Staging: aten2011: fix up the set_reg_sync function
[linux-2.6] / drivers / spi / spi_imx.c
1 /*
2  * drivers/spi/spi_imx.c
3  *
4  * Copyright (C) 2006 SWAPP
5  *      Andrea Paterniani <a.paterniani@swapp-eng.it>
6  *
7  * Initial version inspired by:
8  *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  */
20
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/device.h>
24 #include <linux/ioport.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/spi/spi.h>
30 #include <linux/workqueue.h>
31 #include <linux/delay.h>
32 #include <linux/clk.h>
33
34 #include <asm/io.h>
35 #include <asm/irq.h>
36 #include <asm/delay.h>
37
38 #include <mach/hardware.h>
39 #include <mach/imx-dma.h>
40 #include <mach/spi_imx.h>
41
42 /*-------------------------------------------------------------------------*/
43 /* SPI Registers offsets from peripheral base address */
44 #define SPI_RXDATA              (0x00)
45 #define SPI_TXDATA              (0x04)
46 #define SPI_CONTROL             (0x08)
47 #define SPI_INT_STATUS          (0x0C)
48 #define SPI_TEST                (0x10)
49 #define SPI_PERIOD              (0x14)
50 #define SPI_DMA                 (0x18)
51 #define SPI_RESET               (0x1C)
52
53 /* SPI Control Register Bit Fields & Masks */
54 #define SPI_CONTROL_BITCOUNT_MASK       (0xF)           /* Bit Count Mask */
55 #define SPI_CONTROL_BITCOUNT(n)         (((n) - 1) & SPI_CONTROL_BITCOUNT_MASK)
56 #define SPI_CONTROL_POL                 (0x1 << 4)      /* Clock Polarity Mask */
57 #define SPI_CONTROL_POL_ACT_HIGH        (0x0 << 4)      /* Active high pol. (0=idle) */
58 #define SPI_CONTROL_POL_ACT_LOW         (0x1 << 4)      /* Active low pol. (1=idle) */
59 #define SPI_CONTROL_PHA                 (0x1 << 5)      /* Clock Phase Mask */
60 #define SPI_CONTROL_PHA_0               (0x0 << 5)      /* Clock Phase 0 */
61 #define SPI_CONTROL_PHA_1               (0x1 << 5)      /* Clock Phase 1 */
62 #define SPI_CONTROL_SSCTL               (0x1 << 6)      /* /SS Waveform Select Mask */
63 #define SPI_CONTROL_SSCTL_0             (0x0 << 6)      /* Master: /SS stays low between SPI burst
64                                                            Slave: RXFIFO advanced by BIT_COUNT */
65 #define SPI_CONTROL_SSCTL_1             (0x1 << 6)      /* Master: /SS insert pulse between SPI burst
66                                                            Slave: RXFIFO advanced by /SS rising edge */
67 #define SPI_CONTROL_SSPOL               (0x1 << 7)      /* /SS Polarity Select Mask */
68 #define SPI_CONTROL_SSPOL_ACT_LOW       (0x0 << 7)      /* /SS Active low */
69 #define SPI_CONTROL_SSPOL_ACT_HIGH      (0x1 << 7)      /* /SS Active high */
70 #define SPI_CONTROL_XCH                 (0x1 << 8)      /* Exchange */
71 #define SPI_CONTROL_SPIEN               (0x1 << 9)      /* SPI Module Enable */
72 #define SPI_CONTROL_MODE                (0x1 << 10)     /* SPI Mode Select Mask */
73 #define SPI_CONTROL_MODE_SLAVE          (0x0 << 10)     /* SPI Mode Slave */
74 #define SPI_CONTROL_MODE_MASTER         (0x1 << 10)     /* SPI Mode Master */
75 #define SPI_CONTROL_DRCTL               (0x3 << 11)     /* /SPI_RDY Control Mask */
76 #define SPI_CONTROL_DRCTL_0             (0x0 << 11)     /* Ignore /SPI_RDY */
77 #define SPI_CONTROL_DRCTL_1             (0x1 << 11)     /* /SPI_RDY falling edge triggers input */
78 #define SPI_CONTROL_DRCTL_2             (0x2 << 11)     /* /SPI_RDY active low level triggers input */
79 #define SPI_CONTROL_DATARATE            (0x7 << 13)     /* Data Rate Mask */
80 #define SPI_PERCLK2_DIV_MIN             (0)             /* PERCLK2:4 */
81 #define SPI_PERCLK2_DIV_MAX             (7)             /* PERCLK2:512 */
82 #define SPI_CONTROL_DATARATE_MIN        (SPI_PERCLK2_DIV_MAX << 13)
83 #define SPI_CONTROL_DATARATE_MAX        (SPI_PERCLK2_DIV_MIN << 13)
84 #define SPI_CONTROL_DATARATE_BAD        (SPI_CONTROL_DATARATE_MIN + 1)
85
86 /* SPI Interrupt/Status Register Bit Fields & Masks */
87 #define SPI_STATUS_TE   (0x1 << 0)      /* TXFIFO Empty Status */
88 #define SPI_STATUS_TH   (0x1 << 1)      /* TXFIFO Half Status */
89 #define SPI_STATUS_TF   (0x1 << 2)      /* TXFIFO Full Status */
90 #define SPI_STATUS_RR   (0x1 << 3)      /* RXFIFO Data Ready Status */
91 #define SPI_STATUS_RH   (0x1 << 4)      /* RXFIFO Half Status */
92 #define SPI_STATUS_RF   (0x1 << 5)      /* RXFIFO Full Status */
93 #define SPI_STATUS_RO   (0x1 << 6)      /* RXFIFO Overflow */
94 #define SPI_STATUS_BO   (0x1 << 7)      /* Bit Count Overflow */
95 #define SPI_STATUS      (0xFF)          /* SPI Status Mask */
96 #define SPI_INTEN_TE    (0x1 << 8)      /* TXFIFO Empty Interrupt Enable */
97 #define SPI_INTEN_TH    (0x1 << 9)      /* TXFIFO Half Interrupt Enable */
98 #define SPI_INTEN_TF    (0x1 << 10)     /* TXFIFO Full Interrupt Enable */
99 #define SPI_INTEN_RE    (0x1 << 11)     /* RXFIFO Data Ready Interrupt Enable */
100 #define SPI_INTEN_RH    (0x1 << 12)     /* RXFIFO Half Interrupt Enable */
101 #define SPI_INTEN_RF    (0x1 << 13)     /* RXFIFO Full Interrupt Enable */
102 #define SPI_INTEN_RO    (0x1 << 14)     /* RXFIFO Overflow Interrupt Enable */
103 #define SPI_INTEN_BO    (0x1 << 15)     /* Bit Count Overflow Interrupt Enable */
104 #define SPI_INTEN       (0xFF << 8)     /* SPI Interrupt Enable Mask */
105
106 /* SPI Test Register Bit Fields & Masks */
107 #define SPI_TEST_TXCNT          (0xF << 0)      /* TXFIFO Counter */
108 #define SPI_TEST_RXCNT_LSB      (4)             /* RXFIFO Counter LSB */
109 #define SPI_TEST_RXCNT          (0xF << 4)      /* RXFIFO Counter */
110 #define SPI_TEST_SSTATUS        (0xF << 8)      /* State Machine Status */
111 #define SPI_TEST_LBC            (0x1 << 14)     /* Loop Back Control */
112
113 /* SPI Period Register Bit Fields & Masks */
114 #define SPI_PERIOD_WAIT         (0x7FFF << 0)   /* Wait Between Transactions */
115 #define SPI_PERIOD_MAX_WAIT     (0x7FFF)        /* Max Wait Between
116                                                         Transactions */
117 #define SPI_PERIOD_CSRC         (0x1 << 15)     /* Period Clock Source Mask */
118 #define SPI_PERIOD_CSRC_BCLK    (0x0 << 15)     /* Period Clock Source is
119                                                         Bit Clock */
120 #define SPI_PERIOD_CSRC_32768   (0x1 << 15)     /* Period Clock Source is
121                                                         32.768 KHz Clock */
122
123 /* SPI DMA Register Bit Fields & Masks */
124 #define SPI_DMA_RHDMA   (0x1 << 4)      /* RXFIFO Half Status */
125 #define SPI_DMA_RFDMA   (0x1 << 5)      /* RXFIFO Full Status */
126 #define SPI_DMA_TEDMA   (0x1 << 6)      /* TXFIFO Empty Status */
127 #define SPI_DMA_THDMA   (0x1 << 7)      /* TXFIFO Half Status */
128 #define SPI_DMA_RHDEN   (0x1 << 12)     /* RXFIFO Half DMA Request Enable */
129 #define SPI_DMA_RFDEN   (0x1 << 13)     /* RXFIFO Full DMA Request Enable */
130 #define SPI_DMA_TEDEN   (0x1 << 14)     /* TXFIFO Empty DMA Request Enable */
131 #define SPI_DMA_THDEN   (0x1 << 15)     /* TXFIFO Half DMA Request Enable */
132
133 /* SPI Soft Reset Register Bit Fields & Masks */
134 #define SPI_RESET_START (0x1)           /* Start */
135
136 /* Default SPI configuration values */
137 #define SPI_DEFAULT_CONTROL             \
138 (                                       \
139         SPI_CONTROL_BITCOUNT(16) |      \
140         SPI_CONTROL_POL_ACT_HIGH |      \
141         SPI_CONTROL_PHA_0 |             \
142         SPI_CONTROL_SPIEN |             \
143         SPI_CONTROL_SSCTL_1 |           \
144         SPI_CONTROL_MODE_MASTER |       \
145         SPI_CONTROL_DRCTL_0 |           \
146         SPI_CONTROL_DATARATE_MIN        \
147 )
148 #define SPI_DEFAULT_ENABLE_LOOPBACK     (0)
149 #define SPI_DEFAULT_ENABLE_DMA          (0)
150 #define SPI_DEFAULT_PERIOD_WAIT         (8)
151 /*-------------------------------------------------------------------------*/
152
153
154 /*-------------------------------------------------------------------------*/
155 /* TX/RX SPI FIFO size */
156 #define SPI_FIFO_DEPTH                  (8)
157 #define SPI_FIFO_BYTE_WIDTH             (2)
158 #define SPI_FIFO_OVERFLOW_MARGIN        (2)
159
160 /* DMA burst length for half full/empty request trigger */
161 #define SPI_DMA_BLR                     (SPI_FIFO_DEPTH * SPI_FIFO_BYTE_WIDTH / 2)
162
163 /* Dummy char output to achieve reads.
164    Choosing something different from all zeroes may help pattern recogition
165    for oscilloscope analysis, but may break some drivers. */
166 #define SPI_DUMMY_u8                    0
167 #define SPI_DUMMY_u16                   ((SPI_DUMMY_u8 << 8) | SPI_DUMMY_u8)
168 #define SPI_DUMMY_u32                   ((SPI_DUMMY_u16 << 16) | SPI_DUMMY_u16)
169
170 /**
171  * Macro to change a u32 field:
172  * @r : register to edit
173  * @m : bit mask
174  * @v : new value for the field correctly bit-alligned
175 */
176 #define u32_EDIT(r, m, v)               r = (r & ~(m)) | (v)
177
178 /* Message state */
179 #define START_STATE                     ((void*)0)
180 #define RUNNING_STATE                   ((void*)1)
181 #define DONE_STATE                      ((void*)2)
182 #define ERROR_STATE                     ((void*)-1)
183
184 /* Queue state */
185 #define QUEUE_RUNNING                   (0)
186 #define QUEUE_STOPPED                   (1)
187
188 #define IS_DMA_ALIGNED(x)               (((u32)(x) & 0x03) == 0)
189 /*-------------------------------------------------------------------------*/
190
191
192 /*-------------------------------------------------------------------------*/
193 /* Driver data structs */
194
195 /* Context */
196 struct driver_data {
197         /* Driver model hookup */
198         struct platform_device *pdev;
199
200         /* SPI framework hookup */
201         struct spi_master *master;
202
203         /* IMX hookup */
204         struct spi_imx_master *master_info;
205
206         /* Memory resources and SPI regs virtual address */
207         struct resource *ioarea;
208         void __iomem *regs;
209
210         /* SPI RX_DATA physical address */
211         dma_addr_t rd_data_phys;
212
213         /* Driver message queue */
214         struct workqueue_struct *workqueue;
215         struct work_struct work;
216         spinlock_t lock;
217         struct list_head queue;
218         int busy;
219         int run;
220
221         /* Message Transfer pump */
222         struct tasklet_struct pump_transfers;
223
224         /* Current message, transfer and state */
225         struct spi_message *cur_msg;
226         struct spi_transfer *cur_transfer;
227         struct chip_data *cur_chip;
228
229         /* Rd / Wr buffers pointers */
230         size_t len;
231         void *tx;
232         void *tx_end;
233         void *rx;
234         void *rx_end;
235
236         u8 rd_only;
237         u8 n_bytes;
238         int cs_change;
239
240         /* Function pointers */
241         irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
242         void (*cs_control)(u32 command);
243
244         /* DMA setup */
245         int rx_channel;
246         int tx_channel;
247         dma_addr_t rx_dma;
248         dma_addr_t tx_dma;
249         int rx_dma_needs_unmap;
250         int tx_dma_needs_unmap;
251         size_t tx_map_len;
252         u32 dummy_dma_buf ____cacheline_aligned;
253
254         struct clk *clk;
255 };
256
257 /* Runtime state */
258 struct chip_data {
259         u32 control;
260         u32 period;
261         u32 test;
262
263         u8 enable_dma:1;
264         u8 bits_per_word;
265         u8 n_bytes;
266         u32 max_speed_hz;
267
268         void (*cs_control)(u32 command);
269 };
270 /*-------------------------------------------------------------------------*/
271
272
273 static void pump_messages(struct work_struct *work);
274
275 static void flush(struct driver_data *drv_data)
276 {
277         void __iomem *regs = drv_data->regs;
278         u32 control;
279
280         dev_dbg(&drv_data->pdev->dev, "flush\n");
281
282         /* Wait for end of transaction */
283         do {
284                 control = readl(regs + SPI_CONTROL);
285         } while (control & SPI_CONTROL_XCH);
286
287         /* Release chip select if requested, transfer delays are
288            handled in pump_transfers */
289         if (drv_data->cs_change)
290                 drv_data->cs_control(SPI_CS_DEASSERT);
291
292         /* Disable SPI to flush FIFOs */
293         writel(control & ~SPI_CONTROL_SPIEN, regs + SPI_CONTROL);
294         writel(control, regs + SPI_CONTROL);
295 }
296
297 static void restore_state(struct driver_data *drv_data)
298 {
299         void __iomem *regs = drv_data->regs;
300         struct chip_data *chip = drv_data->cur_chip;
301
302         /* Load chip registers */
303         dev_dbg(&drv_data->pdev->dev,
304                 "restore_state\n"
305                 "    test    = 0x%08X\n"
306                 "    control = 0x%08X\n",
307                 chip->test,
308                 chip->control);
309         writel(chip->test, regs + SPI_TEST);
310         writel(chip->period, regs + SPI_PERIOD);
311         writel(0, regs + SPI_INT_STATUS);
312         writel(chip->control, regs + SPI_CONTROL);
313 }
314
315 static void null_cs_control(u32 command)
316 {
317 }
318
319 static inline u32 data_to_write(struct driver_data *drv_data)
320 {
321         return ((u32)(drv_data->tx_end - drv_data->tx)) / drv_data->n_bytes;
322 }
323
324 static inline u32 data_to_read(struct driver_data *drv_data)
325 {
326         return ((u32)(drv_data->rx_end - drv_data->rx)) / drv_data->n_bytes;
327 }
328
329 static int write(struct driver_data *drv_data)
330 {
331         void __iomem *regs = drv_data->regs;
332         void *tx = drv_data->tx;
333         void *tx_end = drv_data->tx_end;
334         u8 n_bytes = drv_data->n_bytes;
335         u32 remaining_writes;
336         u32 fifo_avail_space;
337         u32 n;
338         u16 d;
339
340         /* Compute how many fifo writes to do */
341         remaining_writes = (u32)(tx_end - tx) / n_bytes;
342         fifo_avail_space = SPI_FIFO_DEPTH -
343                                 (readl(regs + SPI_TEST) & SPI_TEST_TXCNT);
344         if (drv_data->rx && (fifo_avail_space > SPI_FIFO_OVERFLOW_MARGIN))
345                 /* Fix misunderstood receive overflow */
346                 fifo_avail_space -= SPI_FIFO_OVERFLOW_MARGIN;
347         n = min(remaining_writes, fifo_avail_space);
348
349         dev_dbg(&drv_data->pdev->dev,
350                 "write type %s\n"
351                 "    remaining writes = %d\n"
352                 "    fifo avail space = %d\n"
353                 "    fifo writes      = %d\n",
354                 (n_bytes == 1) ? "u8" : "u16",
355                 remaining_writes,
356                 fifo_avail_space,
357                 n);
358
359         if (n > 0) {
360                 /* Fill SPI TXFIFO */
361                 if (drv_data->rd_only) {
362                         tx += n * n_bytes;
363                         while (n--)
364                                 writel(SPI_DUMMY_u16, regs + SPI_TXDATA);
365                 } else {
366                         if (n_bytes == 1) {
367                                 while (n--) {
368                                         d = *(u8*)tx;
369                                         writel(d, regs + SPI_TXDATA);
370                                         tx += 1;
371                                 }
372                         } else {
373                                 while (n--) {
374                                         d = *(u16*)tx;
375                                         writel(d, regs + SPI_TXDATA);
376                                         tx += 2;
377                                 }
378                         }
379                 }
380
381                 /* Trigger transfer */
382                 writel(readl(regs + SPI_CONTROL) | SPI_CONTROL_XCH,
383                         regs + SPI_CONTROL);
384
385                 /* Update tx pointer */
386                 drv_data->tx = tx;
387         }
388
389         return (tx >= tx_end);
390 }
391
392 static int read(struct driver_data *drv_data)
393 {
394         void __iomem *regs = drv_data->regs;
395         void *rx = drv_data->rx;
396         void *rx_end = drv_data->rx_end;
397         u8 n_bytes = drv_data->n_bytes;
398         u32 remaining_reads;
399         u32 fifo_rxcnt;
400         u32 n;
401         u16 d;
402
403         /* Compute how many fifo reads to do */
404         remaining_reads = (u32)(rx_end - rx) / n_bytes;
405         fifo_rxcnt = (readl(regs + SPI_TEST) & SPI_TEST_RXCNT) >>
406                         SPI_TEST_RXCNT_LSB;
407         n = min(remaining_reads, fifo_rxcnt);
408
409         dev_dbg(&drv_data->pdev->dev,
410                 "read type %s\n"
411                 "    remaining reads = %d\n"
412                 "    fifo rx count   = %d\n"
413                 "    fifo reads      = %d\n",
414                 (n_bytes == 1) ? "u8" : "u16",
415                 remaining_reads,
416                 fifo_rxcnt,
417                 n);
418
419         if (n > 0) {
420                 /* Read SPI RXFIFO */
421                 if (n_bytes == 1) {
422                         while (n--) {
423                                 d = readl(regs + SPI_RXDATA);
424                                 *((u8*)rx) = d;
425                                 rx += 1;
426                         }
427                 } else {
428                         while (n--) {
429                                 d = readl(regs + SPI_RXDATA);
430                                 *((u16*)rx) = d;
431                                 rx += 2;
432                         }
433                 }
434
435                 /* Update rx pointer */
436                 drv_data->rx = rx;
437         }
438
439         return (rx >= rx_end);
440 }
441
442 static void *next_transfer(struct driver_data *drv_data)
443 {
444         struct spi_message *msg = drv_data->cur_msg;
445         struct spi_transfer *trans = drv_data->cur_transfer;
446
447         /* Move to next transfer */
448         if (trans->transfer_list.next != &msg->transfers) {
449                 drv_data->cur_transfer =
450                         list_entry(trans->transfer_list.next,
451                                         struct spi_transfer,
452                                         transfer_list);
453                 return RUNNING_STATE;
454         }
455
456         return DONE_STATE;
457 }
458
459 static int map_dma_buffers(struct driver_data *drv_data)
460 {
461         struct spi_message *msg;
462         struct device *dev;
463         void *buf;
464
465         drv_data->rx_dma_needs_unmap = 0;
466         drv_data->tx_dma_needs_unmap = 0;
467
468         if (!drv_data->master_info->enable_dma ||
469                 !drv_data->cur_chip->enable_dma)
470                         return -1;
471
472         msg = drv_data->cur_msg;
473         dev = &msg->spi->dev;
474         if (msg->is_dma_mapped) {
475                 if (drv_data->tx_dma)
476                         /* The caller provided at least dma and cpu virtual
477                            address for write; pump_transfers() will consider the
478                            transfer as write only if cpu rx virtual address is
479                            NULL */
480                         return 0;
481
482                 if (drv_data->rx_dma) {
483                         /* The caller provided dma and cpu virtual address to
484                            performe read only transfer -->
485                            use drv_data->dummy_dma_buf for dummy writes to
486                            achive reads */
487                         buf = &drv_data->dummy_dma_buf;
488                         drv_data->tx_map_len = sizeof(drv_data->dummy_dma_buf);
489                         drv_data->tx_dma = dma_map_single(dev,
490                                                         buf,
491                                                         drv_data->tx_map_len,
492                                                         DMA_TO_DEVICE);
493                         if (dma_mapping_error(dev, drv_data->tx_dma))
494                                 return -1;
495
496                         drv_data->tx_dma_needs_unmap = 1;
497
498                         /* Flags transfer as rd_only for pump_transfers() DMA
499                            regs programming (should be redundant) */
500                         drv_data->tx = NULL;
501
502                         return 0;
503                 }
504         }
505
506         if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
507                 return -1;
508
509         if (drv_data->tx == NULL) {
510                 /* Read only message --> use drv_data->dummy_dma_buf for dummy
511                    writes to achive reads */
512                 buf = &drv_data->dummy_dma_buf;
513                 drv_data->tx_map_len = sizeof(drv_data->dummy_dma_buf);
514         } else {
515                 buf = drv_data->tx;
516                 drv_data->tx_map_len = drv_data->len;
517         }
518         drv_data->tx_dma = dma_map_single(dev,
519                                         buf,
520                                         drv_data->tx_map_len,
521                                         DMA_TO_DEVICE);
522         if (dma_mapping_error(dev, drv_data->tx_dma))
523                 return -1;
524         drv_data->tx_dma_needs_unmap = 1;
525
526         /* NULL rx means write-only transfer and no map needed
527          * since rx DMA will not be used */
528         if (drv_data->rx) {
529                 buf = drv_data->rx;
530                 drv_data->rx_dma = dma_map_single(dev,
531                                                 buf,
532                                                 drv_data->len,
533                                                 DMA_FROM_DEVICE);
534                 if (dma_mapping_error(dev, drv_data->rx_dma)) {
535                         if (drv_data->tx_dma) {
536                                 dma_unmap_single(dev,
537                                                 drv_data->tx_dma,
538                                                 drv_data->tx_map_len,
539                                                 DMA_TO_DEVICE);
540                                 drv_data->tx_dma_needs_unmap = 0;
541                         }
542                         return -1;
543                 }
544                 drv_data->rx_dma_needs_unmap = 1;
545         }
546
547         return 0;
548 }
549
550 static void unmap_dma_buffers(struct driver_data *drv_data)
551 {
552         struct spi_message *msg = drv_data->cur_msg;
553         struct device *dev = &msg->spi->dev;
554
555         if (drv_data->rx_dma_needs_unmap) {
556                 dma_unmap_single(dev,
557                                 drv_data->rx_dma,
558                                 drv_data->len,
559                                 DMA_FROM_DEVICE);
560                 drv_data->rx_dma_needs_unmap = 0;
561         }
562         if (drv_data->tx_dma_needs_unmap) {
563                 dma_unmap_single(dev,
564                                 drv_data->tx_dma,
565                                 drv_data->tx_map_len,
566                                 DMA_TO_DEVICE);
567                 drv_data->tx_dma_needs_unmap = 0;
568         }
569 }
570
571 /* Caller already set message->status (dma is already blocked) */
572 static void giveback(struct spi_message *message, struct driver_data *drv_data)
573 {
574         void __iomem *regs = drv_data->regs;
575
576         /* Bring SPI to sleep; restore_state() and pump_transfer()
577            will do new setup */
578         writel(0, regs + SPI_INT_STATUS);
579         writel(0, regs + SPI_DMA);
580
581         /* Unconditioned deselct */
582         drv_data->cs_control(SPI_CS_DEASSERT);
583
584         message->state = NULL;
585         if (message->complete)
586                 message->complete(message->context);
587
588         drv_data->cur_msg = NULL;
589         drv_data->cur_transfer = NULL;
590         drv_data->cur_chip = NULL;
591         queue_work(drv_data->workqueue, &drv_data->work);
592 }
593
594 static void dma_err_handler(int channel, void *data, int errcode)
595 {
596         struct driver_data *drv_data = data;
597         struct spi_message *msg = drv_data->cur_msg;
598
599         dev_dbg(&drv_data->pdev->dev, "dma_err_handler\n");
600
601         /* Disable both rx and tx dma channels */
602         imx_dma_disable(drv_data->rx_channel);
603         imx_dma_disable(drv_data->tx_channel);
604         unmap_dma_buffers(drv_data);
605
606         flush(drv_data);
607
608         msg->state = ERROR_STATE;
609         tasklet_schedule(&drv_data->pump_transfers);
610 }
611
612 static void dma_tx_handler(int channel, void *data)
613 {
614         struct driver_data *drv_data = data;
615
616         dev_dbg(&drv_data->pdev->dev, "dma_tx_handler\n");
617
618         imx_dma_disable(channel);
619
620         /* Now waits for TX FIFO empty */
621         writel(SPI_INTEN_TE, drv_data->regs + SPI_INT_STATUS);
622 }
623
624 static irqreturn_t dma_transfer(struct driver_data *drv_data)
625 {
626         u32 status;
627         struct spi_message *msg = drv_data->cur_msg;
628         void __iomem *regs = drv_data->regs;
629
630         status = readl(regs + SPI_INT_STATUS);
631
632         if ((status & (SPI_INTEN_RO | SPI_STATUS_RO))
633                         == (SPI_INTEN_RO | SPI_STATUS_RO)) {
634                 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
635
636                 imx_dma_disable(drv_data->tx_channel);
637                 imx_dma_disable(drv_data->rx_channel);
638                 unmap_dma_buffers(drv_data);
639
640                 flush(drv_data);
641
642                 dev_warn(&drv_data->pdev->dev,
643                                 "dma_transfer - fifo overun\n");
644
645                 msg->state = ERROR_STATE;
646                 tasklet_schedule(&drv_data->pump_transfers);
647
648                 return IRQ_HANDLED;
649         }
650
651         if (status & SPI_STATUS_TE) {
652                 writel(status & ~SPI_INTEN_TE, regs + SPI_INT_STATUS);
653
654                 if (drv_data->rx) {
655                         /* Wait end of transfer before read trailing data */
656                         while (readl(regs + SPI_CONTROL) & SPI_CONTROL_XCH)
657                                 cpu_relax();
658
659                         imx_dma_disable(drv_data->rx_channel);
660                         unmap_dma_buffers(drv_data);
661
662                         /* Release chip select if requested, transfer delays are
663                            handled in pump_transfers() */
664                         if (drv_data->cs_change)
665                                 drv_data->cs_control(SPI_CS_DEASSERT);
666
667                         /* Calculate number of trailing data and read them */
668                         dev_dbg(&drv_data->pdev->dev,
669                                 "dma_transfer - test = 0x%08X\n",
670                                 readl(regs + SPI_TEST));
671                         drv_data->rx = drv_data->rx_end -
672                                         ((readl(regs + SPI_TEST) &
673                                         SPI_TEST_RXCNT) >>
674                                         SPI_TEST_RXCNT_LSB)*drv_data->n_bytes;
675                         read(drv_data);
676                 } else {
677                         /* Write only transfer */
678                         unmap_dma_buffers(drv_data);
679
680                         flush(drv_data);
681                 }
682
683                 /* End of transfer, update total byte transfered */
684                 msg->actual_length += drv_data->len;
685
686                 /* Move to next transfer */
687                 msg->state = next_transfer(drv_data);
688
689                 /* Schedule transfer tasklet */
690                 tasklet_schedule(&drv_data->pump_transfers);
691
692                 return IRQ_HANDLED;
693         }
694
695         /* Opps problem detected */
696         return IRQ_NONE;
697 }
698
699 static irqreturn_t interrupt_wronly_transfer(struct driver_data *drv_data)
700 {
701         struct spi_message *msg = drv_data->cur_msg;
702         void __iomem *regs = drv_data->regs;
703         u32 status;
704         irqreturn_t handled = IRQ_NONE;
705
706         status = readl(regs + SPI_INT_STATUS);
707
708         if (status & SPI_INTEN_TE) {
709                 /* TXFIFO Empty Interrupt on the last transfered word */
710                 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
711                 dev_dbg(&drv_data->pdev->dev,
712                         "interrupt_wronly_transfer - end of tx\n");
713
714                 flush(drv_data);
715
716                 /* Update total byte transfered */
717                 msg->actual_length += drv_data->len;
718
719                 /* Move to next transfer */
720                 msg->state = next_transfer(drv_data);
721
722                 /* Schedule transfer tasklet */
723                 tasklet_schedule(&drv_data->pump_transfers);
724
725                 return IRQ_HANDLED;
726         } else {
727                 while (status & SPI_STATUS_TH) {
728                         dev_dbg(&drv_data->pdev->dev,
729                                 "interrupt_wronly_transfer - status = 0x%08X\n",
730                                 status);
731
732                         /* Pump data */
733                         if (write(drv_data)) {
734                                 /* End of TXFIFO writes,
735                                    now wait until TXFIFO is empty */
736                                 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
737                                 return IRQ_HANDLED;
738                         }
739
740                         status = readl(regs + SPI_INT_STATUS);
741
742                         /* We did something */
743                         handled = IRQ_HANDLED;
744                 }
745         }
746
747         return handled;
748 }
749
750 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
751 {
752         struct spi_message *msg = drv_data->cur_msg;
753         void __iomem *regs = drv_data->regs;
754         u32 status, control;
755         irqreturn_t handled = IRQ_NONE;
756         unsigned long limit;
757
758         status = readl(regs + SPI_INT_STATUS);
759
760         if (status & SPI_INTEN_TE) {
761                 /* TXFIFO Empty Interrupt on the last transfered word */
762                 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
763                 dev_dbg(&drv_data->pdev->dev,
764                         "interrupt_transfer - end of tx\n");
765
766                 if (msg->state == ERROR_STATE) {
767                         /* RXFIFO overrun was detected and message aborted */
768                         flush(drv_data);
769                 } else {
770                         /* Wait for end of transaction */
771                         do {
772                                 control = readl(regs + SPI_CONTROL);
773                         } while (control & SPI_CONTROL_XCH);
774
775                         /* Release chip select if requested, transfer delays are
776                            handled in pump_transfers */
777                         if (drv_data->cs_change)
778                                 drv_data->cs_control(SPI_CS_DEASSERT);
779
780                         /* Read trailing bytes */
781                         limit = loops_per_jiffy << 1;
782                         while ((read(drv_data) == 0) && limit--);
783
784                         if (limit == 0)
785                                 dev_err(&drv_data->pdev->dev,
786                                         "interrupt_transfer - "
787                                         "trailing byte read failed\n");
788                         else
789                                 dev_dbg(&drv_data->pdev->dev,
790                                         "interrupt_transfer - end of rx\n");
791
792                         /* Update total byte transfered */
793                         msg->actual_length += drv_data->len;
794
795                         /* Move to next transfer */
796                         msg->state = next_transfer(drv_data);
797                 }
798
799                 /* Schedule transfer tasklet */
800                 tasklet_schedule(&drv_data->pump_transfers);
801
802                 return IRQ_HANDLED;
803         } else {
804                 while (status & (SPI_STATUS_TH | SPI_STATUS_RO)) {
805                         dev_dbg(&drv_data->pdev->dev,
806                                 "interrupt_transfer - status = 0x%08X\n",
807                                 status);
808
809                         if (status & SPI_STATUS_RO) {
810                                 /* RXFIFO overrun, abort message end wait
811                                    until TXFIFO is empty */
812                                 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
813
814                                 dev_warn(&drv_data->pdev->dev,
815                                         "interrupt_transfer - fifo overun\n"
816                                         "    data not yet written = %d\n"
817                                         "    data not yet read    = %d\n",
818                                         data_to_write(drv_data),
819                                         data_to_read(drv_data));
820
821                                 msg->state = ERROR_STATE;
822
823                                 return IRQ_HANDLED;
824                         }
825
826                         /* Pump data */
827                         read(drv_data);
828                         if (write(drv_data)) {
829                                 /* End of TXFIFO writes,
830                                    now wait until TXFIFO is empty */
831                                 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
832                                 return IRQ_HANDLED;
833                         }
834
835                         status = readl(regs + SPI_INT_STATUS);
836
837                         /* We did something */
838                         handled = IRQ_HANDLED;
839                 }
840         }
841
842         return handled;
843 }
844
845 static irqreturn_t spi_int(int irq, void *dev_id)
846 {
847         struct driver_data *drv_data = (struct driver_data *)dev_id;
848
849         if (!drv_data->cur_msg) {
850                 dev_err(&drv_data->pdev->dev,
851                         "spi_int - bad message state\n");
852                 /* Never fail */
853                 return IRQ_HANDLED;
854         }
855
856         return drv_data->transfer_handler(drv_data);
857 }
858
859 static inline u32 spi_speed_hz(struct driver_data *drv_data, u32 data_rate)
860 {
861         return clk_get_rate(drv_data->clk) / (4 << ((data_rate) >> 13));
862 }
863
864 static u32 spi_data_rate(struct driver_data *drv_data, u32 speed_hz)
865 {
866         u32 div;
867         u32 quantized_hz = clk_get_rate(drv_data->clk) >> 2;
868
869         for (div = SPI_PERCLK2_DIV_MIN;
870                 div <= SPI_PERCLK2_DIV_MAX;
871                 div++, quantized_hz >>= 1) {
872                         if (quantized_hz <= speed_hz)
873                                 /* Max available speed LEQ required speed */
874                                 return div << 13;
875         }
876         return SPI_CONTROL_DATARATE_BAD;
877 }
878
879 static void pump_transfers(unsigned long data)
880 {
881         struct driver_data *drv_data = (struct driver_data *)data;
882         struct spi_message *message;
883         struct spi_transfer *transfer, *previous;
884         struct chip_data *chip;
885         void __iomem *regs;
886         u32 tmp, control;
887
888         dev_dbg(&drv_data->pdev->dev, "pump_transfer\n");
889
890         message = drv_data->cur_msg;
891
892         /* Handle for abort */
893         if (message->state == ERROR_STATE) {
894                 message->status = -EIO;
895                 giveback(message, drv_data);
896                 return;
897         }
898
899         /* Handle end of message */
900         if (message->state == DONE_STATE) {
901                 message->status = 0;
902                 giveback(message, drv_data);
903                 return;
904         }
905
906         chip = drv_data->cur_chip;
907
908         /* Delay if requested at end of transfer*/
909         transfer = drv_data->cur_transfer;
910         if (message->state == RUNNING_STATE) {
911                 previous = list_entry(transfer->transfer_list.prev,
912                                         struct spi_transfer,
913                                         transfer_list);
914                 if (previous->delay_usecs)
915                         udelay(previous->delay_usecs);
916         } else {
917                 /* START_STATE */
918                 message->state = RUNNING_STATE;
919                 drv_data->cs_control = chip->cs_control;
920         }
921
922         transfer = drv_data->cur_transfer;
923         drv_data->tx = (void *)transfer->tx_buf;
924         drv_data->tx_end = drv_data->tx + transfer->len;
925         drv_data->rx = transfer->rx_buf;
926         drv_data->rx_end = drv_data->rx + transfer->len;
927         drv_data->rx_dma = transfer->rx_dma;
928         drv_data->tx_dma = transfer->tx_dma;
929         drv_data->len = transfer->len;
930         drv_data->cs_change = transfer->cs_change;
931         drv_data->rd_only = (drv_data->tx == NULL);
932
933         regs = drv_data->regs;
934         control = readl(regs + SPI_CONTROL);
935
936         /* Bits per word setup */
937         tmp = transfer->bits_per_word;
938         if (tmp == 0) {
939                 /* Use device setup */
940                 tmp = chip->bits_per_word;
941                 drv_data->n_bytes = chip->n_bytes;
942         } else
943                 /* Use per-transfer setup */
944                 drv_data->n_bytes = (tmp <= 8) ? 1 : 2;
945         u32_EDIT(control, SPI_CONTROL_BITCOUNT_MASK, tmp - 1);
946
947         /* Speed setup (surely valid because already checked) */
948         tmp = transfer->speed_hz;
949         if (tmp == 0)
950                 tmp = chip->max_speed_hz;
951         tmp = spi_data_rate(drv_data, tmp);
952         u32_EDIT(control, SPI_CONTROL_DATARATE, tmp);
953
954         writel(control, regs + SPI_CONTROL);
955
956         /* Assert device chip-select */
957         drv_data->cs_control(SPI_CS_ASSERT);
958
959         /* DMA cannot read/write SPI FIFOs other than 16 bits at a time; hence
960            if bits_per_word is less or equal 8 PIO transfers are performed.
961            Moreover DMA is convinient for transfer length bigger than FIFOs
962            byte size. */
963         if ((drv_data->n_bytes == 2) &&
964                 (drv_data->len > SPI_FIFO_DEPTH*SPI_FIFO_BYTE_WIDTH) &&
965                 (map_dma_buffers(drv_data) == 0)) {
966                 dev_dbg(&drv_data->pdev->dev,
967                         "pump dma transfer\n"
968                         "    tx      = %p\n"
969                         "    tx_dma  = %08X\n"
970                         "    rx      = %p\n"
971                         "    rx_dma  = %08X\n"
972                         "    len     = %d\n",
973                         drv_data->tx,
974                         (unsigned int)drv_data->tx_dma,
975                         drv_data->rx,
976                         (unsigned int)drv_data->rx_dma,
977                         drv_data->len);
978
979                 /* Ensure we have the correct interrupt handler */
980                 drv_data->transfer_handler = dma_transfer;
981
982                 /* Trigger transfer */
983                 writel(readl(regs + SPI_CONTROL) | SPI_CONTROL_XCH,
984                         regs + SPI_CONTROL);
985
986                 /* Setup tx DMA */
987                 if (drv_data->tx)
988                         /* Linear source address */
989                         CCR(drv_data->tx_channel) =
990                                 CCR_DMOD_FIFO |
991                                 CCR_SMOD_LINEAR |
992                                 CCR_SSIZ_32 | CCR_DSIZ_16 |
993                                 CCR_REN;
994                 else
995                         /* Read only transfer -> fixed source address for
996                            dummy write to achive read */
997                         CCR(drv_data->tx_channel) =
998                                 CCR_DMOD_FIFO |
999                                 CCR_SMOD_FIFO |
1000                                 CCR_SSIZ_32 | CCR_DSIZ_16 |
1001                                 CCR_REN;
1002
1003                 imx_dma_setup_single(
1004                         drv_data->tx_channel,
1005                         drv_data->tx_dma,
1006                         drv_data->len,
1007                         drv_data->rd_data_phys + 4,
1008                         DMA_MODE_WRITE);
1009
1010                 if (drv_data->rx) {
1011                         /* Setup rx DMA for linear destination address */
1012                         CCR(drv_data->rx_channel) =
1013                                 CCR_DMOD_LINEAR |
1014                                 CCR_SMOD_FIFO |
1015                                 CCR_DSIZ_32 | CCR_SSIZ_16 |
1016                                 CCR_REN;
1017                         imx_dma_setup_single(
1018                                 drv_data->rx_channel,
1019                                 drv_data->rx_dma,
1020                                 drv_data->len,
1021                                 drv_data->rd_data_phys,
1022                                 DMA_MODE_READ);
1023                         imx_dma_enable(drv_data->rx_channel);
1024
1025                         /* Enable SPI interrupt */
1026                         writel(SPI_INTEN_RO, regs + SPI_INT_STATUS);
1027
1028                         /* Set SPI to request DMA service on both
1029                            Rx and Tx half fifo watermark */
1030                         writel(SPI_DMA_RHDEN | SPI_DMA_THDEN, regs + SPI_DMA);
1031                 } else
1032                         /* Write only access -> set SPI to request DMA
1033                            service on Tx half fifo watermark */
1034                         writel(SPI_DMA_THDEN, regs + SPI_DMA);
1035
1036                 imx_dma_enable(drv_data->tx_channel);
1037         } else {
1038                 dev_dbg(&drv_data->pdev->dev,
1039                         "pump pio transfer\n"
1040                         "    tx      = %p\n"
1041                         "    rx      = %p\n"
1042                         "    len     = %d\n",
1043                         drv_data->tx,
1044                         drv_data->rx,
1045                         drv_data->len);
1046
1047                 /* Ensure we have the correct interrupt handler */
1048                 if (drv_data->rx)
1049                         drv_data->transfer_handler = interrupt_transfer;
1050                 else
1051                         drv_data->transfer_handler = interrupt_wronly_transfer;
1052
1053                 /* Enable SPI interrupt */
1054                 if (drv_data->rx)
1055                         writel(SPI_INTEN_TH | SPI_INTEN_RO,
1056                                 regs + SPI_INT_STATUS);
1057                 else
1058                         writel(SPI_INTEN_TH, regs + SPI_INT_STATUS);
1059         }
1060 }
1061
1062 static void pump_messages(struct work_struct *work)
1063 {
1064         struct driver_data *drv_data =
1065                                 container_of(work, struct driver_data, work);
1066         unsigned long flags;
1067
1068         /* Lock queue and check for queue work */
1069         spin_lock_irqsave(&drv_data->lock, flags);
1070         if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1071                 drv_data->busy = 0;
1072                 spin_unlock_irqrestore(&drv_data->lock, flags);
1073                 return;
1074         }
1075
1076         /* Make sure we are not already running a message */
1077         if (drv_data->cur_msg) {
1078                 spin_unlock_irqrestore(&drv_data->lock, flags);
1079                 return;
1080         }
1081
1082         /* Extract head of queue */
1083         drv_data->cur_msg = list_entry(drv_data->queue.next,
1084                                         struct spi_message, queue);
1085         list_del_init(&drv_data->cur_msg->queue);
1086         drv_data->busy = 1;
1087         spin_unlock_irqrestore(&drv_data->lock, flags);
1088
1089         /* Initial message state */
1090         drv_data->cur_msg->state = START_STATE;
1091         drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1092                                                 struct spi_transfer,
1093                                                 transfer_list);
1094
1095         /* Setup the SPI using the per chip configuration */
1096         drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1097         restore_state(drv_data);
1098
1099         /* Mark as busy and launch transfers */
1100         tasklet_schedule(&drv_data->pump_transfers);
1101 }
1102
1103 static int transfer(struct spi_device *spi, struct spi_message *msg)
1104 {
1105         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1106         u32 min_speed_hz, max_speed_hz, tmp;
1107         struct spi_transfer *trans;
1108         unsigned long flags;
1109
1110         msg->actual_length = 0;
1111
1112         /* Per transfer setup check */
1113         min_speed_hz = spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN);
1114         max_speed_hz = spi->max_speed_hz;
1115         list_for_each_entry(trans, &msg->transfers, transfer_list) {
1116                 tmp = trans->bits_per_word;
1117                 if (tmp > 16) {
1118                         dev_err(&drv_data->pdev->dev,
1119                                 "message rejected : "
1120                                 "invalid transfer bits_per_word (%d bits)\n",
1121                                 tmp);
1122                         goto msg_rejected;
1123                 }
1124                 tmp = trans->speed_hz;
1125                 if (tmp) {
1126                         if (tmp < min_speed_hz) {
1127                                 dev_err(&drv_data->pdev->dev,
1128                                         "message rejected : "
1129                                         "device min speed (%d Hz) exceeds "
1130                                         "required transfer speed (%d Hz)\n",
1131                                         min_speed_hz,
1132                                         tmp);
1133                                 goto msg_rejected;
1134                         } else if (tmp > max_speed_hz) {
1135                                 dev_err(&drv_data->pdev->dev,
1136                                         "message rejected : "
1137                                         "transfer speed (%d Hz) exceeds "
1138                                         "device max speed (%d Hz)\n",
1139                                         tmp,
1140                                         max_speed_hz);
1141                                 goto msg_rejected;
1142                         }
1143                 }
1144         }
1145
1146         /* Message accepted */
1147         msg->status = -EINPROGRESS;
1148         msg->state = START_STATE;
1149
1150         spin_lock_irqsave(&drv_data->lock, flags);
1151         if (drv_data->run == QUEUE_STOPPED) {
1152                 spin_unlock_irqrestore(&drv_data->lock, flags);
1153                 return -ESHUTDOWN;
1154         }
1155
1156         list_add_tail(&msg->queue, &drv_data->queue);
1157         if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1158                 queue_work(drv_data->workqueue, &drv_data->work);
1159
1160         spin_unlock_irqrestore(&drv_data->lock, flags);
1161         return 0;
1162
1163 msg_rejected:
1164         /* Message rejected and not queued */
1165         msg->status = -EINVAL;
1166         msg->state = ERROR_STATE;
1167         if (msg->complete)
1168                 msg->complete(msg->context);
1169         return -EINVAL;
1170 }
1171
1172 /* the spi->mode bits understood by this driver: */
1173 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH)
1174
1175 /* On first setup bad values must free chip_data memory since will cause
1176    spi_new_device to fail. Bad value setup from protocol driver are simply not
1177    applied and notified to the calling driver. */
1178 static int setup(struct spi_device *spi)
1179 {
1180         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1181         struct spi_imx_chip *chip_info;
1182         struct chip_data *chip;
1183         int first_setup = 0;
1184         u32 tmp;
1185         int status = 0;
1186
1187         if (spi->mode & ~MODEBITS) {
1188                 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
1189                         spi->mode & ~MODEBITS);
1190                 return -EINVAL;
1191         }
1192
1193         /* Get controller data */
1194         chip_info = spi->controller_data;
1195
1196         /* Get controller_state */
1197         chip = spi_get_ctldata(spi);
1198         if (chip == NULL) {
1199                 first_setup = 1;
1200
1201                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1202                 if (!chip) {
1203                         dev_err(&spi->dev,
1204                                 "setup - cannot allocate controller state\n");
1205                         return -ENOMEM;
1206                 }
1207                 chip->control = SPI_DEFAULT_CONTROL;
1208
1209                 if (chip_info == NULL) {
1210                         /* spi_board_info.controller_data not is supplied */
1211                         chip_info = kzalloc(sizeof(struct spi_imx_chip),
1212                                                 GFP_KERNEL);
1213                         if (!chip_info) {
1214                                 dev_err(&spi->dev,
1215                                         "setup - "
1216                                         "cannot allocate controller data\n");
1217                                 status = -ENOMEM;
1218                                 goto err_first_setup;
1219                         }
1220                         /* Set controller data default value */
1221                         chip_info->enable_loopback =
1222                                                 SPI_DEFAULT_ENABLE_LOOPBACK;
1223                         chip_info->enable_dma = SPI_DEFAULT_ENABLE_DMA;
1224                         chip_info->ins_ss_pulse = 1;
1225                         chip_info->bclk_wait = SPI_DEFAULT_PERIOD_WAIT;
1226                         chip_info->cs_control = null_cs_control;
1227                 }
1228         }
1229
1230         /* Now set controller state based on controller data */
1231
1232         if (first_setup) {
1233                 /* SPI loopback */
1234                 if (chip_info->enable_loopback)
1235                         chip->test = SPI_TEST_LBC;
1236                 else
1237                         chip->test = 0;
1238
1239                 /* SPI dma driven */
1240                 chip->enable_dma = chip_info->enable_dma;
1241
1242                 /* SPI /SS pulse between spi burst */
1243                 if (chip_info->ins_ss_pulse)
1244                         u32_EDIT(chip->control,
1245                                 SPI_CONTROL_SSCTL, SPI_CONTROL_SSCTL_1);
1246                 else
1247                         u32_EDIT(chip->control,
1248                                 SPI_CONTROL_SSCTL, SPI_CONTROL_SSCTL_0);
1249
1250                 /* SPI bclk waits between each bits_per_word spi burst */
1251                 if (chip_info->bclk_wait > SPI_PERIOD_MAX_WAIT) {
1252                         dev_err(&spi->dev,
1253                                 "setup - "
1254                                 "bclk_wait exceeds max allowed (%d)\n",
1255                                 SPI_PERIOD_MAX_WAIT);
1256                         goto err_first_setup;
1257                 }
1258                 chip->period = SPI_PERIOD_CSRC_BCLK |
1259                                 (chip_info->bclk_wait & SPI_PERIOD_WAIT);
1260         }
1261
1262         /* SPI mode */
1263         tmp = spi->mode;
1264         if (tmp & SPI_CS_HIGH) {
1265                 u32_EDIT(chip->control,
1266                                 SPI_CONTROL_SSPOL, SPI_CONTROL_SSPOL_ACT_HIGH);
1267         }
1268         switch (tmp & SPI_MODE_3) {
1269         case SPI_MODE_0:
1270                 tmp = 0;
1271                 break;
1272         case SPI_MODE_1:
1273                 tmp = SPI_CONTROL_PHA_1;
1274                 break;
1275         case SPI_MODE_2:
1276                 tmp = SPI_CONTROL_POL_ACT_LOW;
1277                 break;
1278         default:
1279                 /* SPI_MODE_3 */
1280                 tmp = SPI_CONTROL_PHA_1 | SPI_CONTROL_POL_ACT_LOW;
1281                 break;
1282         }
1283         u32_EDIT(chip->control, SPI_CONTROL_POL | SPI_CONTROL_PHA, tmp);
1284
1285         /* SPI word width */
1286         tmp = spi->bits_per_word;
1287         if (tmp == 0) {
1288                 tmp = 8;
1289                 spi->bits_per_word = 8;
1290         } else if (tmp > 16) {
1291                 status = -EINVAL;
1292                 dev_err(&spi->dev,
1293                         "setup - "
1294                         "invalid bits_per_word (%d)\n",
1295                         tmp);
1296                 if (first_setup)
1297                         goto err_first_setup;
1298                 else {
1299                         /* Undo setup using chip as backup copy */
1300                         tmp = chip->bits_per_word;
1301                         spi->bits_per_word = tmp;
1302                 }
1303         }
1304         chip->bits_per_word = tmp;
1305         u32_EDIT(chip->control, SPI_CONTROL_BITCOUNT_MASK, tmp - 1);
1306         chip->n_bytes = (tmp <= 8) ? 1 : 2;
1307
1308         /* SPI datarate */
1309         tmp = spi_data_rate(drv_data, spi->max_speed_hz);
1310         if (tmp == SPI_CONTROL_DATARATE_BAD) {
1311                 status = -EINVAL;
1312                 dev_err(&spi->dev,
1313                         "setup - "
1314                         "HW min speed (%d Hz) exceeds required "
1315                         "max speed (%d Hz)\n",
1316                         spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN),
1317                         spi->max_speed_hz);
1318                 if (first_setup)
1319                         goto err_first_setup;
1320                 else
1321                         /* Undo setup using chip as backup copy */
1322                         spi->max_speed_hz = chip->max_speed_hz;
1323         } else {
1324                 u32_EDIT(chip->control, SPI_CONTROL_DATARATE, tmp);
1325                 /* Actual rounded max_speed_hz */
1326                 tmp = spi_speed_hz(drv_data, tmp);
1327                 spi->max_speed_hz = tmp;
1328                 chip->max_speed_hz = tmp;
1329         }
1330
1331         /* SPI chip-select management */
1332         if (chip_info->cs_control)
1333                 chip->cs_control = chip_info->cs_control;
1334         else
1335                 chip->cs_control = null_cs_control;
1336
1337         /* Save controller_state */
1338         spi_set_ctldata(spi, chip);
1339
1340         /* Summary */
1341         dev_dbg(&spi->dev,
1342                 "setup succeded\n"
1343                 "    loopback enable   = %s\n"
1344                 "    dma enable        = %s\n"
1345                 "    insert /ss pulse  = %s\n"
1346                 "    period wait       = %d\n"
1347                 "    mode              = %d\n"
1348                 "    bits per word     = %d\n"
1349                 "    min speed         = %d Hz\n"
1350                 "    rounded max speed = %d Hz\n",
1351                 chip->test & SPI_TEST_LBC ? "Yes" : "No",
1352                 chip->enable_dma ? "Yes" : "No",
1353                 chip->control & SPI_CONTROL_SSCTL ? "Yes" : "No",
1354                 chip->period & SPI_PERIOD_WAIT,
1355                 spi->mode,
1356                 spi->bits_per_word,
1357                 spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN),
1358                 spi->max_speed_hz);
1359         return status;
1360
1361 err_first_setup:
1362         kfree(chip);
1363         return status;
1364 }
1365
1366 static void cleanup(struct spi_device *spi)
1367 {
1368         kfree(spi_get_ctldata(spi));
1369 }
1370
1371 static int __init init_queue(struct driver_data *drv_data)
1372 {
1373         INIT_LIST_HEAD(&drv_data->queue);
1374         spin_lock_init(&drv_data->lock);
1375
1376         drv_data->run = QUEUE_STOPPED;
1377         drv_data->busy = 0;
1378
1379         tasklet_init(&drv_data->pump_transfers,
1380                         pump_transfers, (unsigned long)drv_data);
1381
1382         INIT_WORK(&drv_data->work, pump_messages);
1383         drv_data->workqueue = create_singlethread_workqueue(
1384                                 dev_name(drv_data->master->dev.parent));
1385         if (drv_data->workqueue == NULL)
1386                 return -EBUSY;
1387
1388         return 0;
1389 }
1390
1391 static int start_queue(struct driver_data *drv_data)
1392 {
1393         unsigned long flags;
1394
1395         spin_lock_irqsave(&drv_data->lock, flags);
1396
1397         if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1398                 spin_unlock_irqrestore(&drv_data->lock, flags);
1399                 return -EBUSY;
1400         }
1401
1402         drv_data->run = QUEUE_RUNNING;
1403         drv_data->cur_msg = NULL;
1404         drv_data->cur_transfer = NULL;
1405         drv_data->cur_chip = NULL;
1406         spin_unlock_irqrestore(&drv_data->lock, flags);
1407
1408         queue_work(drv_data->workqueue, &drv_data->work);
1409
1410         return 0;
1411 }
1412
1413 static int stop_queue(struct driver_data *drv_data)
1414 {
1415         unsigned long flags;
1416         unsigned limit = 500;
1417         int status = 0;
1418
1419         spin_lock_irqsave(&drv_data->lock, flags);
1420
1421         /* This is a bit lame, but is optimized for the common execution path.
1422          * A wait_queue on the drv_data->busy could be used, but then the common
1423          * execution path (pump_messages) would be required to call wake_up or
1424          * friends on every SPI message. Do this instead */
1425         drv_data->run = QUEUE_STOPPED;
1426         while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
1427                 spin_unlock_irqrestore(&drv_data->lock, flags);
1428                 msleep(10);
1429                 spin_lock_irqsave(&drv_data->lock, flags);
1430         }
1431
1432         if (!list_empty(&drv_data->queue) || drv_data->busy)
1433                 status = -EBUSY;
1434
1435         spin_unlock_irqrestore(&drv_data->lock, flags);
1436
1437         return status;
1438 }
1439
1440 static int destroy_queue(struct driver_data *drv_data)
1441 {
1442         int status;
1443
1444         status = stop_queue(drv_data);
1445         if (status != 0)
1446                 return status;
1447
1448         if (drv_data->workqueue)
1449                 destroy_workqueue(drv_data->workqueue);
1450
1451         return 0;
1452 }
1453
1454 static int __init spi_imx_probe(struct platform_device *pdev)
1455 {
1456         struct device *dev = &pdev->dev;
1457         struct spi_imx_master *platform_info;
1458         struct spi_master *master;
1459         struct driver_data *drv_data;
1460         struct resource *res;
1461         int irq, status = 0;
1462
1463         platform_info = dev->platform_data;
1464         if (platform_info == NULL) {
1465                 dev_err(&pdev->dev, "probe - no platform data supplied\n");
1466                 status = -ENODEV;
1467                 goto err_no_pdata;
1468         }
1469
1470         /* Allocate master with space for drv_data */
1471         master = spi_alloc_master(dev, sizeof(struct driver_data));
1472         if (!master) {
1473                 dev_err(&pdev->dev, "probe - cannot alloc spi_master\n");
1474                 status = -ENOMEM;
1475                 goto err_no_mem;
1476         }
1477         drv_data = spi_master_get_devdata(master);
1478         drv_data->master = master;
1479         drv_data->master_info = platform_info;
1480         drv_data->pdev = pdev;
1481
1482         master->bus_num = pdev->id;
1483         master->num_chipselect = platform_info->num_chipselect;
1484         master->cleanup = cleanup;
1485         master->setup = setup;
1486         master->transfer = transfer;
1487
1488         drv_data->dummy_dma_buf = SPI_DUMMY_u32;
1489
1490         drv_data->clk = clk_get(&pdev->dev, "perclk2");
1491         if (IS_ERR(drv_data->clk)) {
1492                 dev_err(&pdev->dev, "probe - cannot get clock\n");
1493                 status = PTR_ERR(drv_data->clk);
1494                 goto err_no_clk;
1495         }
1496         clk_enable(drv_data->clk);
1497
1498         /* Find and map resources */
1499         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1500         if (!res) {
1501                 dev_err(&pdev->dev, "probe - MEM resources not defined\n");
1502                 status = -ENODEV;
1503                 goto err_no_iores;
1504         }
1505         drv_data->ioarea = request_mem_region(res->start,
1506                                                 res->end - res->start + 1,
1507                                                 pdev->name);
1508         if (drv_data->ioarea == NULL) {
1509                 dev_err(&pdev->dev, "probe - cannot reserve region\n");
1510                 status = -ENXIO;
1511                 goto err_no_iores;
1512         }
1513         drv_data->regs = ioremap(res->start, res->end - res->start + 1);
1514         if (drv_data->regs == NULL) {
1515                 dev_err(&pdev->dev, "probe - cannot map IO\n");
1516                 status = -ENXIO;
1517                 goto err_no_iomap;
1518         }
1519         drv_data->rd_data_phys = (dma_addr_t)res->start;
1520
1521         /* Attach to IRQ */
1522         irq = platform_get_irq(pdev, 0);
1523         if (irq < 0) {
1524                 dev_err(&pdev->dev, "probe - IRQ resource not defined\n");
1525                 status = -ENODEV;
1526                 goto err_no_irqres;
1527         }
1528         status = request_irq(irq, spi_int, IRQF_DISABLED,
1529                              dev_name(dev), drv_data);
1530         if (status < 0) {
1531                 dev_err(&pdev->dev, "probe - cannot get IRQ (%d)\n", status);
1532                 goto err_no_irqres;
1533         }
1534
1535         /* Setup DMA if requested */
1536         drv_data->tx_channel = -1;
1537         drv_data->rx_channel = -1;
1538         if (platform_info->enable_dma) {
1539                 /* Get rx DMA channel */
1540                 drv_data->rx_channel = imx_dma_request_by_prio("spi_imx_rx",
1541                                                                DMA_PRIO_HIGH);
1542                 if (drv_data->rx_channel < 0) {
1543                         dev_err(dev,
1544                                 "probe - problem (%d) requesting rx channel\n",
1545                                 drv_data->rx_channel);
1546                         goto err_no_rxdma;
1547                 } else
1548                         imx_dma_setup_handlers(drv_data->rx_channel, NULL,
1549                                                 dma_err_handler, drv_data);
1550
1551                 /* Get tx DMA channel */
1552                 drv_data->tx_channel = imx_dma_request_by_prio("spi_imx_tx",
1553                                                                DMA_PRIO_MEDIUM);
1554                 if (drv_data->tx_channel < 0) {
1555                         dev_err(dev,
1556                                 "probe - problem (%d) requesting tx channel\n",
1557                                 drv_data->tx_channel);
1558                         imx_dma_free(drv_data->rx_channel);
1559                         goto err_no_txdma;
1560                 } else
1561                         imx_dma_setup_handlers(drv_data->tx_channel,
1562                                                 dma_tx_handler, dma_err_handler,
1563                                                 drv_data);
1564
1565                 /* Set request source and burst length for allocated channels */
1566                 switch (drv_data->pdev->id) {
1567                 case 1:
1568                         /* Using SPI1 */
1569                         RSSR(drv_data->rx_channel) = DMA_REQ_SPI1_R;
1570                         RSSR(drv_data->tx_channel) = DMA_REQ_SPI1_T;
1571                         break;
1572                 case 2:
1573                         /* Using SPI2 */
1574                         RSSR(drv_data->rx_channel) = DMA_REQ_SPI2_R;
1575                         RSSR(drv_data->tx_channel) = DMA_REQ_SPI2_T;
1576                         break;
1577                 default:
1578                         dev_err(dev, "probe - bad SPI Id\n");
1579                         imx_dma_free(drv_data->rx_channel);
1580                         imx_dma_free(drv_data->tx_channel);
1581                         status = -ENODEV;
1582                         goto err_no_devid;
1583                 }
1584                 BLR(drv_data->rx_channel) = SPI_DMA_BLR;
1585                 BLR(drv_data->tx_channel) = SPI_DMA_BLR;
1586         }
1587
1588         /* Load default SPI configuration */
1589         writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1590         writel(0, drv_data->regs + SPI_RESET);
1591         writel(SPI_DEFAULT_CONTROL, drv_data->regs + SPI_CONTROL);
1592
1593         /* Initial and start queue */
1594         status = init_queue(drv_data);
1595         if (status != 0) {
1596                 dev_err(&pdev->dev, "probe - problem initializing queue\n");
1597                 goto err_init_queue;
1598         }
1599         status = start_queue(drv_data);
1600         if (status != 0) {
1601                 dev_err(&pdev->dev, "probe - problem starting queue\n");
1602                 goto err_start_queue;
1603         }
1604
1605         /* Register with the SPI framework */
1606         platform_set_drvdata(pdev, drv_data);
1607         status = spi_register_master(master);
1608         if (status != 0) {
1609                 dev_err(&pdev->dev, "probe - problem registering spi master\n");
1610                 goto err_spi_register;
1611         }
1612
1613         dev_dbg(dev, "probe succeded\n");
1614         return 0;
1615
1616 err_init_queue:
1617 err_start_queue:
1618 err_spi_register:
1619         destroy_queue(drv_data);
1620
1621 err_no_rxdma:
1622 err_no_txdma:
1623 err_no_devid:
1624         free_irq(irq, drv_data);
1625
1626 err_no_irqres:
1627         iounmap(drv_data->regs);
1628
1629 err_no_iomap:
1630         release_resource(drv_data->ioarea);
1631         kfree(drv_data->ioarea);
1632
1633 err_no_iores:
1634         clk_disable(drv_data->clk);
1635         clk_put(drv_data->clk);
1636
1637 err_no_clk:
1638         spi_master_put(master);
1639
1640 err_no_pdata:
1641 err_no_mem:
1642         return status;
1643 }
1644
1645 static int __exit spi_imx_remove(struct platform_device *pdev)
1646 {
1647         struct driver_data *drv_data = platform_get_drvdata(pdev);
1648         int irq;
1649         int status = 0;
1650
1651         if (!drv_data)
1652                 return 0;
1653
1654         tasklet_kill(&drv_data->pump_transfers);
1655
1656         /* Remove the queue */
1657         status = destroy_queue(drv_data);
1658         if (status != 0) {
1659                 dev_err(&pdev->dev, "queue remove failed (%d)\n", status);
1660                 return status;
1661         }
1662
1663         /* Reset SPI */
1664         writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1665         writel(0, drv_data->regs + SPI_RESET);
1666
1667         /* Release DMA */
1668         if (drv_data->master_info->enable_dma) {
1669                 RSSR(drv_data->rx_channel) = 0;
1670                 RSSR(drv_data->tx_channel) = 0;
1671                 imx_dma_free(drv_data->tx_channel);
1672                 imx_dma_free(drv_data->rx_channel);
1673         }
1674
1675         /* Release IRQ */
1676         irq = platform_get_irq(pdev, 0);
1677         if (irq >= 0)
1678                 free_irq(irq, drv_data);
1679
1680         clk_disable(drv_data->clk);
1681         clk_put(drv_data->clk);
1682
1683         /* Release map resources */
1684         iounmap(drv_data->regs);
1685         release_resource(drv_data->ioarea);
1686         kfree(drv_data->ioarea);
1687
1688         /* Disconnect from the SPI framework */
1689         spi_unregister_master(drv_data->master);
1690         spi_master_put(drv_data->master);
1691
1692         /* Prevent double remove */
1693         platform_set_drvdata(pdev, NULL);
1694
1695         dev_dbg(&pdev->dev, "remove succeded\n");
1696
1697         return 0;
1698 }
1699
1700 static void spi_imx_shutdown(struct platform_device *pdev)
1701 {
1702         struct driver_data *drv_data = platform_get_drvdata(pdev);
1703
1704         /* Reset SPI */
1705         writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1706         writel(0, drv_data->regs + SPI_RESET);
1707
1708         dev_dbg(&pdev->dev, "shutdown succeded\n");
1709 }
1710
1711 #ifdef CONFIG_PM
1712
1713 static int spi_imx_suspend(struct platform_device *pdev, pm_message_t state)
1714 {
1715         struct driver_data *drv_data = platform_get_drvdata(pdev);
1716         int status = 0;
1717
1718         status = stop_queue(drv_data);
1719         if (status != 0) {
1720                 dev_warn(&pdev->dev, "suspend cannot stop queue\n");
1721                 return status;
1722         }
1723
1724         dev_dbg(&pdev->dev, "suspended\n");
1725
1726         return 0;
1727 }
1728
1729 static int spi_imx_resume(struct platform_device *pdev)
1730 {
1731         struct driver_data *drv_data = platform_get_drvdata(pdev);
1732         int status = 0;
1733
1734         /* Start the queue running */
1735         status = start_queue(drv_data);
1736         if (status != 0)
1737                 dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
1738         else
1739                 dev_dbg(&pdev->dev, "resumed\n");
1740
1741         return status;
1742 }
1743 #else
1744 #define spi_imx_suspend NULL
1745 #define spi_imx_resume NULL
1746 #endif /* CONFIG_PM */
1747
1748 /* work with hotplug and coldplug */
1749 MODULE_ALIAS("platform:spi_imx");
1750
1751 static struct platform_driver driver = {
1752         .driver = {
1753                 .name = "spi_imx",
1754                 .owner = THIS_MODULE,
1755         },
1756         .remove = __exit_p(spi_imx_remove),
1757         .shutdown = spi_imx_shutdown,
1758         .suspend = spi_imx_suspend,
1759         .resume = spi_imx_resume,
1760 };
1761
1762 static int __init spi_imx_init(void)
1763 {
1764         return platform_driver_probe(&driver, spi_imx_probe);
1765 }
1766 module_init(spi_imx_init);
1767
1768 static void __exit spi_imx_exit(void)
1769 {
1770         platform_driver_unregister(&driver);
1771 }
1772 module_exit(spi_imx_exit);
1773
1774 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
1775 MODULE_DESCRIPTION("iMX SPI Controller Driver");
1776 MODULE_LICENSE("GPL");