[PATCH] UHCI: Reimplement FSBR
[linux-2.6] / drivers / mmc / au1xmmc.c
1 /*
2  * linux/drivers/mmc/au1xmmc.c - AU1XX0 MMC driver
3  *
4  *  Copyright (c) 2005, Advanced Micro Devices, Inc.
5  *
6  *  Developed with help from the 2.4.30 MMC AU1XXX controller including
7  *  the following copyright notices:
8  *     Copyright (c) 2003-2004 Embedded Edge, LLC.
9  *     Portions Copyright (C) 2002 Embedix, Inc
10  *     Copyright 2002 Hewlett-Packard Company
11
12  *  2.6 version of this driver inspired by:
13  *     (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
14  *     All Rights Reserved.
15  *     (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
16  *     All Rights Reserved.
17  *
18
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License version 2 as
21  * published by the Free Software Foundation.
22  */
23
24 /* Why is a timer used to detect insert events?
25  *
26  * From the AU1100 MMC application guide:
27  * If the Au1100-based design is intended to support both MultiMediaCards
28  * and 1- or 4-data bit SecureDigital cards, then the solution is to
29  * connect a weak (560KOhm) pull-up resistor to connector pin 1.
30  * In doing so, a MMC card never enters SPI-mode communications,
31  * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
32  * (the low to high transition will not occur).
33  *
34  * So we use the timer to check the status manually.
35  */
36
37 #include <linux/config.h>
38 #include <linux/module.h>
39 #include <linux/init.h>
40 #include <linux/platform_device.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/dma-mapping.h>
44
45 #include <linux/mmc/host.h>
46 #include <linux/mmc/protocol.h>
47 #include <asm/io.h>
48 #include <asm/mach-au1x00/au1000.h>
49 #include <asm/mach-au1x00/au1xxx_dbdma.h>
50 #include <asm/mach-au1x00/au1100_mmc.h>
51 #include <asm/scatterlist.h>
52
53 #include <au1xxx.h>
54 #include "au1xmmc.h"
55
56 #define DRIVER_NAME "au1xxx-mmc"
57
58 /* Set this to enable special debugging macros */
59
60 #ifdef DEBUG
61 #define DBG(fmt, idx, args...) printk("au1xx(%d): DEBUG: " fmt, idx, ##args)
62 #else
63 #define DBG(fmt, idx, args...)
64 #endif
65
66 const struct {
67         u32 iobase;
68         u32 tx_devid, rx_devid;
69         u16 bcsrpwr;
70         u16 bcsrstatus;
71         u16 wpstatus;
72 } au1xmmc_card_table[] = {
73         { SD0_BASE, DSCR_CMD0_SDMS_TX0, DSCR_CMD0_SDMS_RX0,
74           BCSR_BOARD_SD0PWR, BCSR_INT_SD0INSERT, BCSR_STATUS_SD0WP },
75 #ifndef CONFIG_MIPS_DB1200
76         { SD1_BASE, DSCR_CMD0_SDMS_TX1, DSCR_CMD0_SDMS_RX1,
77           BCSR_BOARD_DS1PWR, BCSR_INT_SD1INSERT, BCSR_STATUS_SD1WP }
78 #endif
79 };
80
81 #define AU1XMMC_CONTROLLER_COUNT \
82         (sizeof(au1xmmc_card_table) / sizeof(au1xmmc_card_table[0]))
83
84 /* This array stores pointers for the hosts (used by the IRQ handler) */
85 struct au1xmmc_host *au1xmmc_hosts[AU1XMMC_CONTROLLER_COUNT];
86 static int dma = 1;
87
88 #ifdef MODULE
89 module_param(dma, bool, 0);
90 MODULE_PARM_DESC(dma, "Use DMA engine for data transfers (0 = disabled)");
91 #endif
92
93 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
94 {
95         u32 val = au_readl(HOST_CONFIG(host));
96         val |= mask;
97         au_writel(val, HOST_CONFIG(host));
98         au_sync();
99 }
100
101 static inline void FLUSH_FIFO(struct au1xmmc_host *host)
102 {
103         u32 val = au_readl(HOST_CONFIG2(host));
104
105         au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
106         au_sync_delay(1);
107
108         /* SEND_STOP will turn off clock control - this re-enables it */
109         val &= ~SD_CONFIG2_DF;
110
111         au_writel(val, HOST_CONFIG2(host));
112         au_sync();
113 }
114
115 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
116 {
117         u32 val = au_readl(HOST_CONFIG(host));
118         val &= ~mask;
119         au_writel(val, HOST_CONFIG(host));
120         au_sync();
121 }
122
123 static inline void SEND_STOP(struct au1xmmc_host *host)
124 {
125
126         /* We know the value of CONFIG2, so avoid a read we don't need */
127         u32 mask = SD_CONFIG2_EN;
128
129         WARN_ON(host->status != HOST_S_DATA);
130         host->status = HOST_S_STOP;
131
132         au_writel(mask | SD_CONFIG2_DF, HOST_CONFIG2(host));
133         au_sync();
134
135         /* Send the stop commmand */
136         au_writel(STOP_CMD, HOST_CMD(host));
137 }
138
139 static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
140 {
141
142         u32 val = au1xmmc_card_table[host->id].bcsrpwr;
143
144         bcsr->board &= ~val;
145         if (state) bcsr->board |= val;
146
147         au_sync_delay(1);
148 }
149
150 static inline int au1xmmc_card_inserted(struct au1xmmc_host *host)
151 {
152         return (bcsr->sig_status & au1xmmc_card_table[host->id].bcsrstatus)
153                 ? 1 : 0;
154 }
155
156 static inline int au1xmmc_card_readonly(struct au1xmmc_host *host)
157 {
158         return (bcsr->status & au1xmmc_card_table[host->id].wpstatus)
159                 ? 1 : 0;
160 }
161
162 static void au1xmmc_finish_request(struct au1xmmc_host *host)
163 {
164
165         struct mmc_request *mrq = host->mrq;
166
167         host->mrq = NULL;
168         host->flags &= HOST_F_ACTIVE;
169
170         host->dma.len = 0;
171         host->dma.dir = 0;
172
173         host->pio.index  = 0;
174         host->pio.offset = 0;
175         host->pio.len = 0;
176
177         host->status = HOST_S_IDLE;
178
179         bcsr->disk_leds |= (1 << 8);
180
181         mmc_request_done(host->mmc, mrq);
182 }
183
184 static void au1xmmc_tasklet_finish(unsigned long param)
185 {
186         struct au1xmmc_host *host = (struct au1xmmc_host *) param;
187         au1xmmc_finish_request(host);
188 }
189
190 static int au1xmmc_send_command(struct au1xmmc_host *host, int wait,
191                                 struct mmc_command *cmd)
192 {
193
194         u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
195
196         switch (mmc_resp_type(cmd)) {
197         case MMC_RSP_R1:
198                 mmccmd |= SD_CMD_RT_1;
199                 break;
200         case MMC_RSP_R1B:
201                 mmccmd |= SD_CMD_RT_1B;
202                 break;
203         case MMC_RSP_R2:
204                 mmccmd |= SD_CMD_RT_2;
205                 break;
206         case MMC_RSP_R3:
207                 mmccmd |= SD_CMD_RT_3;
208                 break;
209         }
210
211         switch(cmd->opcode) {
212         case MMC_READ_SINGLE_BLOCK:
213         case SD_APP_SEND_SCR:
214                 mmccmd |= SD_CMD_CT_2;
215                 break;
216         case MMC_READ_MULTIPLE_BLOCK:
217                 mmccmd |= SD_CMD_CT_4;
218                 break;
219         case MMC_WRITE_BLOCK:
220                 mmccmd |= SD_CMD_CT_1;
221                 break;
222
223         case MMC_WRITE_MULTIPLE_BLOCK:
224                 mmccmd |= SD_CMD_CT_3;
225                 break;
226         case MMC_STOP_TRANSMISSION:
227                 mmccmd |= SD_CMD_CT_7;
228                 break;
229         }
230
231         au_writel(cmd->arg, HOST_CMDARG(host));
232         au_sync();
233
234         if (wait)
235                 IRQ_OFF(host, SD_CONFIG_CR);
236
237         au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
238         au_sync();
239
240         /* Wait for the command to go on the line */
241
242         while(1) {
243                 if (!(au_readl(HOST_CMD(host)) & SD_CMD_GO))
244                         break;
245         }
246
247         /* Wait for the command to come back */
248
249         if (wait) {
250                 u32 status = au_readl(HOST_STATUS(host));
251
252                 while(!(status & SD_STATUS_CR))
253                         status = au_readl(HOST_STATUS(host));
254
255                 /* Clear the CR status */
256                 au_writel(SD_STATUS_CR, HOST_STATUS(host));
257
258                 IRQ_ON(host, SD_CONFIG_CR);
259         }
260
261         return MMC_ERR_NONE;
262 }
263
264 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
265 {
266
267         struct mmc_request *mrq = host->mrq;
268         struct mmc_data *data;
269         u32 crc;
270
271         WARN_ON(host->status != HOST_S_DATA && host->status != HOST_S_STOP);
272
273         if (host->mrq == NULL)
274                 return;
275
276         data = mrq->cmd->data;
277
278         if (status == 0)
279                 status = au_readl(HOST_STATUS(host));
280
281         /* The transaction is really over when the SD_STATUS_DB bit is clear */
282
283         while((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
284                 status = au_readl(HOST_STATUS(host));
285
286         data->error = MMC_ERR_NONE;
287         dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
288
289         /* Process any errors */
290
291         crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
292         if (host->flags & HOST_F_XMIT)
293                 crc |= ((status & 0x07) == 0x02) ? 0 : 1;
294
295         if (crc)
296                 data->error = MMC_ERR_BADCRC;
297
298         /* Clear the CRC bits */
299         au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
300
301         data->bytes_xfered = 0;
302
303         if (data->error == MMC_ERR_NONE) {
304                 if (host->flags & HOST_F_DMA) {
305                         u32 chan = DMA_CHANNEL(host);
306
307                         chan_tab_t *c = *((chan_tab_t **) chan);
308                         au1x_dma_chan_t *cp = c->chan_ptr;
309                         data->bytes_xfered = cp->ddma_bytecnt;
310                 }
311                 else
312                         data->bytes_xfered =
313                                 (data->blocks * data->blksz) -
314                                 host->pio.len;
315         }
316
317         au1xmmc_finish_request(host);
318 }
319
320 static void au1xmmc_tasklet_data(unsigned long param)
321 {
322         struct au1xmmc_host *host = (struct au1xmmc_host *) param;
323
324         u32 status = au_readl(HOST_STATUS(host));
325         au1xmmc_data_complete(host, status);
326 }
327
328 #define AU1XMMC_MAX_TRANSFER 8
329
330 static void au1xmmc_send_pio(struct au1xmmc_host *host)
331 {
332
333         struct mmc_data *data = 0;
334         int sg_len, max, count = 0;
335         unsigned char *sg_ptr;
336         u32 status = 0;
337         struct scatterlist *sg;
338
339         data = host->mrq->data;
340
341         if (!(host->flags & HOST_F_XMIT))
342                 return;
343
344         /* This is the pointer to the data buffer */
345         sg = &data->sg[host->pio.index];
346         sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
347
348         /* This is the space left inside the buffer */
349         sg_len = data->sg[host->pio.index].length - host->pio.offset;
350
351         /* Check to if we need less then the size of the sg_buffer */
352
353         max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
354         if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER;
355
356         for(count = 0; count < max; count++ ) {
357                 unsigned char val;
358
359                 status = au_readl(HOST_STATUS(host));
360
361                 if (!(status & SD_STATUS_TH))
362                         break;
363
364                 val = *sg_ptr++;
365
366                 au_writel((unsigned long) val, HOST_TXPORT(host));
367                 au_sync();
368         }
369
370         host->pio.len -= count;
371         host->pio.offset += count;
372
373         if (count == sg_len) {
374                 host->pio.index++;
375                 host->pio.offset = 0;
376         }
377
378         if (host->pio.len == 0) {
379                 IRQ_OFF(host, SD_CONFIG_TH);
380
381                 if (host->flags & HOST_F_STOP)
382                         SEND_STOP(host);
383
384                 tasklet_schedule(&host->data_task);
385         }
386 }
387
388 static void au1xmmc_receive_pio(struct au1xmmc_host *host)
389 {
390
391         struct mmc_data *data = 0;
392         int sg_len = 0, max = 0, count = 0;
393         unsigned char *sg_ptr = 0;
394         u32 status = 0;
395         struct scatterlist *sg;
396
397         data = host->mrq->data;
398
399         if (!(host->flags & HOST_F_RECV))
400                 return;
401
402         max = host->pio.len;
403
404         if (host->pio.index < host->dma.len) {
405                 sg = &data->sg[host->pio.index];
406                 sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
407
408                 /* This is the space left inside the buffer */
409                 sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
410
411                 /* Check to if we need less then the size of the sg_buffer */
412                 if (sg_len < max) max = sg_len;
413         }
414
415         if (max > AU1XMMC_MAX_TRANSFER)
416                 max = AU1XMMC_MAX_TRANSFER;
417
418         for(count = 0; count < max; count++ ) {
419                 u32 val;
420                 status = au_readl(HOST_STATUS(host));
421
422                 if (!(status & SD_STATUS_NE))
423                         break;
424
425                 if (status & SD_STATUS_RC) {
426                         DBG("RX CRC Error [%d + %d].\n", host->id,
427                                         host->pio.len, count);
428                         break;
429                 }
430
431                 if (status & SD_STATUS_RO) {
432                         DBG("RX Overrun [%d + %d]\n", host->id,
433                                         host->pio.len, count);
434                         break;
435                 }
436                 else if (status & SD_STATUS_RU) {
437                         DBG("RX Underrun [%d + %d]\n", host->id,
438                                         host->pio.len,  count);
439                         break;
440                 }
441
442                 val = au_readl(HOST_RXPORT(host));
443
444                 if (sg_ptr)
445                         *sg_ptr++ = (unsigned char) (val & 0xFF);
446         }
447
448         host->pio.len -= count;
449         host->pio.offset += count;
450
451         if (sg_len && count == sg_len) {
452                 host->pio.index++;
453                 host->pio.offset = 0;
454         }
455
456         if (host->pio.len == 0) {
457                 //IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF);
458                 IRQ_OFF(host, SD_CONFIG_NE);
459
460                 if (host->flags & HOST_F_STOP)
461                         SEND_STOP(host);
462
463                 tasklet_schedule(&host->data_task);
464         }
465 }
466
467 /* static void au1xmmc_cmd_complete
468    This is called when a command has been completed - grab the response
469    and check for errors.  Then start the data transfer if it is indicated.
470 */
471
472 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
473 {
474
475         struct mmc_request *mrq = host->mrq;
476         struct mmc_command *cmd;
477         int trans;
478
479         if (!host->mrq)
480                 return;
481
482         cmd = mrq->cmd;
483         cmd->error = MMC_ERR_NONE;
484
485         if (cmd->flags & MMC_RSP_PRESENT) {
486                 if (cmd->flags & MMC_RSP_136) {
487                         u32 r[4];
488                         int i;
489
490                         r[0] = au_readl(host->iobase + SD_RESP3);
491                         r[1] = au_readl(host->iobase + SD_RESP2);
492                         r[2] = au_readl(host->iobase + SD_RESP1);
493                         r[3] = au_readl(host->iobase + SD_RESP0);
494
495                         /* The CRC is omitted from the response, so really
496                          * we only got 120 bytes, but the engine expects
497                          * 128 bits, so we have to shift things up
498                          */
499
500                         for(i = 0; i < 4; i++) {
501                                 cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
502                                 if (i != 3)
503                                         cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
504                         }
505                 } else {
506                         /* Techincally, we should be getting all 48 bits of
507                          * the response (SD_RESP1 + SD_RESP2), but because
508                          * our response omits the CRC, our data ends up
509                          * being shifted 8 bits to the right.  In this case,
510                          * that means that the OSR data starts at bit 31,
511                          * so we can just read RESP0 and return that
512                          */
513                         cmd->resp[0] = au_readl(host->iobase + SD_RESP0);
514                 }
515         }
516
517         /* Figure out errors */
518
519         if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
520                 cmd->error = MMC_ERR_BADCRC;
521
522         trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
523
524         if (!trans || cmd->error != MMC_ERR_NONE) {
525
526                 IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA|SD_CONFIG_RF);
527                 tasklet_schedule(&host->finish_task);
528                 return;
529         }
530
531         host->status = HOST_S_DATA;
532
533         if (host->flags & HOST_F_DMA) {
534                 u32 channel = DMA_CHANNEL(host);
535
536                 /* Start the DMA as soon as the buffer gets something in it */
537
538                 if (host->flags & HOST_F_RECV) {
539                         u32 mask = SD_STATUS_DB | SD_STATUS_NE;
540
541                         while((status & mask) != mask)
542                                 status = au_readl(HOST_STATUS(host));
543                 }
544
545                 au1xxx_dbdma_start(channel);
546         }
547 }
548
549 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
550 {
551
552         unsigned int pbus = get_au1x00_speed();
553         unsigned int divisor;
554         u32 config;
555
556         /* From databook:
557            divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1
558         */
559
560         pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2);
561         pbus /= 2;
562
563         divisor = ((pbus / rate) / 2) - 1;
564
565         config = au_readl(HOST_CONFIG(host));
566
567         config &= ~(SD_CONFIG_DIV);
568         config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
569
570         au_writel(config, HOST_CONFIG(host));
571         au_sync();
572 }
573
574 static int
575 au1xmmc_prepare_data(struct au1xmmc_host *host, struct mmc_data *data)
576 {
577
578         int datalen = data->blocks * data->blksz;
579
580         if (dma != 0)
581                 host->flags |= HOST_F_DMA;
582
583         if (data->flags & MMC_DATA_READ)
584                 host->flags |= HOST_F_RECV;
585         else
586                 host->flags |= HOST_F_XMIT;
587
588         if (host->mrq->stop)
589                 host->flags |= HOST_F_STOP;
590
591         host->dma.dir = DMA_BIDIRECTIONAL;
592
593         host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
594                                    data->sg_len, host->dma.dir);
595
596         if (host->dma.len == 0)
597                 return MMC_ERR_TIMEOUT;
598
599         au_writel(data->blksz - 1, HOST_BLKSIZE(host));
600
601         if (host->flags & HOST_F_DMA) {
602                 int i;
603                 u32 channel = DMA_CHANNEL(host);
604
605                 au1xxx_dbdma_stop(channel);
606
607                 for(i = 0; i < host->dma.len; i++) {
608                         u32 ret = 0, flags = DDMA_FLAGS_NOIE;
609                         struct scatterlist *sg = &data->sg[i];
610                         int sg_len = sg->length;
611
612                         int len = (datalen > sg_len) ? sg_len : datalen;
613
614                         if (i == host->dma.len - 1)
615                                 flags = DDMA_FLAGS_IE;
616
617                         if (host->flags & HOST_F_XMIT){
618                                 ret = au1xxx_dbdma_put_source_flags(channel,
619                                         (void *) (page_address(sg->page) +
620                                                   sg->offset),
621                                         len, flags);
622                         }
623                         else {
624                                 ret = au1xxx_dbdma_put_dest_flags(channel,
625                                         (void *) (page_address(sg->page) +
626                                                   sg->offset),
627                                         len, flags);
628                         }
629
630                         if (!ret)
631                                 goto dataerr;
632
633                         datalen -= len;
634                 }
635         }
636         else {
637                 host->pio.index = 0;
638                 host->pio.offset = 0;
639                 host->pio.len = datalen;
640
641                 if (host->flags & HOST_F_XMIT)
642                         IRQ_ON(host, SD_CONFIG_TH);
643                 else
644                         IRQ_ON(host, SD_CONFIG_NE);
645                         //IRQ_ON(host, SD_CONFIG_RA|SD_CONFIG_RF);
646         }
647
648         return MMC_ERR_NONE;
649
650  dataerr:
651         dma_unmap_sg(mmc_dev(host->mmc),data->sg,data->sg_len,host->dma.dir);
652         return MMC_ERR_TIMEOUT;
653 }
654
655 /* static void au1xmmc_request
656    This actually starts a command or data transaction
657 */
658
659 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
660 {
661
662         struct au1xmmc_host *host = mmc_priv(mmc);
663         int ret = MMC_ERR_NONE;
664
665         WARN_ON(irqs_disabled());
666         WARN_ON(host->status != HOST_S_IDLE);
667
668         host->mrq = mrq;
669         host->status = HOST_S_CMD;
670
671         bcsr->disk_leds &= ~(1 << 8);
672
673         if (mrq->data) {
674                 FLUSH_FIFO(host);
675                 ret = au1xmmc_prepare_data(host, mrq->data);
676         }
677
678         if (ret == MMC_ERR_NONE)
679                 ret = au1xmmc_send_command(host, 0, mrq->cmd);
680
681         if (ret != MMC_ERR_NONE) {
682                 mrq->cmd->error = ret;
683                 au1xmmc_finish_request(host);
684         }
685 }
686
687 static void au1xmmc_reset_controller(struct au1xmmc_host *host)
688 {
689
690         /* Apply the clock */
691         au_writel(SD_ENABLE_CE, HOST_ENABLE(host));
692         au_sync_delay(1);
693
694         au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
695         au_sync_delay(5);
696
697         au_writel(~0, HOST_STATUS(host));
698         au_sync();
699
700         au_writel(0, HOST_BLKSIZE(host));
701         au_writel(0x001fffff, HOST_TIMEOUT(host));
702         au_sync();
703
704         au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
705         au_sync();
706
707         au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
708         au_sync_delay(1);
709
710         au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
711         au_sync();
712
713         /* Configure interrupts */
714         au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
715         au_sync();
716 }
717
718
719 static void au1xmmc_set_ios(struct mmc_host* mmc, struct mmc_ios* ios)
720 {
721         struct au1xmmc_host *host = mmc_priv(mmc);
722
723         if (ios->power_mode == MMC_POWER_OFF)
724                 au1xmmc_set_power(host, 0);
725         else if (ios->power_mode == MMC_POWER_ON) {
726                 au1xmmc_set_power(host, 1);
727         }
728
729         if (ios->clock && ios->clock != host->clock) {
730                 au1xmmc_set_clock(host, ios->clock);
731                 host->clock = ios->clock;
732         }
733 }
734
735 static void au1xmmc_dma_callback(int irq, void *dev_id, struct pt_regs *regs)
736 {
737         struct au1xmmc_host *host = (struct au1xmmc_host *) dev_id;
738
739         /* Avoid spurious interrupts */
740
741         if (!host->mrq)
742                 return;
743
744         if (host->flags & HOST_F_STOP)
745                 SEND_STOP(host);
746
747         tasklet_schedule(&host->data_task);
748 }
749
750 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
751 #define STATUS_DATA_IN  (SD_STATUS_NE)
752 #define STATUS_DATA_OUT (SD_STATUS_TH)
753
754 static irqreturn_t au1xmmc_irq(int irq, void *dev_id, struct pt_regs *regs)
755 {
756
757         u32 status;
758         int i, ret = 0;
759
760         disable_irq(AU1100_SD_IRQ);
761
762         for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
763                 struct au1xmmc_host * host = au1xmmc_hosts[i];
764                 u32 handled = 1;
765
766                 status = au_readl(HOST_STATUS(host));
767
768                 if (host->mrq && (status & STATUS_TIMEOUT)) {
769                         if (status & SD_STATUS_RAT)
770                                 host->mrq->cmd->error = MMC_ERR_TIMEOUT;
771
772                         else if (status & SD_STATUS_DT)
773                                 host->mrq->data->error = MMC_ERR_TIMEOUT;
774
775                         /* In PIO mode, interrupts might still be enabled */
776                         IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
777
778                         //IRQ_OFF(host, SD_CONFIG_TH|SD_CONFIG_RA|SD_CONFIG_RF);
779                         tasklet_schedule(&host->finish_task);
780                 }
781 #if 0
782                 else if (status & SD_STATUS_DD) {
783
784                         /* Sometimes we get a DD before a NE in PIO mode */
785
786                         if (!(host->flags & HOST_F_DMA) &&
787                                         (status & SD_STATUS_NE))
788                                 au1xmmc_receive_pio(host);
789                         else {
790                                 au1xmmc_data_complete(host, status);
791                                 //tasklet_schedule(&host->data_task);
792                         }
793                 }
794 #endif
795                 else if (status & (SD_STATUS_CR)) {
796                         if (host->status == HOST_S_CMD)
797                                 au1xmmc_cmd_complete(host,status);
798                 }
799                 else if (!(host->flags & HOST_F_DMA)) {
800                         if ((host->flags & HOST_F_XMIT) &&
801                             (status & STATUS_DATA_OUT))
802                                 au1xmmc_send_pio(host);
803                         else if ((host->flags & HOST_F_RECV) &&
804                             (status & STATUS_DATA_IN))
805                                 au1xmmc_receive_pio(host);
806                 }
807                 else if (status & 0x203FBC70) {
808                         DBG("Unhandled status %8.8x\n", host->id, status);
809                         handled = 0;
810                 }
811
812                 au_writel(status, HOST_STATUS(host));
813                 au_sync();
814
815                 ret |= handled;
816         }
817
818         enable_irq(AU1100_SD_IRQ);
819         return ret;
820 }
821
822 static void au1xmmc_poll_event(unsigned long arg)
823 {
824         struct au1xmmc_host *host = (struct au1xmmc_host *) arg;
825
826         int card = au1xmmc_card_inserted(host);
827         int controller = (host->flags & HOST_F_ACTIVE) ? 1 : 0;
828
829         if (card != controller) {
830                 host->flags &= ~HOST_F_ACTIVE;
831                 if (card) host->flags |= HOST_F_ACTIVE;
832                 mmc_detect_change(host->mmc, 0);
833         }
834
835         if (host->mrq != NULL) {
836                 u32 status = au_readl(HOST_STATUS(host));
837                 DBG("PENDING - %8.8x\n", host->id, status);
838         }
839
840         mod_timer(&host->timer, jiffies + AU1XMMC_DETECT_TIMEOUT);
841 }
842
843 static dbdev_tab_t au1xmmc_mem_dbdev =
844 {
845         DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 8, 0x00000000, 0, 0
846 };
847
848 static void au1xmmc_init_dma(struct au1xmmc_host *host)
849 {
850
851         u32 rxchan, txchan;
852
853         int txid = au1xmmc_card_table[host->id].tx_devid;
854         int rxid = au1xmmc_card_table[host->id].rx_devid;
855
856         /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
857            of 8 bits.  And since devices are shared, we need to create
858            our own to avoid freaking out other devices
859         */
860
861         int memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
862
863         txchan = au1xxx_dbdma_chan_alloc(memid, txid,
864                                          au1xmmc_dma_callback, (void *) host);
865
866         rxchan = au1xxx_dbdma_chan_alloc(rxid, memid,
867                                          au1xmmc_dma_callback, (void *) host);
868
869         au1xxx_dbdma_set_devwidth(txchan, 8);
870         au1xxx_dbdma_set_devwidth(rxchan, 8);
871
872         au1xxx_dbdma_ring_alloc(txchan, AU1XMMC_DESCRIPTOR_COUNT);
873         au1xxx_dbdma_ring_alloc(rxchan, AU1XMMC_DESCRIPTOR_COUNT);
874
875         host->tx_chan = txchan;
876         host->rx_chan = rxchan;
877 }
878
879 struct mmc_host_ops au1xmmc_ops = {
880         .request        = au1xmmc_request,
881         .set_ios        = au1xmmc_set_ios,
882 };
883
884 static int __devinit au1xmmc_probe(struct platform_device *pdev)
885 {
886
887         int i, ret = 0;
888
889         /* THe interrupt is shared among all controllers */
890         ret = request_irq(AU1100_SD_IRQ, au1xmmc_irq, SA_INTERRUPT, "MMC", 0);
891
892         if (ret) {
893                 printk(DRIVER_NAME "ERROR: Couldn't get int %d: %d\n",
894                                 AU1100_SD_IRQ, ret);
895                 return -ENXIO;
896         }
897
898         disable_irq(AU1100_SD_IRQ);
899
900         for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
901                 struct mmc_host *mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
902                 struct au1xmmc_host *host = 0;
903
904                 if (!mmc) {
905                         printk(DRIVER_NAME "ERROR: no mem for host %d\n", i);
906                         au1xmmc_hosts[i] = 0;
907                         continue;
908                 }
909
910                 mmc->ops = &au1xmmc_ops;
911
912                 mmc->f_min =   450000;
913                 mmc->f_max = 24000000;
914
915                 mmc->max_seg_size = AU1XMMC_DESCRIPTOR_SIZE;
916                 mmc->max_phys_segs = AU1XMMC_DESCRIPTOR_COUNT;
917
918                 mmc->ocr_avail = AU1XMMC_OCR;
919
920                 host = mmc_priv(mmc);
921                 host->mmc = mmc;
922
923                 host->id = i;
924                 host->iobase = au1xmmc_card_table[host->id].iobase;
925                 host->clock = 0;
926                 host->power_mode = MMC_POWER_OFF;
927
928                 host->flags = au1xmmc_card_inserted(host) ? HOST_F_ACTIVE : 0;
929                 host->status = HOST_S_IDLE;
930
931                 init_timer(&host->timer);
932
933                 host->timer.function = au1xmmc_poll_event;
934                 host->timer.data = (unsigned long) host;
935                 host->timer.expires = jiffies + AU1XMMC_DETECT_TIMEOUT;
936
937                 tasklet_init(&host->data_task, au1xmmc_tasklet_data,
938                                 (unsigned long) host);
939
940                 tasklet_init(&host->finish_task, au1xmmc_tasklet_finish,
941                                 (unsigned long) host);
942
943                 spin_lock_init(&host->lock);
944
945                 if (dma != 0)
946                         au1xmmc_init_dma(host);
947
948                 au1xmmc_reset_controller(host);
949
950                 mmc_add_host(mmc);
951                 au1xmmc_hosts[i] = host;
952
953                 add_timer(&host->timer);
954
955                 printk(KERN_INFO DRIVER_NAME ": MMC Controller %d set up at %8.8X (mode=%s)\n",
956                        host->id, host->iobase, dma ? "dma" : "pio");
957         }
958
959         enable_irq(AU1100_SD_IRQ);
960
961         return 0;
962 }
963
964 static int __devexit au1xmmc_remove(struct platform_device *pdev)
965 {
966
967         int i;
968
969         disable_irq(AU1100_SD_IRQ);
970
971         for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
972                 struct au1xmmc_host *host = au1xmmc_hosts[i];
973                 if (!host) continue;
974
975                 tasklet_kill(&host->data_task);
976                 tasklet_kill(&host->finish_task);
977
978                 del_timer_sync(&host->timer);
979                 au1xmmc_set_power(host, 0);
980
981                 mmc_remove_host(host->mmc);
982
983                 au1xxx_dbdma_chan_free(host->tx_chan);
984                 au1xxx_dbdma_chan_free(host->rx_chan);
985
986                 au_writel(0x0, HOST_ENABLE(host));
987                 au_sync();
988         }
989
990         free_irq(AU1100_SD_IRQ, 0);
991         return 0;
992 }
993
994 static struct platform_driver au1xmmc_driver = {
995         .probe         = au1xmmc_probe,
996         .remove        = au1xmmc_remove,
997         .suspend       = NULL,
998         .resume        = NULL,
999         .driver        = {
1000                 .name  = DRIVER_NAME,
1001         },
1002 };
1003
1004 static int __init au1xmmc_init(void)
1005 {
1006         return platform_driver_register(&au1xmmc_driver);
1007 }
1008
1009 static void __exit au1xmmc_exit(void)
1010 {
1011         platform_driver_unregister(&au1xmmc_driver);
1012 }
1013
1014 module_init(au1xmmc_init);
1015 module_exit(au1xmmc_exit);
1016
1017 #ifdef MODULE
1018 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1019 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1020 MODULE_LICENSE("GPL");
1021 #endif
1022