1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
33 #include <asm/uaccess.h>
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
49 char stat_string[ETH_GSTRING_LEN];
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55 offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57 { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58 { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59 { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60 { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
64 { "multicast", E1000_STAT(net_stats.multicast) },
65 { "collisions", E1000_STAT(net_stats.collisions) },
66 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
67 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
68 { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
69 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
70 { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
71 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
72 { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
73 { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
74 { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
75 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
76 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
77 { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
78 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
79 { "tx_deferred_ok", E1000_STAT(stats.dc) },
80 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
81 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
82 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
83 { "rx_long_length_errors", E1000_STAT(stats.roc) },
84 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
95 { "rx_header_split", E1000_STAT(rx_hdr_split) },
96 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN \
101 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
102 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
103 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
104 "Register test (offline)", "Eeprom test (offline)",
105 "Interrupt test (offline)", "Loopback test (offline)",
106 "Link test (on/offline)"
108 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
111 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
113 struct e1000_adapter *adapter = netdev_priv(netdev);
114 struct e1000_hw *hw = &adapter->hw;
116 if (hw->media_type == e1000_media_type_copper) {
118 ecmd->supported = (SUPPORTED_10baseT_Half |
119 SUPPORTED_10baseT_Full |
120 SUPPORTED_100baseT_Half |
121 SUPPORTED_100baseT_Full |
122 SUPPORTED_1000baseT_Full|
126 ecmd->advertising = ADVERTISED_TP;
128 if (hw->autoneg == 1) {
129 ecmd->advertising |= ADVERTISED_Autoneg;
131 /* the e1000 autoneg seems to match ethtool nicely */
133 ecmd->advertising |= hw->autoneg_advertised;
136 ecmd->port = PORT_TP;
137 ecmd->phy_address = hw->phy_addr;
139 if (hw->mac_type == e1000_82543)
140 ecmd->transceiver = XCVR_EXTERNAL;
142 ecmd->transceiver = XCVR_INTERNAL;
145 ecmd->supported = (SUPPORTED_1000baseT_Full |
149 ecmd->advertising = (ADVERTISED_1000baseT_Full |
153 ecmd->port = PORT_FIBRE;
155 if (hw->mac_type >= e1000_82545)
156 ecmd->transceiver = XCVR_INTERNAL;
158 ecmd->transceiver = XCVR_EXTERNAL;
161 if (netif_carrier_ok(adapter->netdev)) {
163 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
164 &adapter->link_duplex);
165 ecmd->speed = adapter->link_speed;
167 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
168 * and HALF_DUPLEX != DUPLEX_HALF */
170 if (adapter->link_duplex == FULL_DUPLEX)
171 ecmd->duplex = DUPLEX_FULL;
173 ecmd->duplex = DUPLEX_HALF;
179 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
180 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
185 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
187 struct e1000_adapter *adapter = netdev_priv(netdev);
188 struct e1000_hw *hw = &adapter->hw;
190 /* When SoL/IDER sessions are active, autoneg/speed/duplex
191 * cannot be changed */
192 if (e1000_check_phy_reset_block(hw)) {
193 DPRINTK(DRV, ERR, "Cannot change link characteristics "
194 "when SoL/IDER is active.\n");
198 if (ecmd->autoneg == AUTONEG_ENABLE) {
200 if (hw->media_type == e1000_media_type_fiber)
201 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
205 hw->autoneg_advertised = ADVERTISED_10baseT_Half |
206 ADVERTISED_10baseT_Full |
207 ADVERTISED_100baseT_Half |
208 ADVERTISED_100baseT_Full |
209 ADVERTISED_1000baseT_Full|
212 ecmd->advertising = hw->autoneg_advertised;
214 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
219 if (netif_running(adapter->netdev)) {
221 e1000_reset(adapter);
224 e1000_reset(adapter);
230 e1000_get_pauseparam(struct net_device *netdev,
231 struct ethtool_pauseparam *pause)
233 struct e1000_adapter *adapter = netdev_priv(netdev);
234 struct e1000_hw *hw = &adapter->hw;
237 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
239 if (hw->fc == e1000_fc_rx_pause)
241 else if (hw->fc == e1000_fc_tx_pause)
243 else if (hw->fc == e1000_fc_full) {
250 e1000_set_pauseparam(struct net_device *netdev,
251 struct ethtool_pauseparam *pause)
253 struct e1000_adapter *adapter = netdev_priv(netdev);
254 struct e1000_hw *hw = &adapter->hw;
256 adapter->fc_autoneg = pause->autoneg;
258 if (pause->rx_pause && pause->tx_pause)
259 hw->fc = e1000_fc_full;
260 else if (pause->rx_pause && !pause->tx_pause)
261 hw->fc = e1000_fc_rx_pause;
262 else if (!pause->rx_pause && pause->tx_pause)
263 hw->fc = e1000_fc_tx_pause;
264 else if (!pause->rx_pause && !pause->tx_pause)
265 hw->fc = e1000_fc_none;
267 hw->original_fc = hw->fc;
269 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
270 if (netif_running(adapter->netdev)) {
274 e1000_reset(adapter);
276 return ((hw->media_type == e1000_media_type_fiber) ?
277 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
283 e1000_get_rx_csum(struct net_device *netdev)
285 struct e1000_adapter *adapter = netdev_priv(netdev);
286 return adapter->rx_csum;
290 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
292 struct e1000_adapter *adapter = netdev_priv(netdev);
293 adapter->rx_csum = data;
295 if (netif_running(netdev)) {
299 e1000_reset(adapter);
304 e1000_get_tx_csum(struct net_device *netdev)
306 return (netdev->features & NETIF_F_HW_CSUM) != 0;
310 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
312 struct e1000_adapter *adapter = netdev_priv(netdev);
314 if (adapter->hw.mac_type < e1000_82543) {
321 netdev->features |= NETIF_F_HW_CSUM;
323 netdev->features &= ~NETIF_F_HW_CSUM;
330 e1000_set_tso(struct net_device *netdev, uint32_t data)
332 struct e1000_adapter *adapter = netdev_priv(netdev);
333 if ((adapter->hw.mac_type < e1000_82544) ||
334 (adapter->hw.mac_type == e1000_82547))
335 return data ? -EINVAL : 0;
338 netdev->features |= NETIF_F_TSO;
340 netdev->features &= ~NETIF_F_TSO;
343 #endif /* NETIF_F_TSO */
346 e1000_get_msglevel(struct net_device *netdev)
348 struct e1000_adapter *adapter = netdev_priv(netdev);
349 return adapter->msg_enable;
353 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
355 struct e1000_adapter *adapter = netdev_priv(netdev);
356 adapter->msg_enable = data;
360 e1000_get_regs_len(struct net_device *netdev)
362 #define E1000_REGS_LEN 32
363 return E1000_REGS_LEN * sizeof(uint32_t);
367 e1000_get_regs(struct net_device *netdev,
368 struct ethtool_regs *regs, void *p)
370 struct e1000_adapter *adapter = netdev_priv(netdev);
371 struct e1000_hw *hw = &adapter->hw;
372 uint32_t *regs_buff = p;
375 memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
377 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
379 regs_buff[0] = E1000_READ_REG(hw, CTRL);
380 regs_buff[1] = E1000_READ_REG(hw, STATUS);
382 regs_buff[2] = E1000_READ_REG(hw, RCTL);
383 regs_buff[3] = E1000_READ_REG(hw, RDLEN);
384 regs_buff[4] = E1000_READ_REG(hw, RDH);
385 regs_buff[5] = E1000_READ_REG(hw, RDT);
386 regs_buff[6] = E1000_READ_REG(hw, RDTR);
388 regs_buff[7] = E1000_READ_REG(hw, TCTL);
389 regs_buff[8] = E1000_READ_REG(hw, TDLEN);
390 regs_buff[9] = E1000_READ_REG(hw, TDH);
391 regs_buff[10] = E1000_READ_REG(hw, TDT);
392 regs_buff[11] = E1000_READ_REG(hw, TIDV);
394 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
395 if (hw->phy_type == e1000_phy_igp) {
396 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
397 IGP01E1000_PHY_AGC_A);
398 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
399 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400 regs_buff[13] = (uint32_t)phy_data; /* cable length */
401 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402 IGP01E1000_PHY_AGC_B);
403 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
404 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405 regs_buff[14] = (uint32_t)phy_data; /* cable length */
406 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
407 IGP01E1000_PHY_AGC_C);
408 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
409 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
410 regs_buff[15] = (uint32_t)phy_data; /* cable length */
411 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
412 IGP01E1000_PHY_AGC_D);
413 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
414 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
415 regs_buff[16] = (uint32_t)phy_data; /* cable length */
416 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
417 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
418 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
419 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
420 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
421 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
422 IGP01E1000_PHY_PCS_INIT_REG);
423 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
424 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
425 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
426 regs_buff[20] = 0; /* polarity correction enabled (always) */
427 regs_buff[22] = 0; /* phy receive errors (unavailable) */
428 regs_buff[23] = regs_buff[18]; /* mdix mode */
429 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
431 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
432 regs_buff[13] = (uint32_t)phy_data; /* cable length */
433 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
434 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
435 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
436 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
437 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
438 regs_buff[18] = regs_buff[13]; /* cable polarity */
439 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
440 regs_buff[20] = regs_buff[17]; /* polarity correction */
441 /* phy receive errors */
442 regs_buff[22] = adapter->phy_stats.receive_errors;
443 regs_buff[23] = regs_buff[13]; /* mdix mode */
445 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
446 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
447 regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
448 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
449 if (hw->mac_type >= e1000_82540 &&
450 hw->media_type == e1000_media_type_copper) {
451 regs_buff[26] = E1000_READ_REG(hw, MANC);
456 e1000_get_eeprom_len(struct net_device *netdev)
458 struct e1000_adapter *adapter = netdev_priv(netdev);
459 return adapter->hw.eeprom.word_size * 2;
463 e1000_get_eeprom(struct net_device *netdev,
464 struct ethtool_eeprom *eeprom, uint8_t *bytes)
466 struct e1000_adapter *adapter = netdev_priv(netdev);
467 struct e1000_hw *hw = &adapter->hw;
468 uint16_t *eeprom_buff;
469 int first_word, last_word;
473 if (eeprom->len == 0)
476 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
478 first_word = eeprom->offset >> 1;
479 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
481 eeprom_buff = kmalloc(sizeof(uint16_t) *
482 (last_word - first_word + 1), GFP_KERNEL);
486 if (hw->eeprom.type == e1000_eeprom_spi)
487 ret_val = e1000_read_eeprom(hw, first_word,
488 last_word - first_word + 1,
491 for (i = 0; i < last_word - first_word + 1; i++)
492 if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
497 /* Device's eeprom is always little-endian, word addressable */
498 for (i = 0; i < last_word - first_word + 1; i++)
499 le16_to_cpus(&eeprom_buff[i]);
501 memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
509 e1000_set_eeprom(struct net_device *netdev,
510 struct ethtool_eeprom *eeprom, uint8_t *bytes)
512 struct e1000_adapter *adapter = netdev_priv(netdev);
513 struct e1000_hw *hw = &adapter->hw;
514 uint16_t *eeprom_buff;
516 int max_len, first_word, last_word, ret_val = 0;
519 if (eeprom->len == 0)
522 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
525 max_len = hw->eeprom.word_size * 2;
527 first_word = eeprom->offset >> 1;
528 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
529 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
533 ptr = (void *)eeprom_buff;
535 if (eeprom->offset & 1) {
536 /* need read/modify/write of first changed EEPROM word */
537 /* only the second byte of the word is being modified */
538 ret_val = e1000_read_eeprom(hw, first_word, 1,
542 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
543 /* need read/modify/write of last changed EEPROM word */
544 /* only the first byte of the word is being modified */
545 ret_val = e1000_read_eeprom(hw, last_word, 1,
546 &eeprom_buff[last_word - first_word]);
549 /* Device's eeprom is always little-endian, word addressable */
550 for (i = 0; i < last_word - first_word + 1; i++)
551 le16_to_cpus(&eeprom_buff[i]);
553 memcpy(ptr, bytes, eeprom->len);
555 for (i = 0; i < last_word - first_word + 1; i++)
556 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
558 ret_val = e1000_write_eeprom(hw, first_word,
559 last_word - first_word + 1, eeprom_buff);
561 /* Update the checksum over the first part of the EEPROM if needed
562 * and flush shadow RAM for 82573 conrollers */
563 if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
564 (hw->mac_type == e1000_82573)))
565 e1000_update_eeprom_checksum(hw);
572 e1000_get_drvinfo(struct net_device *netdev,
573 struct ethtool_drvinfo *drvinfo)
575 struct e1000_adapter *adapter = netdev_priv(netdev);
576 char firmware_version[32];
577 uint16_t eeprom_data;
579 strncpy(drvinfo->driver, e1000_driver_name, 32);
580 strncpy(drvinfo->version, e1000_driver_version, 32);
582 /* EEPROM image version # is reported as firmware version # for
583 * 8257{1|2|3} controllers */
584 e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
585 switch (adapter->hw.mac_type) {
589 sprintf(firmware_version, "%d.%d-%d",
590 (eeprom_data & 0xF000) >> 12,
591 (eeprom_data & 0x0FF0) >> 4,
592 eeprom_data & 0x000F);
595 sprintf(firmware_version, "N/A");
598 strncpy(drvinfo->fw_version, firmware_version, 32);
599 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
600 drvinfo->n_stats = E1000_STATS_LEN;
601 drvinfo->testinfo_len = E1000_TEST_LEN;
602 drvinfo->regdump_len = e1000_get_regs_len(netdev);
603 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
607 e1000_get_ringparam(struct net_device *netdev,
608 struct ethtool_ringparam *ring)
610 struct e1000_adapter *adapter = netdev_priv(netdev);
611 e1000_mac_type mac_type = adapter->hw.mac_type;
612 struct e1000_tx_ring *txdr = adapter->tx_ring;
613 struct e1000_rx_ring *rxdr = adapter->rx_ring;
615 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
617 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
619 ring->rx_mini_max_pending = 0;
620 ring->rx_jumbo_max_pending = 0;
621 ring->rx_pending = rxdr->count;
622 ring->tx_pending = txdr->count;
623 ring->rx_mini_pending = 0;
624 ring->rx_jumbo_pending = 0;
628 e1000_set_ringparam(struct net_device *netdev,
629 struct ethtool_ringparam *ring)
631 struct e1000_adapter *adapter = netdev_priv(netdev);
632 e1000_mac_type mac_type = adapter->hw.mac_type;
633 struct e1000_tx_ring *txdr, *tx_old, *tx_new;
634 struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
635 int i, err, tx_ring_size, rx_ring_size;
637 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
640 tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
641 rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
643 if (netif_running(adapter->netdev))
646 tx_old = adapter->tx_ring;
647 rx_old = adapter->rx_ring;
649 adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
650 if (!adapter->tx_ring) {
654 memset(adapter->tx_ring, 0, tx_ring_size);
656 adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
657 if (!adapter->rx_ring) {
658 kfree(adapter->tx_ring);
662 memset(adapter->rx_ring, 0, rx_ring_size);
664 txdr = adapter->tx_ring;
665 rxdr = adapter->rx_ring;
667 rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
668 rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
669 E1000_MAX_RXD : E1000_MAX_82544_RXD));
670 E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
672 txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
673 txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
674 E1000_MAX_TXD : E1000_MAX_82544_TXD));
675 E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
677 for (i = 0; i < adapter->num_tx_queues; i++)
678 txdr[i].count = txdr->count;
679 for (i = 0; i < adapter->num_rx_queues; i++)
680 rxdr[i].count = rxdr->count;
682 if (netif_running(adapter->netdev)) {
683 /* Try to get new resources before deleting old */
684 if ((err = e1000_setup_all_rx_resources(adapter)))
686 if ((err = e1000_setup_all_tx_resources(adapter)))
689 /* save the new, restore the old in order to free it,
690 * then restore the new back again */
692 rx_new = adapter->rx_ring;
693 tx_new = adapter->tx_ring;
694 adapter->rx_ring = rx_old;
695 adapter->tx_ring = tx_old;
696 e1000_free_all_rx_resources(adapter);
697 e1000_free_all_tx_resources(adapter);
700 adapter->rx_ring = rx_new;
701 adapter->tx_ring = tx_new;
702 if ((err = e1000_up(adapter)))
708 e1000_free_all_rx_resources(adapter);
710 adapter->rx_ring = rx_old;
711 adapter->tx_ring = tx_old;
716 #define REG_PATTERN_TEST(R, M, W) \
718 uint32_t pat, value; \
720 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
721 for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
722 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
723 value = E1000_READ_REG(&adapter->hw, R); \
724 if (value != (test[pat] & W & M)) { \
725 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
726 "0x%08X expected 0x%08X\n", \
727 E1000_##R, value, (test[pat] & W & M)); \
728 *data = (adapter->hw.mac_type < e1000_82543) ? \
729 E1000_82542_##R : E1000_##R; \
735 #define REG_SET_AND_CHECK(R, M, W) \
738 E1000_WRITE_REG(&adapter->hw, R, W & M); \
739 value = E1000_READ_REG(&adapter->hw, R); \
740 if ((W & M) != (value & M)) { \
741 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
742 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
743 *data = (adapter->hw.mac_type < e1000_82543) ? \
744 E1000_82542_##R : E1000_##R; \
750 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
752 uint32_t value, before, after;
755 /* The status register is Read Only, so a write should fail.
756 * Some bits that get toggled are ignored.
758 switch (adapter->hw.mac_type) {
759 /* there are several bits on newer hardware that are r/w */
772 before = E1000_READ_REG(&adapter->hw, STATUS);
773 value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
774 E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
775 after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
776 if (value != after) {
777 DPRINTK(DRV, ERR, "failed STATUS register test got: "
778 "0x%08X expected: 0x%08X\n", after, value);
782 /* restore previous status */
783 E1000_WRITE_REG(&adapter->hw, STATUS, before);
785 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
786 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
787 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
788 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
789 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
790 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
791 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
792 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
793 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
794 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
795 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
796 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
797 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
798 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
800 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
801 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
802 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
804 if (adapter->hw.mac_type >= e1000_82543) {
806 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
807 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
808 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
809 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
810 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
812 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
813 REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
815 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
821 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
822 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
823 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
824 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
828 for (i = 0; i < E1000_MC_TBL_SIZE; i++)
829 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
836 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
839 uint16_t checksum = 0;
843 /* Read and add up the contents of the EEPROM */
844 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
845 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
852 /* If Checksum is not Correct return error else test passed */
853 if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
860 e1000_test_intr(int irq,
862 struct pt_regs *regs)
864 struct net_device *netdev = (struct net_device *) data;
865 struct e1000_adapter *adapter = netdev_priv(netdev);
867 adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
873 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
875 struct net_device *netdev = adapter->netdev;
876 uint32_t mask, i=0, shared_int = TRUE;
877 uint32_t irq = adapter->pdev->irq;
881 /* Hook up test interrupt handler just for this test */
882 if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
884 } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
885 netdev->name, netdev)){
890 /* Disable all the interrupts */
891 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
894 /* Test each interrupt */
895 for (; i < 10; i++) {
897 /* Interrupt to test */
901 /* Disable the interrupt to be reported in
902 * the cause register and then force the same
903 * interrupt and see if one gets posted. If
904 * an interrupt was posted to the bus, the
907 adapter->test_icr = 0;
908 E1000_WRITE_REG(&adapter->hw, IMC, mask);
909 E1000_WRITE_REG(&adapter->hw, ICS, mask);
912 if (adapter->test_icr & mask) {
918 /* Enable the interrupt to be reported in
919 * the cause register and then force the same
920 * interrupt and see if one gets posted. If
921 * an interrupt was not posted to the bus, the
924 adapter->test_icr = 0;
925 E1000_WRITE_REG(&adapter->hw, IMS, mask);
926 E1000_WRITE_REG(&adapter->hw, ICS, mask);
929 if (!(adapter->test_icr & mask)) {
935 /* Disable the other interrupts to be reported in
936 * the cause register and then force the other
937 * interrupts and see if any get posted. If
938 * an interrupt was posted to the bus, the
941 adapter->test_icr = 0;
942 E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
943 E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
946 if (adapter->test_icr) {
953 /* Disable all the interrupts */
954 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
957 /* Unhook test interrupt handler */
958 free_irq(irq, netdev);
964 e1000_free_desc_rings(struct e1000_adapter *adapter)
966 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
967 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
968 struct pci_dev *pdev = adapter->pdev;
971 if (txdr->desc && txdr->buffer_info) {
972 for (i = 0; i < txdr->count; i++) {
973 if (txdr->buffer_info[i].dma)
974 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
975 txdr->buffer_info[i].length,
977 if (txdr->buffer_info[i].skb)
978 dev_kfree_skb(txdr->buffer_info[i].skb);
982 if (rxdr->desc && rxdr->buffer_info) {
983 for (i = 0; i < rxdr->count; i++) {
984 if (rxdr->buffer_info[i].dma)
985 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
986 rxdr->buffer_info[i].length,
988 if (rxdr->buffer_info[i].skb)
989 dev_kfree_skb(rxdr->buffer_info[i].skb);
994 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
998 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1002 kfree(txdr->buffer_info);
1003 txdr->buffer_info = NULL;
1004 kfree(rxdr->buffer_info);
1005 rxdr->buffer_info = NULL;
1011 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1013 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1014 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1015 struct pci_dev *pdev = adapter->pdev;
1017 int size, i, ret_val;
1019 /* Setup Tx descriptor ring and Tx buffers */
1022 txdr->count = E1000_DEFAULT_TXD;
1024 size = txdr->count * sizeof(struct e1000_buffer);
1025 if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1029 memset(txdr->buffer_info, 0, size);
1031 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1032 E1000_ROUNDUP(txdr->size, 4096);
1033 if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1037 memset(txdr->desc, 0, txdr->size);
1038 txdr->next_to_use = txdr->next_to_clean = 0;
1040 E1000_WRITE_REG(&adapter->hw, TDBAL,
1041 ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1042 E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1043 E1000_WRITE_REG(&adapter->hw, TDLEN,
1044 txdr->count * sizeof(struct e1000_tx_desc));
1045 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1046 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1047 E1000_WRITE_REG(&adapter->hw, TCTL,
1048 E1000_TCTL_PSP | E1000_TCTL_EN |
1049 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1050 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1052 for (i = 0; i < txdr->count; i++) {
1053 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1054 struct sk_buff *skb;
1055 unsigned int size = 1024;
1057 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1062 txdr->buffer_info[i].skb = skb;
1063 txdr->buffer_info[i].length = skb->len;
1064 txdr->buffer_info[i].dma =
1065 pci_map_single(pdev, skb->data, skb->len,
1067 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1068 tx_desc->lower.data = cpu_to_le32(skb->len);
1069 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1070 E1000_TXD_CMD_IFCS |
1072 tx_desc->upper.data = 0;
1075 /* Setup Rx descriptor ring and Rx buffers */
1078 rxdr->count = E1000_DEFAULT_RXD;
1080 size = rxdr->count * sizeof(struct e1000_buffer);
1081 if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1085 memset(rxdr->buffer_info, 0, size);
1087 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1088 if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1092 memset(rxdr->desc, 0, rxdr->size);
1093 rxdr->next_to_use = rxdr->next_to_clean = 0;
1095 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1096 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1097 E1000_WRITE_REG(&adapter->hw, RDBAL,
1098 ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1099 E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1100 E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1101 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1102 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1103 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1104 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1105 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1106 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1108 for (i = 0; i < rxdr->count; i++) {
1109 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1110 struct sk_buff *skb;
1112 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1117 skb_reserve(skb, NET_IP_ALIGN);
1118 rxdr->buffer_info[i].skb = skb;
1119 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1120 rxdr->buffer_info[i].dma =
1121 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1122 PCI_DMA_FROMDEVICE);
1123 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1124 memset(skb->data, 0x00, skb->len);
1130 e1000_free_desc_rings(adapter);
1135 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1137 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1138 e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1139 e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1140 e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1141 e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1145 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1149 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1150 * Extended PHY Specific Control Register to 25MHz clock. This
1151 * value defaults back to a 2.5MHz clock when the PHY is reset.
1153 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1154 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1155 e1000_write_phy_reg(&adapter->hw,
1156 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1158 /* In addition, because of the s/w reset above, we need to enable
1159 * CRS on TX. This must be set for both full and half duplex
1162 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1163 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1164 e1000_write_phy_reg(&adapter->hw,
1165 M88E1000_PHY_SPEC_CTRL, phy_reg);
1169 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1174 /* Setup the Device Control Register for PHY loopback test. */
1176 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1177 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1178 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1179 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1180 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1181 E1000_CTRL_FD); /* Force Duplex to FULL */
1183 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1185 /* Read the PHY Specific Control Register (0x10) */
1186 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1188 /* Clear Auto-Crossover bits in PHY Specific Control Register
1191 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1192 e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1194 /* Perform software reset on the PHY */
1195 e1000_phy_reset(&adapter->hw);
1197 /* Have to setup TX_CLK and TX_CRS after software reset */
1198 e1000_phy_reset_clk_and_crs(adapter);
1200 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1202 /* Wait for reset to complete. */
1205 /* Have to setup TX_CLK and TX_CRS after software reset */
1206 e1000_phy_reset_clk_and_crs(adapter);
1208 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1209 e1000_phy_disable_receiver(adapter);
1211 /* Set the loopback bit in the PHY control register. */
1212 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1213 phy_reg |= MII_CR_LOOPBACK;
1214 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1216 /* Setup TX_CLK and TX_CRS one more time. */
1217 e1000_phy_reset_clk_and_crs(adapter);
1219 /* Check Phy Configuration */
1220 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1221 if (phy_reg != 0x4100)
1224 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1225 if (phy_reg != 0x0070)
1228 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1229 if (phy_reg != 0x001A)
1236 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1238 uint32_t ctrl_reg = 0;
1239 uint32_t stat_reg = 0;
1241 adapter->hw.autoneg = FALSE;
1243 if (adapter->hw.phy_type == e1000_phy_m88) {
1244 /* Auto-MDI/MDIX Off */
1245 e1000_write_phy_reg(&adapter->hw,
1246 M88E1000_PHY_SPEC_CTRL, 0x0808);
1247 /* reset to update Auto-MDI/MDIX */
1248 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1250 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1252 /* force 1000, set loopback */
1253 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1255 /* Now set up the MAC to the same speed/duplex as the PHY. */
1256 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1257 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1258 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1259 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1260 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1261 E1000_CTRL_FD); /* Force Duplex to FULL */
1263 if (adapter->hw.media_type == e1000_media_type_copper &&
1264 adapter->hw.phy_type == e1000_phy_m88) {
1265 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1267 /* Set the ILOS bit on the fiber Nic is half
1268 * duplex link is detected. */
1269 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1270 if ((stat_reg & E1000_STATUS_FD) == 0)
1271 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1274 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1276 /* Disable the receiver on the PHY so when a cable is plugged in, the
1277 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1279 if (adapter->hw.phy_type == e1000_phy_m88)
1280 e1000_phy_disable_receiver(adapter);
1288 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1290 uint16_t phy_reg = 0;
1293 switch (adapter->hw.mac_type) {
1295 if (adapter->hw.media_type == e1000_media_type_copper) {
1296 /* Attempt to setup Loopback mode on Non-integrated PHY.
1297 * Some PHY registers get corrupted at random, so
1298 * attempt this 10 times.
1300 while (e1000_nonintegrated_phy_loopback(adapter) &&
1310 case e1000_82545_rev_3:
1312 case e1000_82546_rev_3:
1314 case e1000_82541_rev_2:
1316 case e1000_82547_rev_2:
1320 return e1000_integrated_phy_loopback(adapter);
1324 /* Default PHY loopback work is to read the MII
1325 * control register and assert bit 14 (loopback mode).
1327 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1328 phy_reg |= MII_CR_LOOPBACK;
1329 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1338 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1340 struct e1000_hw *hw = &adapter->hw;
1343 if (hw->media_type == e1000_media_type_fiber ||
1344 hw->media_type == e1000_media_type_internal_serdes) {
1345 switch (hw->mac_type) {
1348 case e1000_82545_rev_3:
1349 case e1000_82546_rev_3:
1350 return e1000_set_phy_loopback(adapter);
1354 #define E1000_SERDES_LB_ON 0x410
1355 e1000_set_phy_loopback(adapter);
1356 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1361 rctl = E1000_READ_REG(hw, RCTL);
1362 rctl |= E1000_RCTL_LBM_TCVR;
1363 E1000_WRITE_REG(hw, RCTL, rctl);
1366 } else if (hw->media_type == e1000_media_type_copper)
1367 return e1000_set_phy_loopback(adapter);
1373 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1375 struct e1000_hw *hw = &adapter->hw;
1379 rctl = E1000_READ_REG(hw, RCTL);
1380 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1381 E1000_WRITE_REG(hw, RCTL, rctl);
1383 switch (hw->mac_type) {
1386 if (hw->media_type == e1000_media_type_fiber ||
1387 hw->media_type == e1000_media_type_internal_serdes) {
1388 #define E1000_SERDES_LB_OFF 0x400
1389 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1396 case e1000_82545_rev_3:
1397 case e1000_82546_rev_3:
1400 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1401 if (phy_reg & MII_CR_LOOPBACK) {
1402 phy_reg &= ~MII_CR_LOOPBACK;
1403 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1404 e1000_phy_reset(hw);
1411 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1413 memset(skb->data, 0xFF, frame_size);
1415 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1416 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1417 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1421 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1424 if (*(skb->data + 3) == 0xFF) {
1425 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1426 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1434 e1000_run_loopback_test(struct e1000_adapter *adapter)
1436 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1437 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1438 struct pci_dev *pdev = adapter->pdev;
1439 int i, j, k, l, lc, good_cnt, ret_val=0;
1442 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1444 /* Calculate the loop count based on the largest descriptor ring
1445 * The idea is to wrap the largest ring a number of times using 64
1446 * send/receive pairs during each loop
1449 if (rxdr->count <= txdr->count)
1450 lc = ((txdr->count / 64) * 2) + 1;
1452 lc = ((rxdr->count / 64) * 2) + 1;
1455 for (j = 0; j <= lc; j++) { /* loop count loop */
1456 for (i = 0; i < 64; i++) { /* send the packets */
1457 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1459 pci_dma_sync_single_for_device(pdev,
1460 txdr->buffer_info[k].dma,
1461 txdr->buffer_info[k].length,
1463 if (unlikely(++k == txdr->count)) k = 0;
1465 E1000_WRITE_REG(&adapter->hw, TDT, k);
1467 time = jiffies; /* set the start time for the receive */
1469 do { /* receive the sent packets */
1470 pci_dma_sync_single_for_cpu(pdev,
1471 rxdr->buffer_info[l].dma,
1472 rxdr->buffer_info[l].length,
1473 PCI_DMA_FROMDEVICE);
1475 ret_val = e1000_check_lbtest_frame(
1476 rxdr->buffer_info[l].skb,
1480 if (unlikely(++l == rxdr->count)) l = 0;
1481 /* time + 20 msecs (200 msecs on 2.4) is more than
1482 * enough time to complete the receives, if it's
1483 * exceeded, break and error off
1485 } while (good_cnt < 64 && jiffies < (time + 20));
1486 if (good_cnt != 64) {
1487 ret_val = 13; /* ret_val is the same as mis-compare */
1490 if (jiffies >= (time + 2)) {
1491 ret_val = 14; /* error code for time out error */
1494 } /* end loop count loop */
1499 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1501 /* PHY loopback cannot be performed if SoL/IDER
1502 * sessions are active */
1503 if (e1000_check_phy_reset_block(&adapter->hw)) {
1504 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1505 "when SoL/IDER is active.\n");
1510 if ((*data = e1000_setup_desc_rings(adapter)))
1512 if ((*data = e1000_setup_loopback_test(adapter)))
1514 *data = e1000_run_loopback_test(adapter);
1515 e1000_loopback_cleanup(adapter);
1518 e1000_free_desc_rings(adapter);
1524 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1527 if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1529 adapter->hw.serdes_link_down = TRUE;
1531 /* On some blade server designs, link establishment
1532 * could take as long as 2-3 minutes */
1534 e1000_check_for_link(&adapter->hw);
1535 if (adapter->hw.serdes_link_down == FALSE)
1538 } while (i++ < 3750);
1542 e1000_check_for_link(&adapter->hw);
1543 if (adapter->hw.autoneg) /* if auto_neg is set wait for it */
1546 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1554 e1000_diag_test_count(struct net_device *netdev)
1556 return E1000_TEST_LEN;
1560 e1000_diag_test(struct net_device *netdev,
1561 struct ethtool_test *eth_test, uint64_t *data)
1563 struct e1000_adapter *adapter = netdev_priv(netdev);
1564 boolean_t if_running = netif_running(netdev);
1566 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1569 /* save speed, duplex, autoneg settings */
1570 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1571 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1572 uint8_t autoneg = adapter->hw.autoneg;
1574 /* Link test performed before hardware reset so autoneg doesn't
1575 * interfere with test result */
1576 if (e1000_link_test(adapter, &data[4]))
1577 eth_test->flags |= ETH_TEST_FL_FAILED;
1580 e1000_down(adapter);
1582 e1000_reset(adapter);
1584 if (e1000_reg_test(adapter, &data[0]))
1585 eth_test->flags |= ETH_TEST_FL_FAILED;
1587 e1000_reset(adapter);
1588 if (e1000_eeprom_test(adapter, &data[1]))
1589 eth_test->flags |= ETH_TEST_FL_FAILED;
1591 e1000_reset(adapter);
1592 if (e1000_intr_test(adapter, &data[2]))
1593 eth_test->flags |= ETH_TEST_FL_FAILED;
1595 e1000_reset(adapter);
1596 if (e1000_loopback_test(adapter, &data[3]))
1597 eth_test->flags |= ETH_TEST_FL_FAILED;
1599 /* restore speed, duplex, autoneg settings */
1600 adapter->hw.autoneg_advertised = autoneg_advertised;
1601 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1602 adapter->hw.autoneg = autoneg;
1604 e1000_reset(adapter);
1609 if (e1000_link_test(adapter, &data[4]))
1610 eth_test->flags |= ETH_TEST_FL_FAILED;
1612 /* Offline tests aren't run; pass by default */
1618 msleep_interruptible(4 * 1000);
1622 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1624 struct e1000_adapter *adapter = netdev_priv(netdev);
1625 struct e1000_hw *hw = &adapter->hw;
1627 switch (adapter->hw.device_id) {
1628 case E1000_DEV_ID_82542:
1629 case E1000_DEV_ID_82543GC_FIBER:
1630 case E1000_DEV_ID_82543GC_COPPER:
1631 case E1000_DEV_ID_82544EI_FIBER:
1632 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1633 case E1000_DEV_ID_82545EM_FIBER:
1634 case E1000_DEV_ID_82545EM_COPPER:
1635 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1640 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1641 /* device id 10B5 port-A supports wol */
1642 if (!adapter->ksp3_port_a) {
1646 /* KSP3 does not suppport UCAST wake-ups for any interface */
1647 wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1649 if (adapter->wol & E1000_WUFC_EX)
1650 DPRINTK(DRV, ERR, "Interface does not support "
1651 "directed (unicast) frame wake-up packets\n");
1655 case E1000_DEV_ID_82546EB_FIBER:
1656 case E1000_DEV_ID_82546GB_FIBER:
1657 case E1000_DEV_ID_82571EB_FIBER:
1658 /* Wake events only supported on port A for dual fiber */
1659 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1667 wol->supported = WAKE_UCAST | WAKE_MCAST |
1668 WAKE_BCAST | WAKE_MAGIC;
1672 if (adapter->wol & E1000_WUFC_EX)
1673 wol->wolopts |= WAKE_UCAST;
1674 if (adapter->wol & E1000_WUFC_MC)
1675 wol->wolopts |= WAKE_MCAST;
1676 if (adapter->wol & E1000_WUFC_BC)
1677 wol->wolopts |= WAKE_BCAST;
1678 if (adapter->wol & E1000_WUFC_MAG)
1679 wol->wolopts |= WAKE_MAGIC;
1685 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1687 struct e1000_adapter *adapter = netdev_priv(netdev);
1688 struct e1000_hw *hw = &adapter->hw;
1690 switch (adapter->hw.device_id) {
1691 case E1000_DEV_ID_82542:
1692 case E1000_DEV_ID_82543GC_FIBER:
1693 case E1000_DEV_ID_82543GC_COPPER:
1694 case E1000_DEV_ID_82544EI_FIBER:
1695 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1696 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1697 case E1000_DEV_ID_82545EM_FIBER:
1698 case E1000_DEV_ID_82545EM_COPPER:
1699 return wol->wolopts ? -EOPNOTSUPP : 0;
1701 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1702 /* device id 10B5 port-A supports wol */
1703 if (!adapter->ksp3_port_a)
1704 return wol->wolopts ? -EOPNOTSUPP : 0;
1706 if (wol->wolopts & WAKE_UCAST) {
1707 DPRINTK(DRV, ERR, "Interface does not support "
1708 "directed (unicast) frame wake-up packets\n");
1712 case E1000_DEV_ID_82546EB_FIBER:
1713 case E1000_DEV_ID_82546GB_FIBER:
1714 case E1000_DEV_ID_82571EB_FIBER:
1715 /* Wake events only supported on port A for dual fiber */
1716 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1717 return wol->wolopts ? -EOPNOTSUPP : 0;
1721 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1726 if (wol->wolopts & WAKE_UCAST)
1727 adapter->wol |= E1000_WUFC_EX;
1728 if (wol->wolopts & WAKE_MCAST)
1729 adapter->wol |= E1000_WUFC_MC;
1730 if (wol->wolopts & WAKE_BCAST)
1731 adapter->wol |= E1000_WUFC_BC;
1732 if (wol->wolopts & WAKE_MAGIC)
1733 adapter->wol |= E1000_WUFC_MAG;
1739 /* toggle LED 4 times per second = 2 "blinks" per second */
1740 #define E1000_ID_INTERVAL (HZ/4)
1742 /* bit defines for adapter->led_status */
1743 #define E1000_LED_ON 0
1746 e1000_led_blink_callback(unsigned long data)
1748 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1750 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1751 e1000_led_off(&adapter->hw);
1753 e1000_led_on(&adapter->hw);
1755 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1759 e1000_phys_id(struct net_device *netdev, uint32_t data)
1761 struct e1000_adapter *adapter = netdev_priv(netdev);
1763 if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1764 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1766 if (adapter->hw.mac_type < e1000_82571) {
1767 if (!adapter->blink_timer.function) {
1768 init_timer(&adapter->blink_timer);
1769 adapter->blink_timer.function = e1000_led_blink_callback;
1770 adapter->blink_timer.data = (unsigned long) adapter;
1772 e1000_setup_led(&adapter->hw);
1773 mod_timer(&adapter->blink_timer, jiffies);
1774 msleep_interruptible(data * 1000);
1775 del_timer_sync(&adapter->blink_timer);
1776 } else if (adapter->hw.mac_type < e1000_82573) {
1777 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1778 (E1000_LEDCTL_LED2_BLINK_RATE |
1779 E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1780 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1781 (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1782 (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1783 msleep_interruptible(data * 1000);
1785 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1786 (E1000_LEDCTL_LED2_BLINK_RATE |
1787 E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1788 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1789 (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1790 (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1791 msleep_interruptible(data * 1000);
1794 e1000_led_off(&adapter->hw);
1795 clear_bit(E1000_LED_ON, &adapter->led_status);
1796 e1000_cleanup_led(&adapter->hw);
1802 e1000_nway_reset(struct net_device *netdev)
1804 struct e1000_adapter *adapter = netdev_priv(netdev);
1805 if (netif_running(netdev)) {
1806 e1000_down(adapter);
1813 e1000_get_stats_count(struct net_device *netdev)
1815 return E1000_STATS_LEN;
1819 e1000_get_ethtool_stats(struct net_device *netdev,
1820 struct ethtool_stats *stats, uint64_t *data)
1822 struct e1000_adapter *adapter = netdev_priv(netdev);
1825 e1000_update_stats(adapter);
1826 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1827 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1828 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1829 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1831 /* BUG_ON(i != E1000_STATS_LEN); */
1835 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1840 switch (stringset) {
1842 memcpy(data, *e1000_gstrings_test,
1843 E1000_TEST_LEN*ETH_GSTRING_LEN);
1846 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1847 memcpy(p, e1000_gstrings_stats[i].stat_string,
1849 p += ETH_GSTRING_LEN;
1851 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1856 static struct ethtool_ops e1000_ethtool_ops = {
1857 .get_settings = e1000_get_settings,
1858 .set_settings = e1000_set_settings,
1859 .get_drvinfo = e1000_get_drvinfo,
1860 .get_regs_len = e1000_get_regs_len,
1861 .get_regs = e1000_get_regs,
1862 .get_wol = e1000_get_wol,
1863 .set_wol = e1000_set_wol,
1864 .get_msglevel = e1000_get_msglevel,
1865 .set_msglevel = e1000_set_msglevel,
1866 .nway_reset = e1000_nway_reset,
1867 .get_link = ethtool_op_get_link,
1868 .get_eeprom_len = e1000_get_eeprom_len,
1869 .get_eeprom = e1000_get_eeprom,
1870 .set_eeprom = e1000_set_eeprom,
1871 .get_ringparam = e1000_get_ringparam,
1872 .set_ringparam = e1000_set_ringparam,
1873 .get_pauseparam = e1000_get_pauseparam,
1874 .set_pauseparam = e1000_set_pauseparam,
1875 .get_rx_csum = e1000_get_rx_csum,
1876 .set_rx_csum = e1000_set_rx_csum,
1877 .get_tx_csum = e1000_get_tx_csum,
1878 .set_tx_csum = e1000_set_tx_csum,
1879 .get_sg = ethtool_op_get_sg,
1880 .set_sg = ethtool_op_set_sg,
1882 .get_tso = ethtool_op_get_tso,
1883 .set_tso = e1000_set_tso,
1885 .self_test_count = e1000_diag_test_count,
1886 .self_test = e1000_diag_test,
1887 .get_strings = e1000_get_strings,
1888 .phys_id = e1000_phys_id,
1889 .get_stats_count = e1000_get_stats_count,
1890 .get_ethtool_stats = e1000_get_ethtool_stats,
1891 .get_perm_addr = ethtool_op_get_perm_addr,
1894 void e1000_set_ethtool_ops(struct net_device *netdev)
1896 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);