msghdr *msg, char *buf)
440 {
441         union sctp_notification *sn = (union sctp_notification *)buf;
442
443         if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
444                 switch (sn->sn_assoc_change.sac_state) {
445
446                 case SCTP_COMM_UP:
447                 case SCTP_RESTART:
448                 {
449                         /* Check that the new node is in the lockspace */
450                         struct sctp_prim prim;
451                         int nodeid;
452                         int prim_len, ret;
453                         int addr_len;
454                         struct connection *new_con;
455                         struct file *file;
456                         sctp_peeloff_arg_t parg;
457                         int parglen = sizeof(parg);
458
459                         /*
460                          * We get this before any data for an association.
461                          * We verify that the node is in the cluster and
462                          * then peel off a socket for it.
463                          */
464                         if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
465                                 log_print("COMM_UP for invalid assoc ID %d",
466                                          (int)sn->sn_assoc_change.sac_assoc_id);
467                                 sctp_init_failed();
468                                 return;
469                         }
470                         memset(&prim, 0, sizeof(struct sctp_prim));
471                         prim_len = sizeof(struct sctp_prim);
472                         prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
473
474                         ret = kernel_getsockopt(con->sock,
475                                                 IPPROTO_SCTP,
476                                                 SCTP_PRIMARY_ADDR,
477                                                 (char*)&prim,
478                                                 &prim_len);
479                         if (ret < 0) {
480                                 log_print("getsockopt/sctp_primary_addr on "
481                                           "new assoc %d failed : %d",
482                                           (int)sn->sn_assoc_change.sac_assoc_id,
483                                           ret);
484
485                                 /* Retry INIT later */
486                                 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
487                                 if (new_con)
488                                         clear_bit(CF_CONNECT_PENDING, &con->flags);
489                                 return;
490                         }
491                         make_sockaddr(&prim.ssp_addr, 0, &addr_len);
492                         if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
493                                 int i;
494                                 unsigned char *b=(unsigned char *)&prim.ssp_addr;
495                                 log_print("reject connect from unknown addr");
496                                 for (i=0; i<sizeof(struct sockaddr_storage);i++)
497                                         printk("%02x ", b[i]);
498                                 printk("\n");
499                                 sctp_send_shutdown(prim.ssp_assoc_id);
500                                 return;
501                         }
502
503                         new_con = nodeid2con(nodeid, GFP_NOFS);
504                         if (!new_con)
505                                 return;
506
507                         /* Peel off a new sock */
508                         parg.associd = sn->sn_assoc_change.sac_assoc_id;
509                         ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
510                                                 SCTP_SOCKOPT_PEELOFF,
511                                                 (void *)&parg, &parglen);
512                         if (ret) {
513                                 log_print("Can't peel off a socket for "
514                                           "connection %d to node %d: err=%d\n",
515                                           parg.associd, nodeid, ret);
516                         }
517                         file = fget(parg.sd);
518                         new_con->sock = SOCKET_I(file->f_dentry->d_inode);
519                         add_sock(new_con->sock, new_con);
520                         fput(file);
521                         put_unused_fd(parg.sd);
522
523                         log_print("got new/restarted association %d nodeid %d",
524                                  (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
525
526                         /* Send any pending writes */
527                         clear_bit(CF_CONNECT_PENDING, &new_con->flags);
528                         clear_bit(CF_INIT_PENDING, &con->flags);
529                         if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
530                                 queue_work(send_workqueue, &new_con->swork);
531                         }
532                         if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
533                                 queue_work(recv_workqueue, &new_con->rwork);
534                 }
535                 break;
536
537                 case SCTP_COMM_LOST:
538                 case SCTP_SHUTDOWN_COMP:
539                 {
540                         con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
541                         if (con) {
542                                 con->sctp_assoc = 0;
543                         }
544                 }
545                 break;
546
547                 /* We don't know which INIT failed, so clear the PENDING flags
548                  * on them all.  if assoc_id is zero then it will then try
549                  * again */
550
551                 case SCTP_CANT_STR_ASSOC:
552                 {
553                         log_print("Can't start SCTP association - retrying");
554                         sctp_init_failed();
555                 }
556                 break;
557
558                 default:
559                         log_print("unexpected SCTP assoc change id=%d state=%d",
560                                   (int)sn->sn_assoc_change.sac_assoc_id,
561                                   sn->sn_assoc_change.sac_state);
562                 }
563         }
564 }
565
566 /* Data received from remote end */
567 static int receive_from_sock(struct connection *con)
568 {
569         int ret = 0;
570         struct msghdr msg = {};
571         struct kvec iov[2];
572         unsigned len;
573         int r;
574         int call_again_soon = 0;
575         int nvec;
576         char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
577
578         mutex_lock(&con->sock_mutex);
579
580         if (con->sock == NULL) {
581                 ret = -EAGAIN;
582                 goto out_close;
583         }
584
585         if (con->rx_page == NULL) {
586                 /*
587                  * This doesn't need to be atomic, but I think it should
588                  * improve performance if it is.
589                  */
590                 con->rx_page = alloc_page(GFP_ATOMIC);
591                 if (con->rx_page == NULL)
592                         goto out_resched;
593                 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
594         }
595
596         /* Only SCTP needs these really */
597         memset(&incmsg, 0, sizeof(incmsg));
598         msg.msg_control = incmsg;
599         msg.msg_controllen = sizeof(incmsg);
600
601         /*
602          * iov[0] is the bit of the circular buffer between the current end
603          * point (cb.base + cb.len) and the end of the buffer.
604          */
605         iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
606         iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
607         iov[1].iov_len = 0;
608         nvec = 1;
609
610         /*
611          * iov[1] is the bit of the circular buffer between the start of the
612          * buffer and the start of the currently used section (cb.base)
613          */
614         if (cbuf_data(&con->cb) >= con->cb.base) {
615                 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
616                 iov[1].iov_len = con->cb.base;
617                 iov[1].iov_base = page_address(con->rx_page);
618                 nvec = 2;
619         }
620         len = iov[0].iov_len + iov[1].iov_len;
621
622         r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
623                                MSG_DONTWAIT | MSG_NOSIGNAL);
624         if (ret <= 0)
625                 goto out_close;
626
627         /* Process SCTP notifications */
628         if (msg.msg_flags & MSG_NOTIFICATION) {
629                 msg.msg_control = incmsg;
630                 msg.msg_controllen = sizeof(incmsg);
631
632                 process_sctp_notification(con, &msg,
633                                 page_address(con->rx_page) + con->cb.base);
634                 mutex_unlock(&con->sock_mutex);
635                 return 0;
636         }
637         BUG_ON(con->nodeid == 0);
638
639         if (ret == len)
640                 call_again_soon = 1;
641         cbuf_add(&con->cb, ret);
642         ret = dlm_process_incoming_buffer(con->nodeid,
643                                           page_address(con->rx_page),
644                                           con->cb.base, con->cb.len,
645                                           PAGE_CACHE_SIZE);
646         if (ret == -EBADMSG) {
647                 log_print("lowcomms: addr=%p, base=%u, len=%u, "
648                           "iov_len=%u, iov_base[0]=%p, read=%d",
649                           page_address(con->rx_page), con->cb.base, con->cb.len,
650                           len, iov[0].iov_base, r);
651         }
652         if (ret < 0)
653                 goto out_close;
654         cbuf_eat(&con->cb, ret);
655
656         if (cbuf_empty(&con->cb) && !call_again_soon) {
657                 __free_page(con->rx_page);
658                 con->rx_page = NULL;
659         }
660
661         if (call_again_soon)
662                 goto out_resched;
663         mutex_unlock(&con->sock_mutex);
664         return 0;
665
666 out_resched:
667         if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
668                 queue_work(recv_workqueue, &con->rwork);
669         mutex_unlock(&con->sock_mutex);
670         return -EAGAIN;
671
672 out_close:
673         mutex_unlock(&con->sock_mutex);
674         if (ret != -EAGAIN) {
675                 close_connection(con, false);
676                 /* Reconnect when there is something to send */
677         }
678         /* Don't return success if we really got EOF */
679         if (ret == 0)
680                 ret = -EAGAIN;
681
682         return ret;
683 }
684
685 /* Listening socket is busy, accept a connection */
686 static int tcp_accept_from_sock(struct connection *con)
687 {
688         int result;
689         struct sockaddr_storage peeraddr;
690         struct socket *newsock;
691         int len;
692         int nodeid;
693         struct connection *newcon;
694         struct connection *addcon;
695
696         memset(&peeraddr, 0, sizeof(peeraddr));
697         result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
698                                   IPPROTO_TCP, &newsock);
699         if (result < 0)
700                 return -ENOMEM;
701
702         mutex_lock_nested(&con->sock_mutex, 0);
703
704         result = -ENOTCONN;
705         if (con->sock == NULL)
706                 goto accept_err;
707
708         newsock->type = con->sock->type;
709         newsock->ops = con->sock->ops;
710
711         result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
712         if (result < 0)
713                 goto accept_err;
714
715         /* Get the connected socket's peer */
716         memset(&peeraddr, 0, sizeof(peeraddr));
717         if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
718                                   &len, 2)) {
719                 result = -ECONNABORTED;
720                 goto accept_err;
721         }
722
723         /* Get the new node's NODEID */
724         make_sockaddr(&peeraddr, 0, &len);
725         if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
726                 log_print("connect from non cluster node");
727                 sock_release(newsock);
728                 mutex_unlock(&con->sock_mutex);
729                 return -1;
730         }
731
732         log_print("got connection from %d", nodeid);
733
734         /*  Check to see if we already have a connection to this node. This
735          *  could happen if the two nodes initiate a connection at roughly
736          *  the same time and the connections cross on the wire.
737          *  In this case we store the incoming one in "othercon"
738          */
739         newcon = nodeid2con(nodeid, GFP_NOFS);
740         if (!newcon) {
741                 result = -ENOMEM;
742                 goto accept_err;
743         }
744         mutex_lock_nested(&newcon->sock_mutex, 1);
745         if (newcon->sock) {
746                 struct connection *othercon = newcon->othercon;
747
748                 if (!othercon) {
749                         othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
750                         if (!othercon) {
751                                 log_print("failed to allocate incoming socket");
752                                 mutex_unlock(&newcon->sock_mutex);
753                                 result = -ENOMEM;
754                                 goto accept_err;
755                         }
756                         othercon->nodeid = nodeid;
757                         othercon->rx_action = receive_from_sock;
758                         mutex_init(&othercon->sock_mutex);
759                         INIT_WORK(&othercon->swork, process_send_sockets);
760                         INIT_WORK(&othercon->rwork, process_recv_sockets);
761                         set_bit(CF_IS_OTHERCON, &othercon->flags);
762                 }
763                 if (!othercon->sock) {
764                         newcon->othercon = othercon;
765                         othercon->sock = newsock;
766                         newsock->sk->sk_user_data = othercon;
767                         add_sock(newsock, othercon);
768                         addcon = othercon;
769                 }
770                 else {
771                         printk("Extra connection from node %d attempted\n", nodeid);
772                         result = -EAGAIN;
773                         mutex_unlock(&newcon->sock_mutex);
774                         goto accept_err;
775                 }
776         }
777         else {
778                 newsock->sk->sk_user_data = newcon;
779                 newcon->rx_action = receive_from_sock;
780                 add_sock(newsock, newcon);
781                 addcon = newcon;
782         }
783
784         mutex_unlock(&newcon->sock_mutex);
785
786         /*
787          * Add it to the active queue in case we got data
788          * beween processing the accept adding the socket
789          * to the read_sockets list
790          */
791         if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
792                 queue_work(recv_workqueue, &addcon->rwork);
793         mutex_unlock(&con->sock_mutex);
794
795         return 0;
796
797 accept_err:
798         mutex_unlock(&con->sock_mutex);
799         sock_release(newsock);
800
801         if (result != -EAGAIN)
802                 log_print("error accepting connection from node: %d", result);
803         return result;
804 }
805
806 static void free_entry(struct writequeue_entry *e)
807 {
808         __free_page(e->page);
809         kfree(e);
810 }
811
812 /* Initiate an SCTP association.
813    This is a special case of send_to_sock() in that we don't yet have a
814    peeled-off socket for this association, so we use the listening socket
815    and add the primary IP address of the remote node.
816  */
817 static void sctp_init_assoc(struct connection *con)
818 {
819         struct sockaddr_storage rem_addr;
820         char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
821         struct msghdr outmessage;
822         struct cmsghdr *cmsg;
823         struct sctp_sndrcvinfo *sinfo;
824         struct connection *base_con;
825         struct writequeue_entry *e;
826         int len, offset;
827         int ret;
828         int addrlen;
829         struct kvec iov[1];
830
831         if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
832                 return;
833
834         if (con->retries++ > MAX_CONNECT_RETRIES)
835                 return;
836
837         log_print("Initiating association with node %d", con->nodeid);
838
839         if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
840                 log_print("no address for nodeid %d", con->nodeid);
841                 return;
842         }
843         base_con = nodeid2con(0, 0);
844         BUG_ON(base_con == NULL);
845
846         make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
847
848         outmessage.msg_name = &rem_addr;
849         outmessage.msg_namelen = addrlen;
850         outmessage.msg_control = outcmsg;
851         outmessage.msg_controllen = sizeof(outcmsg);
852         outmessage.msg_flags = MSG_EOR;
853
854         spin_lock(&con->writequeue_lock);
855         e = list_entry(con->writequeue.next, struct writequeue_entry,
856                        list);
857
858         BUG_ON((struct list_head *) e == &con->writequeue);
859
860         len = e->len;
861         offset = e->offset;
862         spin_unlock(&con->writequeue_lock);
863
864         /* Send the first block off the write queue */
865         iov[0].iov_base = page_address(e->page)+offset;
866         iov[0].iov_len = len;
867
868         cmsg = CMSG_FIRSTHDR(&outmessage);
869         cmsg->cmsg_level = IPPROTO_SCTP;
870         cmsg->cmsg_type = SCTP_SNDRCV;
871         cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
872         sinfo = CMSG_DATA(cmsg);
873         memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
874         sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
875         outmessage.msg_controllen = cmsg->cmsg_len;
876
877         ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
878         if (ret < 0) {
879                 log_print("Send first packet to node %d failed: %d",
880                           con->nodeid, ret);
881
882                 /* Try again later */
883                 clear_bit(CF_CONNECT_PENDING, &con->flags);
884                 clear_bit(CF_INIT_PENDING, &con->flags);
885         }
886         else {
887                 spin_lock(&con->writequeue_lock);
888                 e->offset += ret;
889                 e->len -= ret;
890
891                 if (e->len == 0 && e->users == 0) {
892                         list_del(&e->list);
893                         free_entry(e);
894                 }
895                 spin_unlock(&con->writequeue_lock);
896         }
897 }
898
899 /* Connect a new socket to its peer */
900 static void tcp_connect_to_sock(struct connection *con)
901 {
902         int result = -EHOSTUNREACH;
903         struct sockaddr_storage saddr, src_addr;
904         int addr_len;
905         struct socket *sock = NULL;
906
907         if (con->nodeid == 0) {
908                 log_print("attempt to connect sock 0 foiled");
909                 return;
910         }
911
912         mutex_lock(&con->sock_mutex);
913         if (con->retries++ > MAX_CONNECT_RETRIES)
914                 goto out;
915
916         /* Some odd races can cause double-connects, ignore them */
917         if (con->sock) {
918                 result = 0;
919                 goto out;
920         }
921
922         /* Create a socket to communicate with */
923         result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
924                                   IPPROTO_TCP, &sock);
925         if (result < 0)
926                 goto out_err;
927
928         memset(&saddr, 0, sizeof(saddr));
929         if (dlm_nodeid_to_addr(con->nodeid, &saddr)) {
930                 sock_release(sock);
931                 goto out_err;
932         }
933
934         sock->sk->sk_user_data = con;
935         con->rx_action = receive_from_sock;
936         con->connect_action = tcp_connect_to_sock;
937         add_sock(sock, con);
938
939         /* Bind to our cluster-known address connecting to avoid
940            routing problems */
941         memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
942         make_sockaddr(&src_addr, 0, &addr_len);
943         result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
944                                  addr_len);
945         if (result < 0) {
946                 log_print("could not bind for connect: %d", result);
947                 /* This *may* not indicate a critical error */
948         }
949
950         make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
951
952         log_print("connecting to %d", con->nodeid);
953         result =
954                 sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
955                                    O_NONBLOCK);
956         if (result == -EINPROGRESS)
957                 result = 0;
958         if (result == 0)
959                 goto out;
960
961 out_err:
962         if (con->sock) {
963                 sock_release(con->sock);
964                 con->sock = NULL;
965         } else if (sock) {
966                 sock_release(sock);
967         }
968         /*
969          * Some errors are fatal and this list might need adjusting. For other
970          * errors we try again until the max number of retries is reached.
971          */
972         if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
973             result != -ENETDOWN && result != -EINVAL
974             && result != -EPROTONOSUPPORT) {
975                 lowcomms_connect_sock(con);
976                 result = 0;
977         }
978 out:
979         mutex_unlock(&con->sock_mutex);
980         return;
981 }
982
983 static struct socket *tcp_create_listen_sock(struct connection *con,
984                                              struct sockaddr_storage *saddr)
985 {
986         struct socket *sock = NULL;
987         int result = 0;
988         int one = 1;
989         int addr_len;
990
991         if (dlm_local_addr[0]->ss_family == AF_INET)
992                 addr_len = sizeof(struct sockaddr_in);
993         else
994                 addr_len = sizeof(struct sockaddr_in6);
995
996         /* Create a socket to communicate with */
997         result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
998                                   IPPROTO_TCP, &sock);
999         if (result < 0) {
1000                 log_print("Can't create listening comms socket");
1001                 goto create_out;
1002         }
1003
1004         result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1005                                    (char *)&one, sizeof(one));
1006
1007         if (result < 0) {
1008                 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1009         }
1010         sock->sk->sk_user_data = con;
1011         con->rx_action = tcp_accept_from_sock;
1012         con->connect_action = tcp_connect_to_sock;
1013         con->sock = sock;
1014
1015         /* Bind to our port */
1016         make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1017         result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1018         if (result < 0) {
1019                 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1020                 sock_release(sock);
1021                 sock = NULL;
1022                 con->sock = NULL;
1023                 goto create_out;
1024         }
1025         result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1026                                  (char *)&one, sizeof(one));
1027         if (result < 0) {
1028                 log_print("Set keepalive failed: %d", result);
1029         }
1030
1031         result = sock->ops->listen(sock, 5);
1032         if (result < 0) {
1033                 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1034                 sock_release(sock);
1035                 sock = NULL;
1036                 goto create_out;
1037         }
1038
1039 create_out:
1040         return sock;
1041 }
1042
1043 /* Get local addresses */
1044 static void init_local(void)
1045 {
1046         struct sockaddr_storage sas, *addr;
1047         int i;
1048
1049         dlm_local_count = 0;
1050         for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1051                 if (dlm_our_addr(&sas, i))
1052                         break;
1053
1054                 addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1055                 if (!addr)
1056                         break;
1057                 memcpy(addr, &sas, sizeof(*addr));
1058                 dlm_local_addr[dlm_local_count++] = addr;
1059         }
1060 }
1061
1062 /* Bind to an IP address. SCTP allows multiple address so it can do
1063    multi-homing */
1064 static int add_sctp_bind_addr(struct connection *sctp_con,
1065                               struct sockaddr_storage *addr,
1066                               int addr_len, int num)
1067 {
1068         int result = 0;
1069
1070         if (num == 1)
1071                 result = kernel_bind(sctp_con->sock,
1072                                      (struct sockaddr *) addr,
1073                                      addr_len);
1074         else
1075                 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1076                                            SCTP_SOCKOPT_BINDX_ADD,
1077                                            (char *)addr, addr_len);
1078
1079         if (result < 0)
1080                 log_print("Can't bind to port %d addr number %d",
1081                           dlm_config.ci_tcp_port, num);
1082
1083         return result;
1084 }
1085
1086 /* Initialise SCTP socket and bind to all interfaces */
1087 static int sctp_listen_for_all(void)
1088 {
1089         struct socket *sock = NULL;
1090         struct sockaddr_storage localaddr;
1091         struct sctp_event_subscribe subscribe;
1092         int result = -EINVAL, num = 1, i, addr_len;
1093         struct connection *con = nodeid2con(0, GFP_KERNEL);
1094         int bufsize = NEEDED_RMEM;
1095
1096         if (!con)
1097                 return -ENOMEM;
1098
1099         log_print("Using SCTP for communications");
1100
1101         result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1102                                   IPPROTO_SCTP, &sock);
1103         if (result < 0) {
1104                 log_print("Can't create comms socket, check SCTP is loaded");
1105                 goto out;
1106         }
1107
1108         /* Listen for events */
1109         memset(&subscribe, 0, sizeof(subscribe));
1110         subscribe.sctp_data_io_event = 1;
1111         subscribe.sctp_association_event = 1;
1112         subscribe.sctp_send_failure_event = 1;
1113         subscribe.sctp_shutdown_event = 1;
1114         subscribe.sctp_partial_delivery_event = 1;
1115
1116         result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1117                                  (char *)&bufsize, sizeof(bufsize));
1118         if (result)
1119                 log_print("Error increasing buffer space on socket %d", result);
1120
1121         result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1122                                    (char *)&subscribe, sizeof(subscribe));
1123         if (result < 0) {
1124                 log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1125                           result);
1126                 goto create_delsock;
1127         }
1128
1129         /* Init con struct */
1130         sock->sk->sk_user_data = con;
1131         con->sock = sock;
1132         con->sock->sk->sk_data_ready = lowcomms_data_ready;
1133         con->rx_action = receive_from_sock;
1134         con->connect_action = sctp_init_assoc;
1135
1136         /* Bind to all interfaces. */
1137         for (i = 0; i < dlm_local_count; i++) {
1138                 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1139                 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1140
1141                 result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1142                 if (result)
1143                         goto create_delsock;
1144                 ++num;
1145         }
1146
1147         result = sock->ops->listen(sock, 5);
1148         if (result < 0) {
1149                 log_print("Can't set socket listening");
1150                 goto create_delsock;
1151         }
1152
1153         return 0;
1154
1155 create_delsock:
1156         sock_release(sock);
1157         con->sock = NULL;
1158 out:
1159         return result;
1160 }
1161
1162 static int tcp_listen_for_all(void)
1163 {
1164         struct socket *sock = NULL;
1165         struct connection *con = nodeid2con(0, GFP_KERNEL);
1166         int result = -EINVAL;
1167
1168         if (!con)
1169                 return -ENOMEM;
1170
1171         /* We don't support multi-homed hosts */
1172         if (dlm_local_addr[1] != NULL) {
1173                 log_print("TCP protocol can't handle multi-homed hosts, "
1174                           "try SCTP");
1175                 return -EINVAL;
1176         }
1177
1178         log_print("Using TCP for communications");
1179
1180         sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1181         if (sock) {
1182                 add_sock(sock, con);
1183                 result = 0;
1184         }
1185         else {
1186                 result = -EADDRINUSE;
1187         }
1188
1189         return result;
1190 }
1191
1192
1193
1194 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1195                                                      gfp_t allocation)
1196 {
1197         struct writequeue_entry *entry;
1198
1199         entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1200         if (!entry)
1201                 return NULL;
1202
1203         entry->page = alloc_page(allocation);
1204         if (!entry->page) {
1205                 kfree(entry);
1206                 return NULL;
1207         }
1208
1209         entry->offset = 0;
1210         entry->len = 0;
1211         entry->end = 0;
1212         entry->users = 0;
1213         entry->con = con;
1214
1215         return entry;
1216 }
1217
1218 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1219 {
1220         struct connection *con;
1221         struct writequeue_entry *e;
1222         int offset = 0;
1223         int users = 0;
1224
1225         con = nodeid2con(nodeid, allocation);
1226         if (!con)
1227                 return NULL;
1228
1229         spin_lock(&con->writequeue_lock);
1230         e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1231         if ((&e->list == &con->writequeue) ||
1232             (PAGE_CACHE_SIZE - e->end < len)) {
1233                 e = NULL;
1234         } else {
1235                 offset = e->end;
1236                 e->end += len;
1237                 users = e->users++;
1238         }
1239         spin_unlock(&con->writequeue_lock);
1240
1241         if (e) {
1242         got_one:
1243                 *ppc = page_address(e->page) + offset;
1244                 return e;
1245         }
1246
1247         e = new_writequeue_entry(con, allocation);
1248         if (e) {
1249                 spin_lock(&con->writequeue_lock);
1250                 offset = e->end;
1251                 e->end += len;
1252                 users = e->users++;
1253                 list_add_tail(&e->list, &con->writequeue);
1254                 spin_unlock(&con->writequeue_lock);
1255                 goto got_one;
1256         }
1257         return NULL;
1258 }
1259
1260 void dlm_lowcomms_commit_buffer(void *mh)
1261 {
1262         struct writequeue_entry *e = (struct writequeue_entry *)mh;
1263         struct connection *con = e->con;
1264         int users;
1265
1266         spin_lock(&con->writequeue_lock);
1267         users = --e->users;
1268         if (users)
1269                 goto out;
1270         e->len = e->end - e->offset;
1271         spin_unlock(&con->writequeue_lock);
1272
1273         if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1274                 queue_work(send_workqueue, &con->swork);
1275         }
1276         return;
1277
1278 out:
1279         spin_unlock(&con->writequeue_lock);
1280         return;
1281 }
1282
1283 /* Send a message */
1284 static void send_to_sock(struct connection *con)
1285 {
1286         int ret = 0;
1287         ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1288         const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1289         struct writequeue_entry *e;
1290         int len, offset;
1291
1292         mutex_lock(&con->sock_mutex);
1293         if (con->sock == NULL)
1294                 goto out_connect;
1295
1296         sendpage = con->sock->ops->sendpage;
1297
1298         spin_lock(&con->writequeue_lock);
1299         for (;;) {
1300                 e = list_entry(con->writequeue.next, struct writequeue_entry,
1301                                list);
1302                 if ((struct list_head *) e == &con->writequeue)
1303                         break;
1304
1305                 len = e->len;
1306                 offset = e->offset;
1307                 BUG_ON(len == 0 && e->users == 0);
1308                 spin_unlock(&con->writequeue_lock);
1309
1310                 ret = 0;
1311                 if (len) {
1312                         ret = sendpage(con->sock, e->page, offset, len,
1313                                        msg_flags);
1314                         if (ret == -EAGAIN || ret == 0) {
1315                                 cond_resched();
1316                                 goto out;
1317                         }
1318                         if (ret <= 0)
1319                                 goto send_error;
1320                 }
1321                         /* Don't starve people filling buffers */
1322                         cond_resched();
1323
1324                 spin_lock(&con->writequeue_lock);
1325                 e->offset += ret;
1326                 e->len -= ret;
1327
1328                 if (e->len == 0 && e->users == 0) {
1329                         list_del(&e->list);
1330                         free_entry(e);
1331                         continue;
1332                 }
1333         }
1334         spin_unlock(&con->writequeue_lock);
1335 out:
1336         mutex_unlock(&con->sock_mutex);
1337         return;
1338
1339 send_error:
1340         mutex_unlock(&con->sock_mutex);
1341         close_connection(con, false);
1342         lowcomms_connect_sock(con);
1343         return;
1344
1345 out_connect:
1346         mutex_unlock(&con->sock_mutex);
1347         if (!test_bit(CF_INIT_PENDING, &con->flags))
1348                 lowcomms_connect_sock(con);
1349         return;
1350 }
1351
1352 static void clean_one_writequeue(struct connection *con)
1353 {
1354         struct writequeue_entry *e, *safe;
1355
1356         spin_lock(&con->writequeue_lock);
1357         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1358                 list_del(&e->list);
1359                 free_entry(e);
1360         }
1361         spin_unlock(&con->writequeue_lock);
1362 }
1363
1364 /* Called from recovery when it knows that a node has
1365    left the cluster */
1366 int dlm_lowcomms_close(int nodeid)
1367 {
1368         struct connection *con;
1369
1370         log_print("closing connection to node %d", nodeid);
1371         con = nodeid2con(nodeid, 0);
1372         if (con) {
1373                 clean_one_writequeue(con);
1374                 close_connection(con, true);
1375         }
1376         return 0;
1377 }
1378
1379 /* Receive workqueue function */
1380 static void process_recv_sockets(struct work_struct *work)
1381 {
1382         struct connection *con = container_of(work, struct connection, rwork);
1383         int err;
1384
1385         clear_bit(CF_READ_PENDING, &con->flags);
1386         do {
1387                 err = con->rx_action(con);
1388         } while (!err);
1389 }
1390
1391 /* Send workqueue function */
1392 static void process_send_sockets(struct work_struct *work)
1393 {
1394         struct connection *con = container_of(work, struct connection, swork);
1395
1396         if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1397                 con->connect_action(con);
1398         }
1399         clear_bit(CF_WRITE_PENDING, &con->flags);
1400         send_to_sock(con);
1401 }
1402
1403
1404 /* Discard all entries on the write queues */
1405 static void clean_writequeues(void)
1406 {
1407         foreach_conn(clean_one_writequeue);
1408 }
1409
1410 static void work_stop(void)
1411 {
1412         destroy_workqueue(recv_workqueue);
1413         destroy_workqueue(send_workqueue);
1414 }
1415
1416 static int work_start(void)
1417 {
1418         int error;
1419         recv_workqueue = create_workqueue("dlm_recv");
1420         error = IS_ERR(recv_workqueue);
1421         if (error) {
1422                 log_print("can't start dlm_recv %d", error);
1423                 return error;
1424         }
1425
1426         send_workqueue = create_singlethread_workqueue("dlm_send");
1427         error = IS_ERR(send_workqueue);
1428         if (error) {
1429                 log_print("can't start dlm_send %d", error);
1430                 destroy_workqueue(recv_workqueue);
1431                 return error;
1432         }
1433
1434         return 0;
1435 }
1436
1437 static void stop_conn(struct connection *con)
1438 {
1439         con->flags |= 0x0F;
1440         if (con->sock && con->sock->sk)
1441                 con->sock->sk->sk_user_data = NULL;
1442 }
1443
1444 static void free_conn(struct connection *con)
1445 {
1446         close_connection(con, true);
1447         if (con->othercon)
1448                 kmem_cache_free(con_cache, con->othercon);
1449         hlist_del(&con->list);
1450         kmem_cache_free(con_cache, con);
1451 }
1452
1453 void dlm_lowcomms_stop(void)
1454 {
1455         /* Set all the flags to prevent any
1456            socket activity.
1457         */
1458         mutex_lock(&connections_lock);
1459         foreach_conn(stop_conn);
1460         mutex_unlock(&connections_lock);
1461
1462         work_stop();
1463
1464         mutex_lock(&connections_lock);
1465         clean_writequeues();
1466
1467         foreach_conn(free_conn);
1468
1469         mutex_unlock(&connections_lock);
1470         kmem_cache_destroy(con_cache);
1471 }
1472
1473 int dlm_lowcomms_start(void)
1474 {
1475         int error = -EINVAL;
1476         struct connection *con;
1477         int i;
1478
1479         for (i = 0; i < CONN_HASH_SIZE; i++)
1480                 INIT_HLIST_HEAD(&connection_hash[i]);
1481
1482         init_local();
1483         if (!dlm_local_count) {
1484                 error = -ENOTCONN;
1485                 log_print("no local IP address has been set");
1486                 goto out;
1487         }
1488
1489         error = -ENOMEM;
1490         con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1491                                       __alignof__(struct connection), 0,
1492                                       NULL);
1493         if (!con_cache)
1494                 goto out;
1495
1496         /* Start listening */
1497         if (dlm_config.ci_protocol == 0)
1498                 error = tcp_listen_for_all();
1499         else
1500                 error = sctp_listen_for_all();
1501         if (error)
1502                 goto fail_unlisten;
1503
1504         error = work_start();
1505         if (error)
1506                 goto fail_unlisten;
1507
1508         return 0;
1509
1510 fail_unlisten:
1511         con = nodeid2con(0,0);
1512         if (con) {
1513                 close_connection(con, false);
1514                 kmem_cache_free(con_cache, con);
1515         }
1516         kmem_cache_destroy(con_cache);
1517
1518 out:
1519         return error;
1520 }