2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 #define WAIT_FOR_BBP(__dev, __reg) \
53 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 const unsigned int word, const u8 value)
62 mutex_lock(&rt2x00dev->csr_mutex);
65 * Wait until the BBP becomes available, afterwards we
66 * can safely write the new data into the register.
68 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
70 rt2x00_set_field32(®, BBPCSR_VALUE, value);
71 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
72 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
73 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1);
75 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
78 mutex_unlock(&rt2x00dev->csr_mutex);
81 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 const unsigned int word, u8 *value)
86 mutex_lock(&rt2x00dev->csr_mutex);
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
96 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
98 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
99 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
100 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0);
102 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104 WAIT_FOR_BBP(rt2x00dev, ®);
107 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 mutex_unlock(&rt2x00dev->csr_mutex);
112 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, const u32 value)
120 mutex_lock(&rt2x00dev->csr_mutex);
123 * Wait until the RF becomes available, afterwards we
124 * can safely write the new data into the register.
126 if (WAIT_FOR_RF(rt2x00dev, ®)) {
128 rt2x00_set_field32(®, RFCSR_VALUE, value);
129 rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20);
130 rt2x00_set_field32(®, RFCSR_IF_SELECT, 0);
131 rt2x00_set_field32(®, RFCSR_BUSY, 1);
133 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
134 rt2x00_rf_write(rt2x00dev, word, value);
137 mutex_unlock(&rt2x00dev->csr_mutex);
140 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
142 struct rt2x00_dev *rt2x00dev = eeprom->data;
145 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
147 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
148 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
149 eeprom->reg_data_clock =
150 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
151 eeprom->reg_chip_select =
152 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
155 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
157 struct rt2x00_dev *rt2x00dev = eeprom->data;
160 rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
161 rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
162 rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK,
163 !!eeprom->reg_data_clock);
164 rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT,
165 !!eeprom->reg_chip_select);
167 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
170 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
171 static const struct rt2x00debug rt2400pci_rt2x00debug = {
172 .owner = THIS_MODULE,
174 .read = rt2x00pci_register_read,
175 .write = rt2x00pci_register_write,
176 .flags = RT2X00DEBUGFS_OFFSET,
177 .word_base = CSR_REG_BASE,
178 .word_size = sizeof(u32),
179 .word_count = CSR_REG_SIZE / sizeof(u32),
182 .read = rt2x00_eeprom_read,
183 .write = rt2x00_eeprom_write,
184 .word_base = EEPROM_BASE,
185 .word_size = sizeof(u16),
186 .word_count = EEPROM_SIZE / sizeof(u16),
189 .read = rt2400pci_bbp_read,
190 .write = rt2400pci_bbp_write,
191 .word_base = BBP_BASE,
192 .word_size = sizeof(u8),
193 .word_count = BBP_SIZE / sizeof(u8),
196 .read = rt2x00_rf_read,
197 .write = rt2400pci_rf_write,
198 .word_base = RF_BASE,
199 .word_size = sizeof(u32),
200 .word_count = RF_SIZE / sizeof(u32),
203 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
205 #ifdef CONFIG_RT2X00_LIB_RFKILL
206 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
210 rt2x00pci_register_read(rt2x00dev, GPIOCSR, ®);
211 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
214 #define rt2400pci_rfkill_poll NULL
215 #endif /* CONFIG_RT2X00_LIB_RFKILL */
217 #ifdef CONFIG_RT2X00_LIB_LEDS
218 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
219 enum led_brightness brightness)
221 struct rt2x00_led *led =
222 container_of(led_cdev, struct rt2x00_led, led_dev);
223 unsigned int enabled = brightness != LED_OFF;
226 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, ®);
228 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
229 rt2x00_set_field32(®, LEDCSR_LINK, enabled);
230 else if (led->type == LED_TYPE_ACTIVITY)
231 rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled);
233 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
236 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
237 unsigned long *delay_on,
238 unsigned long *delay_off)
240 struct rt2x00_led *led =
241 container_of(led_cdev, struct rt2x00_led, led_dev);
244 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, ®);
245 rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on);
246 rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off);
247 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
252 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
253 struct rt2x00_led *led,
256 led->rt2x00dev = rt2x00dev;
258 led->led_dev.brightness_set = rt2400pci_brightness_set;
259 led->led_dev.blink_set = rt2400pci_blink_set;
260 led->flags = LED_INITIALIZED;
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
265 * Configuration handlers.
267 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
268 const unsigned int filter_flags)
273 * Start configuration steps.
274 * Note that the version error will always be dropped
275 * since there is no filter for it at this time.
277 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
278 rt2x00_set_field32(®, RXCSR0_DROP_CRC,
279 !(filter_flags & FIF_FCSFAIL));
280 rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL,
281 !(filter_flags & FIF_PLCPFAIL));
282 rt2x00_set_field32(®, RXCSR0_DROP_CONTROL,
283 !(filter_flags & FIF_CONTROL));
284 rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME,
285 !(filter_flags & FIF_PROMISC_IN_BSS));
286 rt2x00_set_field32(®, RXCSR0_DROP_TODS,
287 !(filter_flags & FIF_PROMISC_IN_BSS) &&
288 !rt2x00dev->intf_ap_count);
289 rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1);
290 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
293 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
294 struct rt2x00_intf *intf,
295 struct rt2x00intf_conf *conf,
296 const unsigned int flags)
298 unsigned int bcn_preload;
301 if (flags & CONFIG_UPDATE_TYPE) {
303 * Enable beacon config
305 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
306 rt2x00pci_register_read(rt2x00dev, BCNCSR1, ®);
307 rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload);
308 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
311 * Enable synchronisation.
313 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
314 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
315 rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync);
316 rt2x00_set_field32(®, CSR14_TBCN, 1);
317 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
320 if (flags & CONFIG_UPDATE_MAC)
321 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
322 conf->mac, sizeof(conf->mac));
324 if (flags & CONFIG_UPDATE_BSSID)
325 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
326 conf->bssid, sizeof(conf->bssid));
329 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
330 struct rt2x00lib_erp *erp)
336 * When short preamble is enabled, we should set bit 0x08
338 preamble_mask = erp->short_preamble << 3;
340 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
341 rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT,
343 rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME,
344 erp->ack_consume_time);
345 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
347 rt2x00pci_register_read(rt2x00dev, ARCSR2, ®);
348 rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00);
349 rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04);
350 rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
351 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
353 rt2x00pci_register_read(rt2x00dev, ARCSR3, ®);
354 rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask);
355 rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04);
356 rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
357 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
359 rt2x00pci_register_read(rt2x00dev, ARCSR4, ®);
360 rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask);
361 rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04);
362 rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
363 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
365 rt2x00pci_register_read(rt2x00dev, ARCSR5, ®);
366 rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask);
367 rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84);
368 rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
369 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
371 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
373 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
374 rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time);
375 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
377 rt2x00pci_register_read(rt2x00dev, CSR18, ®);
378 rt2x00_set_field32(®, CSR18_SIFS, erp->sifs);
379 rt2x00_set_field32(®, CSR18_PIFS, erp->pifs);
380 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
382 rt2x00pci_register_read(rt2x00dev, CSR19, ®);
383 rt2x00_set_field32(®, CSR19_DIFS, erp->difs);
384 rt2x00_set_field32(®, CSR19_EIFS, erp->eifs);
385 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
388 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
389 struct antenna_setup *ant)
395 * We should never come here because rt2x00lib is supposed
396 * to catch this and send us the correct antenna explicitely.
398 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
399 ant->tx == ANTENNA_SW_DIVERSITY);
401 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
402 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
405 * Configure the TX antenna.
408 case ANTENNA_HW_DIVERSITY:
409 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
412 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
416 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
421 * Configure the RX antenna.
424 case ANTENNA_HW_DIVERSITY:
425 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
428 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
432 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
436 rt2400pci_bbp_write(rt2x00dev, 4, r4);
437 rt2400pci_bbp_write(rt2x00dev, 1, r1);
440 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
441 struct rf_channel *rf)
444 * Switch on tuning bits.
446 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
447 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
449 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
450 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
451 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
454 * RF2420 chipset don't need any additional actions.
456 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
460 * For the RT2421 chipsets we need to write an invalid
461 * reference clock rate to activate auto_tune.
462 * After that we set the value back to the correct channel.
464 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
465 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
466 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
470 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
471 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
472 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
477 * Switch off tuning bits.
479 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
480 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
482 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
483 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
486 * Clear false CRC during channel switch.
488 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
491 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
493 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
496 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
497 struct rt2x00lib_conf *libconf)
501 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
502 rt2x00_set_field32(®, CSR11_LONG_RETRY,
503 libconf->conf->long_frame_max_tx_count);
504 rt2x00_set_field32(®, CSR11_SHORT_RETRY,
505 libconf->conf->short_frame_max_tx_count);
506 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
509 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
510 struct rt2x00lib_conf *libconf)
514 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
515 rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
516 rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1);
517 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
519 rt2x00pci_register_read(rt2x00dev, CSR12, ®);
520 rt2x00_set_field32(®, CSR12_BEACON_INTERVAL,
521 libconf->conf->beacon_int * 16);
522 rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION,
523 libconf->conf->beacon_int * 16);
524 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
527 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
528 struct rt2x00lib_conf *libconf)
530 enum dev_state state =
531 (libconf->conf->flags & IEEE80211_CONF_PS) ?
532 STATE_SLEEP : STATE_AWAKE;
535 if (state == STATE_SLEEP) {
536 rt2x00pci_register_read(rt2x00dev, CSR20, ®);
537 rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN,
538 (libconf->conf->beacon_int - 20) * 16);
539 rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP,
540 libconf->conf->listen_interval - 1);
542 /* We must first disable autowake before it can be enabled */
543 rt2x00_set_field32(®, CSR20_AUTOWAKE, 0);
544 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
546 rt2x00_set_field32(®, CSR20_AUTOWAKE, 1);
547 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
550 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
553 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
554 struct rt2x00lib_conf *libconf,
555 const unsigned int flags)
557 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
558 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
559 if (flags & IEEE80211_CONF_CHANGE_POWER)
560 rt2400pci_config_txpower(rt2x00dev,
561 libconf->conf->power_level);
562 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
563 rt2400pci_config_retry_limit(rt2x00dev, libconf);
564 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
565 rt2400pci_config_duration(rt2x00dev, libconf);
566 if (flags & IEEE80211_CONF_CHANGE_PS)
567 rt2400pci_config_ps(rt2x00dev, libconf);
570 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
571 const int cw_min, const int cw_max)
575 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
576 rt2x00_set_field32(®, CSR11_CWMIN, cw_min);
577 rt2x00_set_field32(®, CSR11_CWMAX, cw_max);
578 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
584 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
585 struct link_qual *qual)
591 * Update FCS error count from register.
593 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
594 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
597 * Update False CCA count from register.
599 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
600 qual->false_cca = bbp;
603 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
605 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
606 rt2x00dev->link.vgc_level = 0x08;
609 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
614 * The link tuner should not run longer then 60 seconds,
615 * and should run once every 2 seconds.
617 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
621 * Base r13 link tuning on the false cca count.
623 rt2400pci_bbp_read(rt2x00dev, 13, ®);
625 if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
626 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
627 rt2x00dev->link.vgc_level = reg;
628 } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
629 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
630 rt2x00dev->link.vgc_level = reg;
635 * Initialization functions.
637 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
639 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
642 if (entry->queue->qid == QID_RX) {
643 rt2x00_desc_read(entry_priv->desc, 0, &word);
645 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
647 rt2x00_desc_read(entry_priv->desc, 0, &word);
649 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
650 rt2x00_get_field32(word, TXD_W0_VALID));
654 static void rt2400pci_clear_entry(struct queue_entry *entry)
656 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
657 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
660 if (entry->queue->qid == QID_RX) {
661 rt2x00_desc_read(entry_priv->desc, 2, &word);
662 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
663 rt2x00_desc_write(entry_priv->desc, 2, word);
665 rt2x00_desc_read(entry_priv->desc, 1, &word);
666 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
667 rt2x00_desc_write(entry_priv->desc, 1, word);
669 rt2x00_desc_read(entry_priv->desc, 0, &word);
670 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
671 rt2x00_desc_write(entry_priv->desc, 0, word);
673 rt2x00_desc_read(entry_priv->desc, 0, &word);
674 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
675 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
676 rt2x00_desc_write(entry_priv->desc, 0, word);
680 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
682 struct queue_entry_priv_pci *entry_priv;
686 * Initialize registers.
688 rt2x00pci_register_read(rt2x00dev, TXCSR2, ®);
689 rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
690 rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
691 rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
692 rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
693 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
695 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
696 rt2x00pci_register_read(rt2x00dev, TXCSR3, ®);
697 rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER,
698 entry_priv->desc_dma);
699 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
701 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
702 rt2x00pci_register_read(rt2x00dev, TXCSR5, ®);
703 rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER,
704 entry_priv->desc_dma);
705 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
707 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
708 rt2x00pci_register_read(rt2x00dev, TXCSR4, ®);
709 rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER,
710 entry_priv->desc_dma);
711 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
713 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
714 rt2x00pci_register_read(rt2x00dev, TXCSR6, ®);
715 rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER,
716 entry_priv->desc_dma);
717 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
719 rt2x00pci_register_read(rt2x00dev, RXCSR1, ®);
720 rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
721 rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
722 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
724 entry_priv = rt2x00dev->rx->entries[0].priv_data;
725 rt2x00pci_register_read(rt2x00dev, RXCSR2, ®);
726 rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER,
727 entry_priv->desc_dma);
728 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
733 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
737 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
738 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
739 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
740 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
742 rt2x00pci_register_read(rt2x00dev, TIMECSR, ®);
743 rt2x00_set_field32(®, TIMECSR_US_COUNT, 33);
744 rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63);
745 rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0);
746 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
748 rt2x00pci_register_read(rt2x00dev, CSR9, ®);
749 rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT,
750 (rt2x00dev->rx->data_size / 128));
751 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
753 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
754 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
755 rt2x00_set_field32(®, CSR14_TSF_SYNC, 0);
756 rt2x00_set_field32(®, CSR14_TBCN, 0);
757 rt2x00_set_field32(®, CSR14_TCFP, 0);
758 rt2x00_set_field32(®, CSR14_TATIMW, 0);
759 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
760 rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0);
761 rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0);
762 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
764 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
766 rt2x00pci_register_read(rt2x00dev, ARCSR0, ®);
767 rt2x00_set_field32(®, ARCSR0_AR_BBP_DATA0, 133);
768 rt2x00_set_field32(®, ARCSR0_AR_BBP_ID0, 134);
769 rt2x00_set_field32(®, ARCSR0_AR_BBP_DATA1, 136);
770 rt2x00_set_field32(®, ARCSR0_AR_BBP_ID1, 135);
771 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
773 rt2x00pci_register_read(rt2x00dev, RXCSR3, ®);
774 rt2x00_set_field32(®, RXCSR3_BBP_ID0, 3); /* Tx power.*/
775 rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1);
776 rt2x00_set_field32(®, RXCSR3_BBP_ID1, 32); /* Signal */
777 rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1);
778 rt2x00_set_field32(®, RXCSR3_BBP_ID2, 36); /* Rssi */
779 rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1);
780 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
782 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
784 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
787 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
788 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
790 rt2x00pci_register_read(rt2x00dev, MACCSR2, ®);
791 rt2x00_set_field32(®, MACCSR2_DELAY, 64);
792 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
794 rt2x00pci_register_read(rt2x00dev, RALINKCSR, ®);
795 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17);
796 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 154);
797 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0);
798 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 154);
799 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
801 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
802 rt2x00_set_field32(®, CSR1_SOFT_RESET, 1);
803 rt2x00_set_field32(®, CSR1_BBP_RESET, 0);
804 rt2x00_set_field32(®, CSR1_HOST_READY, 0);
805 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
807 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
808 rt2x00_set_field32(®, CSR1_SOFT_RESET, 0);
809 rt2x00_set_field32(®, CSR1_HOST_READY, 1);
810 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
813 * We must clear the FCS and FIFO error count.
814 * These registers are cleared on read,
815 * so we may pass a useless variable to store the value.
817 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
818 rt2x00pci_register_read(rt2x00dev, CNT4, ®);
823 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
828 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
829 rt2400pci_bbp_read(rt2x00dev, 0, &value);
830 if ((value != 0xff) && (value != 0x00))
832 udelay(REGISTER_BUSY_DELAY);
835 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
839 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
846 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
849 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
850 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
851 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
852 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
853 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
854 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
855 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
856 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
857 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
858 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
859 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
860 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
861 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
862 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
864 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
865 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
867 if (eeprom != 0xffff && eeprom != 0x0000) {
868 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
869 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
870 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
878 * Device state switch handlers.
880 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
881 enum dev_state state)
885 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
886 rt2x00_set_field32(®, RXCSR0_DISABLE_RX,
887 (state == STATE_RADIO_RX_OFF) ||
888 (state == STATE_RADIO_RX_OFF_LINK));
889 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
892 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
893 enum dev_state state)
895 int mask = (state == STATE_RADIO_IRQ_OFF);
899 * When interrupts are being enabled, the interrupt registers
900 * should clear the register to assure a clean state.
902 if (state == STATE_RADIO_IRQ_ON) {
903 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
904 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
908 * Only toggle the interrupts bits we are going to use.
909 * Non-checked interrupt bits are disabled by default.
911 rt2x00pci_register_read(rt2x00dev, CSR8, ®);
912 rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask);
913 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask);
914 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask);
915 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask);
916 rt2x00_set_field32(®, CSR8_RXDONE, mask);
917 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
920 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
923 * Initialize all registers.
925 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
926 rt2400pci_init_registers(rt2x00dev) ||
927 rt2400pci_init_bbp(rt2x00dev)))
933 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
937 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
940 * Disable synchronisation.
942 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
947 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
948 rt2x00_set_field32(®, TXCSR0_ABORT, 1);
949 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
952 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
953 enum dev_state state)
961 put_to_sleep = (state != STATE_AWAKE);
963 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
964 rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1);
965 rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state);
966 rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state);
967 rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
968 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
971 * Device is not guaranteed to be in the requested state yet.
972 * We must wait until the register indicates that the
973 * device has entered the correct state.
975 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
976 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
977 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
978 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
979 if (bbp_state == state && rf_state == state)
987 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
988 enum dev_state state)
994 retval = rt2400pci_enable_radio(rt2x00dev);
996 case STATE_RADIO_OFF:
997 rt2400pci_disable_radio(rt2x00dev);
999 case STATE_RADIO_RX_ON:
1000 case STATE_RADIO_RX_ON_LINK:
1001 case STATE_RADIO_RX_OFF:
1002 case STATE_RADIO_RX_OFF_LINK:
1003 rt2400pci_toggle_rx(rt2x00dev, state);
1005 case STATE_RADIO_IRQ_ON:
1006 case STATE_RADIO_IRQ_OFF:
1007 rt2400pci_toggle_irq(rt2x00dev, state);
1009 case STATE_DEEP_SLEEP:
1013 retval = rt2400pci_set_state(rt2x00dev, state);
1020 if (unlikely(retval))
1021 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1028 * TX descriptor initialization
1030 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1031 struct sk_buff *skb,
1032 struct txentry_desc *txdesc)
1034 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1035 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1036 __le32 *txd = skbdesc->desc;
1040 * Start writing the descriptor words.
1042 rt2x00_desc_read(entry_priv->desc, 1, &word);
1043 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1044 rt2x00_desc_write(entry_priv->desc, 1, word);
1046 rt2x00_desc_read(txd, 2, &word);
1047 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
1048 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1049 rt2x00_desc_write(txd, 2, word);
1051 rt2x00_desc_read(txd, 3, &word);
1052 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1053 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1054 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1055 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1056 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1057 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1058 rt2x00_desc_write(txd, 3, word);
1060 rt2x00_desc_read(txd, 4, &word);
1061 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1062 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1063 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1064 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1065 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1066 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1067 rt2x00_desc_write(txd, 4, word);
1069 rt2x00_desc_read(txd, 0, &word);
1070 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1071 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1072 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1073 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1074 rt2x00_set_field32(&word, TXD_W0_ACK,
1075 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1076 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1077 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1078 rt2x00_set_field32(&word, TXD_W0_RTS,
1079 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1080 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1081 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1082 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1083 rt2x00_desc_write(txd, 0, word);
1087 * TX data initialization
1089 static void rt2400pci_write_beacon(struct queue_entry *entry)
1091 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1092 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1093 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1098 * Disable beaconing while we are reloading the beacon data,
1099 * otherwise we might be sending out invalid data.
1101 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
1102 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
1103 rt2x00_set_field32(®, CSR14_TBCN, 0);
1104 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
1105 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1108 * Replace rt2x00lib allocated descriptor with the
1109 * pointer to the _real_ hardware descriptor.
1110 * After that, map the beacon to DMA and update the
1113 memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1114 skbdesc->desc = entry_priv->desc;
1116 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1118 rt2x00_desc_read(entry_priv->desc, 1, &word);
1119 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1120 rt2x00_desc_write(entry_priv->desc, 1, word);
1123 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1124 const enum data_queue_qid queue)
1128 if (queue == QID_BEACON) {
1129 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
1130 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1131 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
1132 rt2x00_set_field32(®, CSR14_TBCN, 1);
1133 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
1134 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1139 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
1140 rt2x00_set_field32(®, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1141 rt2x00_set_field32(®, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1142 rt2x00_set_field32(®, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1143 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1147 * RX control handlers
1149 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1150 struct rxdone_entry_desc *rxdesc)
1152 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1153 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1162 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1163 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1164 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1165 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1167 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1168 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1169 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1170 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1173 * We only get the lower 32bits from the timestamp,
1174 * to get the full 64bits we must complement it with
1175 * the timestamp from get_tsf().
1176 * Note that when a wraparound of the lower 32bits
1177 * has occurred between the frame arrival and the get_tsf()
1178 * call, we must decrease the higher 32bits with 1 to get
1181 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1182 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1183 rx_high = upper_32_bits(tsf);
1185 if ((u32)tsf <= rx_low)
1189 * Obtain the status about this packet.
1190 * The signal is the PLCP value, and needs to be stripped
1191 * of the preamble bit (0x08).
1193 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1194 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1195 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1196 entry->queue->rt2x00dev->rssi_offset;
1197 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1199 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1200 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1201 rxdesc->dev_flags |= RXDONE_MY_BSS;
1205 * Interrupt functions.
1207 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1208 const enum data_queue_qid queue_idx)
1210 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1211 struct queue_entry_priv_pci *entry_priv;
1212 struct queue_entry *entry;
1213 struct txdone_entry_desc txdesc;
1216 while (!rt2x00queue_empty(queue)) {
1217 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1218 entry_priv = entry->priv_data;
1219 rt2x00_desc_read(entry_priv->desc, 0, &word);
1221 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1222 !rt2x00_get_field32(word, TXD_W0_VALID))
1226 * Obtain the status about this packet.
1229 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1230 case 0: /* Success */
1231 case 1: /* Success with retry */
1232 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1234 case 2: /* Failure, excessive retries */
1235 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1236 /* Don't break, this is a failed frame! */
1237 default: /* Failure */
1238 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1240 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1242 rt2x00lib_txdone(entry, &txdesc);
1246 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1248 struct rt2x00_dev *rt2x00dev = dev_instance;
1252 * Get the interrupt sources & saved to local variable.
1253 * Write register value back to clear pending interrupts.
1255 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
1256 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1261 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1265 * Handle interrupts, walk through all bits
1266 * and run the tasks, the bits are checked in order of
1271 * 1 - Beacon timer expired interrupt.
1273 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1274 rt2x00lib_beacondone(rt2x00dev);
1277 * 2 - Rx ring done interrupt.
1279 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1280 rt2x00pci_rxdone(rt2x00dev);
1283 * 3 - Atim ring transmit done interrupt.
1285 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1286 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1289 * 4 - Priority ring transmit done interrupt.
1291 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1292 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1295 * 5 - Tx ring transmit done interrupt.
1297 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1298 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1304 * Device probe functions.
1306 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1308 struct eeprom_93cx6 eeprom;
1313 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
1315 eeprom.data = rt2x00dev;
1316 eeprom.register_read = rt2400pci_eepromregister_read;
1317 eeprom.register_write = rt2400pci_eepromregister_write;
1318 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1319 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1320 eeprom.reg_data_in = 0;
1321 eeprom.reg_data_out = 0;
1322 eeprom.reg_data_clock = 0;
1323 eeprom.reg_chip_select = 0;
1325 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1326 EEPROM_SIZE / sizeof(u16));
1329 * Start validation of the data that has been read.
1331 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1332 if (!is_valid_ether_addr(mac)) {
1333 random_ether_addr(mac);
1334 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1337 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1338 if (word == 0xffff) {
1339 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1346 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1353 * Read EEPROM word for configuration.
1355 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1358 * Identify RF chipset.
1360 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1361 rt2x00pci_register_read(rt2x00dev, CSR0, ®);
1362 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1364 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1365 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1366 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1371 * Identify default antenna configuration.
1373 rt2x00dev->default_ant.tx =
1374 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1375 rt2x00dev->default_ant.rx =
1376 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1379 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1380 * I am not 100% sure about this, but the legacy drivers do not
1381 * indicate antenna swapping in software is required when
1382 * diversity is enabled.
1384 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1385 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1386 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1387 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1390 * Store led mode, for correct led behaviour.
1392 #ifdef CONFIG_RT2X00_LIB_LEDS
1393 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1395 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1396 if (value == LED_MODE_TXRX_ACTIVITY)
1397 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1399 #endif /* CONFIG_RT2X00_LIB_LEDS */
1402 * Detect if this device has an hardware controlled radio.
1404 #ifdef CONFIG_RT2X00_LIB_RFKILL
1405 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1406 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1407 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1410 * Check if the BBP tuning should be enabled.
1412 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1413 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1419 * RF value list for RF2420 & RF2421
1422 static const struct rf_channel rf_vals_b[] = {
1423 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1424 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1425 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1426 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1427 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1428 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1429 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1430 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1431 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1432 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1433 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1434 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1435 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1436 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1439 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1441 struct hw_mode_spec *spec = &rt2x00dev->spec;
1442 struct channel_info *info;
1447 * Initialize all hw fields.
1449 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1450 IEEE80211_HW_SIGNAL_DBM;
1451 rt2x00dev->hw->extra_tx_headroom = 0;
1453 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1454 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1455 rt2x00_eeprom_addr(rt2x00dev,
1456 EEPROM_MAC_ADDR_0));
1459 * Initialize hw_mode information.
1461 spec->supported_bands = SUPPORT_BAND_2GHZ;
1462 spec->supported_rates = SUPPORT_RATE_CCK;
1464 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1465 spec->channels = rf_vals_b;
1468 * Create channel information array
1470 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1474 spec->channels_info = info;
1476 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1477 for (i = 0; i < 14; i++)
1478 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1483 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1488 * Allocate eeprom data.
1490 retval = rt2400pci_validate_eeprom(rt2x00dev);
1494 retval = rt2400pci_init_eeprom(rt2x00dev);
1499 * Initialize hw specifications.
1501 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1506 * This device requires the atim queue and DMA-mapped skbs.
1508 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1509 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1512 * Set the rssi offset.
1514 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1520 * IEEE80211 stack callback functions.
1522 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1523 const struct ieee80211_tx_queue_params *params)
1525 struct rt2x00_dev *rt2x00dev = hw->priv;
1528 * We don't support variating cw_min and cw_max variables
1529 * per queue. So by default we only configure the TX queue,
1530 * and ignore all other configurations.
1535 if (rt2x00mac_conf_tx(hw, queue, params))
1539 * Write configuration to register.
1541 rt2400pci_config_cw(rt2x00dev,
1542 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1547 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1549 struct rt2x00_dev *rt2x00dev = hw->priv;
1553 rt2x00pci_register_read(rt2x00dev, CSR17, ®);
1554 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1555 rt2x00pci_register_read(rt2x00dev, CSR16, ®);
1556 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1561 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1563 struct rt2x00_dev *rt2x00dev = hw->priv;
1566 rt2x00pci_register_read(rt2x00dev, CSR15, ®);
1567 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1570 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1572 .start = rt2x00mac_start,
1573 .stop = rt2x00mac_stop,
1574 .add_interface = rt2x00mac_add_interface,
1575 .remove_interface = rt2x00mac_remove_interface,
1576 .config = rt2x00mac_config,
1577 .config_interface = rt2x00mac_config_interface,
1578 .configure_filter = rt2x00mac_configure_filter,
1579 .get_stats = rt2x00mac_get_stats,
1580 .bss_info_changed = rt2x00mac_bss_info_changed,
1581 .conf_tx = rt2400pci_conf_tx,
1582 .get_tx_stats = rt2x00mac_get_tx_stats,
1583 .get_tsf = rt2400pci_get_tsf,
1584 .tx_last_beacon = rt2400pci_tx_last_beacon,
1587 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1588 .irq_handler = rt2400pci_interrupt,
1589 .probe_hw = rt2400pci_probe_hw,
1590 .initialize = rt2x00pci_initialize,
1591 .uninitialize = rt2x00pci_uninitialize,
1592 .get_entry_state = rt2400pci_get_entry_state,
1593 .clear_entry = rt2400pci_clear_entry,
1594 .set_device_state = rt2400pci_set_device_state,
1595 .rfkill_poll = rt2400pci_rfkill_poll,
1596 .link_stats = rt2400pci_link_stats,
1597 .reset_tuner = rt2400pci_reset_tuner,
1598 .link_tuner = rt2400pci_link_tuner,
1599 .write_tx_desc = rt2400pci_write_tx_desc,
1600 .write_tx_data = rt2x00pci_write_tx_data,
1601 .write_beacon = rt2400pci_write_beacon,
1602 .kick_tx_queue = rt2400pci_kick_tx_queue,
1603 .fill_rxdone = rt2400pci_fill_rxdone,
1604 .config_filter = rt2400pci_config_filter,
1605 .config_intf = rt2400pci_config_intf,
1606 .config_erp = rt2400pci_config_erp,
1607 .config_ant = rt2400pci_config_ant,
1608 .config = rt2400pci_config,
1611 static const struct data_queue_desc rt2400pci_queue_rx = {
1612 .entry_num = RX_ENTRIES,
1613 .data_size = DATA_FRAME_SIZE,
1614 .desc_size = RXD_DESC_SIZE,
1615 .priv_size = sizeof(struct queue_entry_priv_pci),
1618 static const struct data_queue_desc rt2400pci_queue_tx = {
1619 .entry_num = TX_ENTRIES,
1620 .data_size = DATA_FRAME_SIZE,
1621 .desc_size = TXD_DESC_SIZE,
1622 .priv_size = sizeof(struct queue_entry_priv_pci),
1625 static const struct data_queue_desc rt2400pci_queue_bcn = {
1626 .entry_num = BEACON_ENTRIES,
1627 .data_size = MGMT_FRAME_SIZE,
1628 .desc_size = TXD_DESC_SIZE,
1629 .priv_size = sizeof(struct queue_entry_priv_pci),
1632 static const struct data_queue_desc rt2400pci_queue_atim = {
1633 .entry_num = ATIM_ENTRIES,
1634 .data_size = DATA_FRAME_SIZE,
1635 .desc_size = TXD_DESC_SIZE,
1636 .priv_size = sizeof(struct queue_entry_priv_pci),
1639 static const struct rt2x00_ops rt2400pci_ops = {
1640 .name = KBUILD_MODNAME,
1643 .eeprom_size = EEPROM_SIZE,
1645 .tx_queues = NUM_TX_QUEUES,
1646 .rx = &rt2400pci_queue_rx,
1647 .tx = &rt2400pci_queue_tx,
1648 .bcn = &rt2400pci_queue_bcn,
1649 .atim = &rt2400pci_queue_atim,
1650 .lib = &rt2400pci_rt2x00_ops,
1651 .hw = &rt2400pci_mac80211_ops,
1652 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1653 .debugfs = &rt2400pci_rt2x00debug,
1654 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1658 * RT2400pci module information.
1660 static struct pci_device_id rt2400pci_device_table[] = {
1661 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1665 MODULE_AUTHOR(DRV_PROJECT);
1666 MODULE_VERSION(DRV_VERSION);
1667 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1668 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1669 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1670 MODULE_LICENSE("GPL");
1672 static struct pci_driver rt2400pci_driver = {
1673 .name = KBUILD_MODNAME,
1674 .id_table = rt2400pci_device_table,
1675 .probe = rt2x00pci_probe,
1676 .remove = __devexit_p(rt2x00pci_remove),
1677 .suspend = rt2x00pci_suspend,
1678 .resume = rt2x00pci_resume,
1681 static int __init rt2400pci_init(void)
1683 return pci_register_driver(&rt2400pci_driver);
1686 static void __exit rt2400pci_exit(void)
1688 pci_unregister_driver(&rt2400pci_driver);
1691 module_init(rt2400pci_init);
1692 module_exit(rt2400pci_exit);