2 * linux/arch/parisc/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
14 #include <linux/module.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h> /* for node_online_map */
24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
29 #include <asm/pdc_chassis.h>
30 #include <asm/mmzone.h>
31 #include <asm/sections.h>
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35 extern int data_start;
37 #ifdef CONFIG_DISCONTIGMEM
38 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
39 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
40 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
43 static struct resource data_resource = {
44 .name = "Kernel data",
45 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
48 static struct resource code_resource = {
49 .name = "Kernel code",
50 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
53 static struct resource pdcdata_resource = {
54 .name = "PDC data (Page Zero)",
57 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
60 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
62 /* The following array is initialized from the firmware specific
63 * information retrieved in kernel/inventory.c.
66 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
67 int npmem_ranges __read_mostly;
70 #define MAX_MEM (~0UL)
71 #else /* !CONFIG_64BIT */
72 #define MAX_MEM (3584U*1024U*1024U)
73 #endif /* !CONFIG_64BIT */
75 static unsigned long mem_limit __read_mostly = MAX_MEM;
77 static void __init mem_limit_func(void)
82 /* We need this before __setup() functions are called */
85 for (cp = boot_command_line; *cp; ) {
86 if (memcmp(cp, "mem=", 4) == 0) {
88 limit = memparse(cp, &end);
93 while (*cp != ' ' && *cp)
100 if (limit < mem_limit)
104 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
106 static void __init setup_bootmem(void)
108 unsigned long bootmap_size;
109 unsigned long mem_max;
110 unsigned long bootmap_pages;
111 unsigned long bootmap_start_pfn;
112 unsigned long bootmap_pfn;
113 #ifndef CONFIG_DISCONTIGMEM
114 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
117 int i, sysram_resource_count;
119 disable_sr_hashing(); /* Turn off space register hashing */
122 * Sort the ranges. Since the number of ranges is typically
123 * small, and performance is not an issue here, just do
124 * a simple insertion sort.
127 for (i = 1; i < npmem_ranges; i++) {
130 for (j = i; j > 0; j--) {
133 if (pmem_ranges[j-1].start_pfn <
134 pmem_ranges[j].start_pfn) {
138 tmp = pmem_ranges[j-1].start_pfn;
139 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
140 pmem_ranges[j].start_pfn = tmp;
141 tmp = pmem_ranges[j-1].pages;
142 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
143 pmem_ranges[j].pages = tmp;
147 #ifndef CONFIG_DISCONTIGMEM
149 * Throw out ranges that are too far apart (controlled by
153 for (i = 1; i < npmem_ranges; i++) {
154 if (pmem_ranges[i].start_pfn -
155 (pmem_ranges[i-1].start_pfn +
156 pmem_ranges[i-1].pages) > MAX_GAP) {
158 printk("Large gap in memory detected (%ld pages). "
159 "Consider turning on CONFIG_DISCONTIGMEM\n",
160 pmem_ranges[i].start_pfn -
161 (pmem_ranges[i-1].start_pfn +
162 pmem_ranges[i-1].pages));
168 if (npmem_ranges > 1) {
170 /* Print the memory ranges */
172 printk(KERN_INFO "Memory Ranges:\n");
174 for (i = 0; i < npmem_ranges; i++) {
178 size = (pmem_ranges[i].pages << PAGE_SHIFT);
179 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
180 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
181 i,start, start + (size - 1), size >> 20);
185 sysram_resource_count = npmem_ranges;
186 for (i = 0; i < sysram_resource_count; i++) {
187 struct resource *res = &sysram_resources[i];
188 res->name = "System RAM";
189 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
190 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
191 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
192 request_resource(&iomem_resource, res);
196 * For 32 bit kernels we limit the amount of memory we can
197 * support, in order to preserve enough kernel address space
198 * for other purposes. For 64 bit kernels we don't normally
199 * limit the memory, but this mechanism can be used to
200 * artificially limit the amount of memory (and it is written
201 * to work with multiple memory ranges).
204 mem_limit_func(); /* check for "mem=" argument */
208 for (i = 0; i < npmem_ranges; i++) {
211 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
212 if ((mem_max + rsize) > mem_limit) {
213 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
214 if (mem_max == mem_limit)
217 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
218 - (mem_max >> PAGE_SHIFT);
219 npmem_ranges = i + 1;
222 num_physpages += pmem_ranges[i].pages;
225 num_physpages += pmem_ranges[i].pages;
229 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
231 #ifndef CONFIG_DISCONTIGMEM
232 /* Merge the ranges, keeping track of the holes */
235 unsigned long end_pfn;
236 unsigned long hole_pages;
239 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
240 for (i = 1; i < npmem_ranges; i++) {
242 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
244 pmem_holes[npmem_holes].start_pfn = end_pfn;
245 pmem_holes[npmem_holes++].pages = hole_pages;
246 end_pfn += hole_pages;
248 end_pfn += pmem_ranges[i].pages;
251 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
257 for (i = 0; i < npmem_ranges; i++)
258 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
260 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
262 #ifdef CONFIG_DISCONTIGMEM
263 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
264 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
265 NODE_DATA(i)->bdata = &bmem_data[i];
267 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
269 for (i = 0; i < npmem_ranges; i++)
274 * Initialize and free the full range of memory in each range.
275 * Note that the only writing these routines do are to the bootmap,
276 * and we've made sure to locate the bootmap properly so that they
277 * won't be writing over anything important.
280 bootmap_pfn = bootmap_start_pfn;
282 for (i = 0; i < npmem_ranges; i++) {
283 unsigned long start_pfn;
284 unsigned long npages;
286 start_pfn = pmem_ranges[i].start_pfn;
287 npages = pmem_ranges[i].pages;
289 bootmap_size = init_bootmem_node(NODE_DATA(i),
292 (start_pfn + npages) );
293 free_bootmem_node(NODE_DATA(i),
294 (start_pfn << PAGE_SHIFT),
295 (npages << PAGE_SHIFT) );
296 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
297 if ((start_pfn + npages) > max_pfn)
298 max_pfn = start_pfn + npages;
301 /* IOMMU is always used to access "high mem" on those boxes
302 * that can support enough mem that a PCI device couldn't
303 * directly DMA to any physical addresses.
304 * ISA DMA support will need to revisit this.
306 max_low_pfn = max_pfn;
308 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
309 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
313 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
315 #define PDC_CONSOLE_IO_IODC_SIZE 32768
317 reserve_bootmem_node(NODE_DATA(0), 0UL,
318 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
319 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
320 (unsigned long)(_end - _text));
321 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
322 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
324 #ifndef CONFIG_DISCONTIGMEM
326 /* reserve the holes */
328 for (i = 0; i < npmem_holes; i++) {
329 reserve_bootmem_node(NODE_DATA(0),
330 (pmem_holes[i].start_pfn << PAGE_SHIFT),
331 (pmem_holes[i].pages << PAGE_SHIFT));
335 #ifdef CONFIG_BLK_DEV_INITRD
337 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
338 if (__pa(initrd_start) < mem_max) {
339 unsigned long initrd_reserve;
341 if (__pa(initrd_end) > mem_max) {
342 initrd_reserve = mem_max - __pa(initrd_start);
344 initrd_reserve = initrd_end - initrd_start;
346 initrd_below_start_ok = 1;
347 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
349 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
354 data_resource.start = virt_to_phys(&data_start);
355 data_resource.end = virt_to_phys(_end) - 1;
356 code_resource.start = virt_to_phys(_text);
357 code_resource.end = virt_to_phys(&data_start)-1;
359 /* We don't know which region the kernel will be in, so try
362 for (i = 0; i < sysram_resource_count; i++) {
363 struct resource *res = &sysram_resources[i];
364 request_resource(res, &code_resource);
365 request_resource(res, &data_resource);
367 request_resource(&sysram_resources[0], &pdcdata_resource);
370 void free_initmem(void)
372 unsigned long addr, init_begin, init_end;
374 printk(KERN_INFO "Freeing unused kernel memory: ");
376 #ifdef CONFIG_DEBUG_KERNEL
377 /* Attempt to catch anyone trying to execute code here
378 * by filling the page with BRK insns.
380 * If we disable interrupts for all CPUs, then IPI stops working.
381 * Kinda breaks the global cache flushing.
385 memset(__init_begin, 0x00,
386 (unsigned long)__init_end - (unsigned long)__init_begin);
389 asm volatile("sync" : : );
390 flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end);
391 asm volatile("sync" : : );
396 /* align __init_begin and __init_end to page size,
397 ignoring linker script where we might have tried to save RAM */
398 init_begin = PAGE_ALIGN((unsigned long)(__init_begin));
399 init_end = PAGE_ALIGN((unsigned long)(__init_end));
400 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
401 ClearPageReserved(virt_to_page(addr));
402 init_page_count(virt_to_page(addr));
408 /* set up a new led state on systems shipped LED State panel */
409 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
411 printk("%luk freed\n", (init_end - init_begin) >> 10);
415 #ifdef CONFIG_DEBUG_RODATA
416 void mark_rodata_ro(void)
418 /* rodata memory was already mapped with KERNEL_RO access rights by
419 pagetable_init() and map_pages(). No need to do additional stuff here */
420 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
421 (unsigned long)(__end_rodata - __start_rodata) >> 10);
427 * Just an arbitrary offset to serve as a "hole" between mapping areas
428 * (between top of physical memory and a potential pcxl dma mapping
429 * area, and below the vmalloc mapping area).
431 * The current 32K value just means that there will be a 32K "hole"
432 * between mapping areas. That means that any out-of-bounds memory
433 * accesses will hopefully be caught. The vmalloc() routines leaves
434 * a hole of 4kB between each vmalloced area for the same reason.
437 /* Leave room for gateway page expansion */
438 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
439 #error KERNEL_MAP_START is in gateway reserved region
441 #define MAP_START (KERNEL_MAP_START)
443 #define VM_MAP_OFFSET (32*1024)
444 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
445 & ~(VM_MAP_OFFSET-1)))
447 void *vmalloc_start __read_mostly;
448 EXPORT_SYMBOL(vmalloc_start);
451 unsigned long pcxl_dma_start __read_mostly;
454 void __init mem_init(void)
456 int codesize, reservedpages, datasize, initsize;
458 high_memory = __va((max_pfn << PAGE_SHIFT));
460 #ifndef CONFIG_DISCONTIGMEM
461 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
462 totalram_pages += free_all_bootmem();
467 for (i = 0; i < npmem_ranges; i++)
468 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
472 codesize = (unsigned long)_etext - (unsigned long)_text;
473 datasize = (unsigned long)_edata - (unsigned long)_etext;
474 initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
479 #ifdef CONFIG_DISCONTIGMEM
482 for (i = 0; i < npmem_ranges; i++) {
483 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
484 if (PageReserved(pfn_to_page(pfn)))
488 #else /* !CONFIG_DISCONTIGMEM */
489 for (pfn = 0; pfn < max_pfn; pfn++) {
491 * Only count reserved RAM pages
493 if (PageReserved(pfn_to_page(pfn)))
500 if (hppa_dma_ops == &pcxl_dma_ops) {
501 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
502 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
505 vmalloc_start = SET_MAP_OFFSET(MAP_START);
508 vmalloc_start = SET_MAP_OFFSET(MAP_START);
511 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
512 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
513 num_physpages << (PAGE_SHIFT-10),
515 reservedpages << (PAGE_SHIFT-10),
520 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
521 printk("virtual kernel memory layout:\n"
522 " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
523 " memory : 0x%p - 0x%p (%4ld MB)\n"
524 " .init : 0x%p - 0x%p (%4ld kB)\n"
525 " .data : 0x%p - 0x%p (%4ld kB)\n"
526 " .text : 0x%p - 0x%p (%4ld kB)\n",
528 (void*)VMALLOC_START, (void*)VMALLOC_END,
529 (VMALLOC_END - VMALLOC_START) >> 20,
531 __va(0), high_memory,
532 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
534 __init_begin, __init_end,
535 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
538 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
541 ((unsigned long)_etext - (unsigned long)_text) >> 10);
545 unsigned long *empty_zero_page __read_mostly;
549 int i,free = 0,total = 0,reserved = 0;
550 int shared = 0, cached = 0;
552 printk(KERN_INFO "Mem-info:\n");
554 printk(KERN_INFO "Free swap: %6ldkB\n",
555 nr_swap_pages<<(PAGE_SHIFT-10));
556 #ifndef CONFIG_DISCONTIGMEM
560 if (PageReserved(mem_map+i))
562 else if (PageSwapCache(mem_map+i))
564 else if (!page_count(&mem_map[i]))
567 shared += page_count(&mem_map[i]) - 1;
570 for (i = 0; i < npmem_ranges; i++) {
573 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
577 pgdat_resize_lock(NODE_DATA(i), &flags);
578 p = nid_page_nr(i, j) - node_start_pfn(i);
583 else if (PageSwapCache(p))
585 else if (!page_count(p))
588 shared += page_count(p) - 1;
589 pgdat_resize_unlock(NODE_DATA(i), &flags);
593 printk(KERN_INFO "%d pages of RAM\n", total);
594 printk(KERN_INFO "%d reserved pages\n", reserved);
595 printk(KERN_INFO "%d pages shared\n", shared);
596 printk(KERN_INFO "%d pages swap cached\n", cached);
599 #ifdef CONFIG_DISCONTIGMEM
604 for (i = 0; i < npmem_ranges; i++) {
605 for (j = 0; j < MAX_NR_ZONES; j++) {
606 zl = NODE_DATA(i)->node_zonelists + j;
608 printk("Zone list for zone %d on node %d: ", j, i);
609 for (k = 0; zl->zones[k] != NULL; k++)
610 printk("[%ld/%s] ", zone_to_nid(zl->zones[k]), zl->zones[k]->name);
619 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
624 unsigned long end_paddr;
625 unsigned long start_pmd;
626 unsigned long start_pte;
629 unsigned long address;
630 unsigned long ro_start;
631 unsigned long ro_end;
632 unsigned long fv_addr;
633 unsigned long gw_addr;
634 extern const unsigned long fault_vector_20;
635 extern void * const linux_gateway_page;
637 ro_start = __pa((unsigned long)_text);
638 ro_end = __pa((unsigned long)&data_start);
639 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
640 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
642 end_paddr = start_paddr + size;
644 pg_dir = pgd_offset_k(start_vaddr);
646 #if PTRS_PER_PMD == 1
649 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
651 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
653 address = start_paddr;
654 while (address < end_paddr) {
655 #if PTRS_PER_PMD == 1
656 pmd = (pmd_t *)__pa(pg_dir);
658 pmd = (pmd_t *)pgd_address(*pg_dir);
661 * pmd is physical at this point
665 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
666 pmd = (pmd_t *) __pa(pmd);
669 pgd_populate(NULL, pg_dir, __va(pmd));
673 /* now change pmd to kernel virtual addresses */
675 pmd = (pmd_t *)__va(pmd) + start_pmd;
676 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
679 * pg_table is physical at this point
682 pg_table = (pte_t *)pmd_address(*pmd);
685 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
686 pg_table = (pte_t *) __pa(pg_table);
689 pmd_populate_kernel(NULL, pmd, __va(pg_table));
691 /* now change pg_table to kernel virtual addresses */
693 pg_table = (pte_t *) __va(pg_table) + start_pte;
694 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
698 * Map the fault vector writable so we can
699 * write the HPMC checksum.
701 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
702 if (address >= ro_start && address < ro_end
703 && address != fv_addr
704 && address != gw_addr)
705 pte = __mk_pte(address, PAGE_KERNEL_RO);
708 pte = __mk_pte(address, pgprot);
710 if (address >= end_paddr)
713 set_pte(pg_table, pte);
715 address += PAGE_SIZE;
719 if (address >= end_paddr)
727 * pagetable_init() sets up the page tables
729 * Note that gateway_init() places the Linux gateway page at page 0.
730 * Since gateway pages cannot be dereferenced this has the desirable
731 * side effect of trapping those pesky NULL-reference errors in the
734 static void __init pagetable_init(void)
738 /* Map each physical memory range to its kernel vaddr */
740 for (range = 0; range < npmem_ranges; range++) {
741 unsigned long start_paddr;
742 unsigned long end_paddr;
745 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
746 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
747 size = pmem_ranges[range].pages << PAGE_SHIFT;
749 map_pages((unsigned long)__va(start_paddr), start_paddr,
753 #ifdef CONFIG_BLK_DEV_INITRD
754 if (initrd_end && initrd_end > mem_limit) {
755 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
756 map_pages(initrd_start, __pa(initrd_start),
757 initrd_end - initrd_start, PAGE_KERNEL);
761 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
762 memset(empty_zero_page, 0, PAGE_SIZE);
765 static void __init gateway_init(void)
767 unsigned long linux_gateway_page_addr;
768 /* FIXME: This is 'const' in order to trick the compiler
769 into not treating it as DP-relative data. */
770 extern void * const linux_gateway_page;
772 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
775 * Setup Linux Gateway page.
777 * The Linux gateway page will reside in kernel space (on virtual
778 * page 0), so it doesn't need to be aliased into user space.
781 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
782 PAGE_SIZE, PAGE_GATEWAY);
787 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
792 unsigned long start_pmd;
793 unsigned long start_pte;
794 unsigned long address;
795 unsigned long hpux_gw_page_addr;
796 /* FIXME: This is 'const' in order to trick the compiler
797 into not treating it as DP-relative data. */
798 extern void * const hpux_gateway_page;
800 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
803 * Setup HP-UX Gateway page.
805 * The HP-UX gateway page resides in the user address space,
806 * so it needs to be aliased into each process.
809 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
811 #if PTRS_PER_PMD == 1
814 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
816 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
818 address = __pa(&hpux_gateway_page);
819 #if PTRS_PER_PMD == 1
820 pmd = (pmd_t *)__pa(pg_dir);
822 pmd = (pmd_t *) pgd_address(*pg_dir);
825 * pmd is physical at this point
829 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
830 pmd = (pmd_t *) __pa(pmd);
833 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
835 /* now change pmd to kernel virtual addresses */
837 pmd = (pmd_t *)__va(pmd) + start_pmd;
840 * pg_table is physical at this point
843 pg_table = (pte_t *) pmd_address(*pmd);
845 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
847 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
849 /* now change pg_table to kernel virtual addresses */
851 pg_table = (pte_t *) __va(pg_table) + start_pte;
852 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
854 EXPORT_SYMBOL(map_hpux_gateway_page);
857 void __init paging_init(void)
864 flush_cache_all_local(); /* start with known state */
865 flush_tlb_all_local(NULL);
867 for (i = 0; i < npmem_ranges; i++) {
868 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
870 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
872 #ifdef CONFIG_DISCONTIGMEM
873 /* Need to initialize the pfnnid_map before we can initialize
877 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
878 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
885 free_area_init_node(i, NODE_DATA(i), zones_size,
886 pmem_ranges[i].start_pfn, NULL);
893 * Currently, all PA20 chips have 18 bit protection IDs, which is the
894 * limiting factor (space ids are 32 bits).
897 #define NR_SPACE_IDS 262144
902 * Currently we have a one-to-one relationship between space IDs and
903 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
904 * support 15 bit protection IDs, so that is the limiting factor.
905 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
906 * probably not worth the effort for a special case here.
909 #define NR_SPACE_IDS 32768
911 #endif /* !CONFIG_PA20 */
913 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
914 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
916 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
917 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
918 static unsigned long space_id_index;
919 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
920 static unsigned long dirty_space_ids = 0;
922 static DEFINE_SPINLOCK(sid_lock);
924 unsigned long alloc_sid(void)
928 spin_lock(&sid_lock);
930 if (free_space_ids == 0) {
931 if (dirty_space_ids != 0) {
932 spin_unlock(&sid_lock);
933 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
934 spin_lock(&sid_lock);
936 BUG_ON(free_space_ids == 0);
941 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
942 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
943 space_id_index = index;
945 spin_unlock(&sid_lock);
947 return index << SPACEID_SHIFT;
950 void free_sid(unsigned long spaceid)
952 unsigned long index = spaceid >> SPACEID_SHIFT;
953 unsigned long *dirty_space_offset;
955 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
956 index &= (BITS_PER_LONG - 1);
958 spin_lock(&sid_lock);
960 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
962 *dirty_space_offset |= (1L << index);
965 spin_unlock(&sid_lock);
970 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
974 /* NOTE: sid_lock must be held upon entry */
976 *ndirtyptr = dirty_space_ids;
977 if (dirty_space_ids != 0) {
978 for (i = 0; i < SID_ARRAY_SIZE; i++) {
979 dirty_array[i] = dirty_space_id[i];
980 dirty_space_id[i] = 0;
988 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
992 /* NOTE: sid_lock must be held upon entry */
995 for (i = 0; i < SID_ARRAY_SIZE; i++) {
996 space_id[i] ^= dirty_array[i];
999 free_space_ids += ndirty;
1004 #else /* CONFIG_SMP */
1006 static void recycle_sids(void)
1010 /* NOTE: sid_lock must be held upon entry */
1012 if (dirty_space_ids != 0) {
1013 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1014 space_id[i] ^= dirty_space_id[i];
1015 dirty_space_id[i] = 0;
1018 free_space_ids += dirty_space_ids;
1019 dirty_space_ids = 0;
1026 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1027 * purged, we can safely reuse the space ids that were released but
1028 * not flushed from the tlb.
1033 static unsigned long recycle_ndirty;
1034 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1035 static unsigned int recycle_inuse;
1037 void flush_tlb_all(void)
1042 spin_lock(&sid_lock);
1043 if (dirty_space_ids > RECYCLE_THRESHOLD) {
1044 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
1045 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1049 spin_unlock(&sid_lock);
1050 on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
1052 spin_lock(&sid_lock);
1053 recycle_sids(recycle_ndirty,recycle_dirty_array);
1055 spin_unlock(&sid_lock);
1059 void flush_tlb_all(void)
1061 spin_lock(&sid_lock);
1062 flush_tlb_all_local(NULL);
1064 spin_unlock(&sid_lock);
1068 #ifdef CONFIG_BLK_DEV_INITRD
1069 void free_initrd_mem(unsigned long start, unsigned long end)
1073 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1074 for (; start < end; start += PAGE_SIZE) {
1075 ClearPageReserved(virt_to_page(start));
1076 init_page_count(virt_to_page(start));