rt2x00: Move link tuning into seperate file
[linux-2.6] / drivers / net / wireless / rt2x00 / rt73usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt73usb
23         Abstract: rt73usb device specific routines.
24         Supported chipsets: rt2571W & rt2671.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt73usb.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2x00usb_register_read and rt2x00usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * The _lock versions must be used if you already hold the csr_mutex
59  */
60 #define WAIT_FOR_BBP(__dev, __reg) \
61         rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
62 #define WAIT_FOR_RF(__dev, __reg) \
63         rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
64
65 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
66                               const unsigned int word, const u8 value)
67 {
68         u32 reg;
69
70         mutex_lock(&rt2x00dev->csr_mutex);
71
72         /*
73          * Wait until the BBP becomes available, afterwards we
74          * can safely write the new data into the register.
75          */
76         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77                 reg = 0;
78                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
82
83                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
84         }
85
86         mutex_unlock(&rt2x00dev->csr_mutex);
87 }
88
89 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
90                              const unsigned int word, u8 *value)
91 {
92         u32 reg;
93
94         mutex_lock(&rt2x00dev->csr_mutex);
95
96         /*
97          * Wait until the BBP becomes available, afterwards we
98          * can safely write the read request into the register.
99          * After the data has been written, we wait until hardware
100          * returns the correct value, if at any time the register
101          * doesn't become available in time, reg will be 0xffffffff
102          * which means we return 0xff to the caller.
103          */
104         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
105                 reg = 0;
106                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
107                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
108                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
109
110                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
111
112                 WAIT_FOR_BBP(rt2x00dev, &reg);
113         }
114
115         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
116
117         mutex_unlock(&rt2x00dev->csr_mutex);
118 }
119
120 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
121                              const unsigned int word, const u32 value)
122 {
123         u32 reg;
124
125         if (!word)
126                 return;
127
128         mutex_lock(&rt2x00dev->csr_mutex);
129
130         /*
131          * Wait until the RF becomes available, afterwards we
132          * can safely write the new data into the register.
133          */
134         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
135                 reg = 0;
136                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
137                 /*
138                  * RF5225 and RF2527 contain 21 bits per RF register value,
139                  * all others contain 20 bits.
140                  */
141                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
142                                    20 + (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
143                                          rt2x00_rf(&rt2x00dev->chip, RF2527)));
144                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
145                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
146
147                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
148                 rt2x00_rf_write(rt2x00dev, word, value);
149         }
150
151         mutex_unlock(&rt2x00dev->csr_mutex);
152 }
153
154 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
155 static const struct rt2x00debug rt73usb_rt2x00debug = {
156         .owner  = THIS_MODULE,
157         .csr    = {
158                 .read           = rt2x00usb_register_read,
159                 .write          = rt2x00usb_register_write,
160                 .flags          = RT2X00DEBUGFS_OFFSET,
161                 .word_base      = CSR_REG_BASE,
162                 .word_size      = sizeof(u32),
163                 .word_count     = CSR_REG_SIZE / sizeof(u32),
164         },
165         .eeprom = {
166                 .read           = rt2x00_eeprom_read,
167                 .write          = rt2x00_eeprom_write,
168                 .word_base      = EEPROM_BASE,
169                 .word_size      = sizeof(u16),
170                 .word_count     = EEPROM_SIZE / sizeof(u16),
171         },
172         .bbp    = {
173                 .read           = rt73usb_bbp_read,
174                 .write          = rt73usb_bbp_write,
175                 .word_base      = BBP_BASE,
176                 .word_size      = sizeof(u8),
177                 .word_count     = BBP_SIZE / sizeof(u8),
178         },
179         .rf     = {
180                 .read           = rt2x00_rf_read,
181                 .write          = rt73usb_rf_write,
182                 .word_base      = RF_BASE,
183                 .word_size      = sizeof(u32),
184                 .word_count     = RF_SIZE / sizeof(u32),
185         },
186 };
187 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
188
189 #ifdef CONFIG_RT2X00_LIB_LEDS
190 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
191                                    enum led_brightness brightness)
192 {
193         struct rt2x00_led *led =
194            container_of(led_cdev, struct rt2x00_led, led_dev);
195         unsigned int enabled = brightness != LED_OFF;
196         unsigned int a_mode =
197             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
198         unsigned int bg_mode =
199             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
200
201         if (led->type == LED_TYPE_RADIO) {
202                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
203                                    MCU_LEDCS_RADIO_STATUS, enabled);
204
205                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
206                                             0, led->rt2x00dev->led_mcu_reg,
207                                             REGISTER_TIMEOUT);
208         } else if (led->type == LED_TYPE_ASSOC) {
209                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
210                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
211                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
212                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
213
214                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
215                                             0, led->rt2x00dev->led_mcu_reg,
216                                             REGISTER_TIMEOUT);
217         } else if (led->type == LED_TYPE_QUALITY) {
218                 /*
219                  * The brightness is divided into 6 levels (0 - 5),
220                  * this means we need to convert the brightness
221                  * argument into the matching level within that range.
222                  */
223                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
224                                             brightness / (LED_FULL / 6),
225                                             led->rt2x00dev->led_mcu_reg,
226                                             REGISTER_TIMEOUT);
227         }
228 }
229
230 static int rt73usb_blink_set(struct led_classdev *led_cdev,
231                              unsigned long *delay_on,
232                              unsigned long *delay_off)
233 {
234         struct rt2x00_led *led =
235             container_of(led_cdev, struct rt2x00_led, led_dev);
236         u32 reg;
237
238         rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
239         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
240         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
241         rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
242
243         return 0;
244 }
245
246 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
247                              struct rt2x00_led *led,
248                              enum led_type type)
249 {
250         led->rt2x00dev = rt2x00dev;
251         led->type = type;
252         led->led_dev.brightness_set = rt73usb_brightness_set;
253         led->led_dev.blink_set = rt73usb_blink_set;
254         led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257
258 /*
259  * Configuration handlers.
260  */
261 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
262                                      struct rt2x00lib_crypto *crypto,
263                                      struct ieee80211_key_conf *key)
264 {
265         struct hw_key_entry key_entry;
266         struct rt2x00_field32 field;
267         int timeout;
268         u32 mask;
269         u32 reg;
270
271         if (crypto->cmd == SET_KEY) {
272                 /*
273                  * rt2x00lib can't determine the correct free
274                  * key_idx for shared keys. We have 1 register
275                  * with key valid bits. The goal is simple, read
276                  * the register, if that is full we have no slots
277                  * left.
278                  * Note that each BSS is allowed to have up to 4
279                  * shared keys, so put a mask over the allowed
280                  * entries.
281                  */
282                 mask = (0xf << crypto->bssidx);
283
284                 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
285                 reg &= mask;
286
287                 if (reg && reg == mask)
288                         return -ENOSPC;
289
290                 key->hw_key_idx += reg ? ffz(reg) : 0;
291
292                 /*
293                  * Upload key to hardware
294                  */
295                 memcpy(key_entry.key, crypto->key,
296                        sizeof(key_entry.key));
297                 memcpy(key_entry.tx_mic, crypto->tx_mic,
298                        sizeof(key_entry.tx_mic));
299                 memcpy(key_entry.rx_mic, crypto->rx_mic,
300                        sizeof(key_entry.rx_mic));
301
302                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
303                 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
304                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
305                                                     USB_VENDOR_REQUEST_OUT, reg,
306                                                     &key_entry,
307                                                     sizeof(key_entry),
308                                                     timeout);
309
310                 /*
311                  * The cipher types are stored over 2 registers.
312                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
313                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
314                  * Using the correct defines correctly will cause overhead,
315                  * so just calculate the correct offset.
316                  */
317                 if (key->hw_key_idx < 8) {
318                         field.bit_offset = (3 * key->hw_key_idx);
319                         field.bit_mask = 0x7 << field.bit_offset;
320
321                         rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
322                         rt2x00_set_field32(&reg, field, crypto->cipher);
323                         rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
324                 } else {
325                         field.bit_offset = (3 * (key->hw_key_idx - 8));
326                         field.bit_mask = 0x7 << field.bit_offset;
327
328                         rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
329                         rt2x00_set_field32(&reg, field, crypto->cipher);
330                         rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
331                 }
332
333                 /*
334                  * The driver does not support the IV/EIV generation
335                  * in hardware. However it doesn't support the IV/EIV
336                  * inside the ieee80211 frame either, but requires it
337                  * to be provided seperately for the descriptor.
338                  * rt2x00lib will cut the IV/EIV data out of all frames
339                  * given to us by mac80211, but we must tell mac80211
340                  * to generate the IV/EIV data.
341                  */
342                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
343         }
344
345         /*
346          * SEC_CSR0 contains only single-bit fields to indicate
347          * a particular key is valid. Because using the FIELD32()
348          * defines directly will cause a lot of overhead we use
349          * a calculation to determine the correct bit directly.
350          */
351         mask = 1 << key->hw_key_idx;
352
353         rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
354         if (crypto->cmd == SET_KEY)
355                 reg |= mask;
356         else if (crypto->cmd == DISABLE_KEY)
357                 reg &= ~mask;
358         rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
359
360         return 0;
361 }
362
363 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
364                                        struct rt2x00lib_crypto *crypto,
365                                        struct ieee80211_key_conf *key)
366 {
367         struct hw_pairwise_ta_entry addr_entry;
368         struct hw_key_entry key_entry;
369         int timeout;
370         u32 mask;
371         u32 reg;
372
373         if (crypto->cmd == SET_KEY) {
374                 /*
375                  * rt2x00lib can't determine the correct free
376                  * key_idx for pairwise keys. We have 2 registers
377                  * with key valid bits. The goal is simple, read
378                  * the first register, if that is full move to
379                  * the next register.
380                  * When both registers are full, we drop the key,
381                  * otherwise we use the first invalid entry.
382                  */
383                 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
384                 if (reg && reg == ~0) {
385                         key->hw_key_idx = 32;
386                         rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
387                         if (reg && reg == ~0)
388                                 return -ENOSPC;
389                 }
390
391                 key->hw_key_idx += reg ? ffz(reg) : 0;
392
393                 /*
394                  * Upload key to hardware
395                  */
396                 memcpy(key_entry.key, crypto->key,
397                        sizeof(key_entry.key));
398                 memcpy(key_entry.tx_mic, crypto->tx_mic,
399                        sizeof(key_entry.tx_mic));
400                 memcpy(key_entry.rx_mic, crypto->rx_mic,
401                        sizeof(key_entry.rx_mic));
402
403                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
404                 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
405                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
406                                                     USB_VENDOR_REQUEST_OUT, reg,
407                                                     &key_entry,
408                                                     sizeof(key_entry),
409                                                     timeout);
410
411                 /*
412                  * Send the address and cipher type to the hardware register.
413                  * This data fits within the CSR cache size, so we can use
414                  * rt2x00usb_register_multiwrite() directly.
415                  */
416                 memset(&addr_entry, 0, sizeof(addr_entry));
417                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
418                 addr_entry.cipher = crypto->cipher;
419
420                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
421                 rt2x00usb_register_multiwrite(rt2x00dev, reg,
422                                             &addr_entry, sizeof(addr_entry));
423
424                 /*
425                  * Enable pairwise lookup table for given BSS idx,
426                  * without this received frames will not be decrypted
427                  * by the hardware.
428                  */
429                 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
430                 reg |= (1 << crypto->bssidx);
431                 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
432
433                 /*
434                  * The driver does not support the IV/EIV generation
435                  * in hardware. However it doesn't support the IV/EIV
436                  * inside the ieee80211 frame either, but requires it
437                  * to be provided seperately for the descriptor.
438                  * rt2x00lib will cut the IV/EIV data out of all frames
439                  * given to us by mac80211, but we must tell mac80211
440                  * to generate the IV/EIV data.
441                  */
442                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
443         }
444
445         /*
446          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
447          * a particular key is valid. Because using the FIELD32()
448          * defines directly will cause a lot of overhead we use
449          * a calculation to determine the correct bit directly.
450          */
451         if (key->hw_key_idx < 32) {
452                 mask = 1 << key->hw_key_idx;
453
454                 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
455                 if (crypto->cmd == SET_KEY)
456                         reg |= mask;
457                 else if (crypto->cmd == DISABLE_KEY)
458                         reg &= ~mask;
459                 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
460         } else {
461                 mask = 1 << (key->hw_key_idx - 32);
462
463                 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
464                 if (crypto->cmd == SET_KEY)
465                         reg |= mask;
466                 else if (crypto->cmd == DISABLE_KEY)
467                         reg &= ~mask;
468                 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
469         }
470
471         return 0;
472 }
473
474 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
475                                   const unsigned int filter_flags)
476 {
477         u32 reg;
478
479         /*
480          * Start configuration steps.
481          * Note that the version error will always be dropped
482          * and broadcast frames will always be accepted since
483          * there is no filter for it at this time.
484          */
485         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
486         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
487                            !(filter_flags & FIF_FCSFAIL));
488         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
489                            !(filter_flags & FIF_PLCPFAIL));
490         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
491                            !(filter_flags & FIF_CONTROL));
492         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
493                            !(filter_flags & FIF_PROMISC_IN_BSS));
494         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
495                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
496                            !rt2x00dev->intf_ap_count);
497         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
498         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
499                            !(filter_flags & FIF_ALLMULTI));
500         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
501         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
502                            !(filter_flags & FIF_CONTROL));
503         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
504 }
505
506 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
507                                 struct rt2x00_intf *intf,
508                                 struct rt2x00intf_conf *conf,
509                                 const unsigned int flags)
510 {
511         unsigned int beacon_base;
512         u32 reg;
513
514         if (flags & CONFIG_UPDATE_TYPE) {
515                 /*
516                  * Clear current synchronisation setup.
517                  * For the Beacon base registers we only need to clear
518                  * the first byte since that byte contains the VALID and OWNER
519                  * bits which (when set to 0) will invalidate the entire beacon.
520                  */
521                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
522                 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
523
524                 /*
525                  * Enable synchronisation.
526                  */
527                 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
528                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
529                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
530                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
531                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
532         }
533
534         if (flags & CONFIG_UPDATE_MAC) {
535                 reg = le32_to_cpu(conf->mac[1]);
536                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
537                 conf->mac[1] = cpu_to_le32(reg);
538
539                 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
540                                             conf->mac, sizeof(conf->mac));
541         }
542
543         if (flags & CONFIG_UPDATE_BSSID) {
544                 reg = le32_to_cpu(conf->bssid[1]);
545                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
546                 conf->bssid[1] = cpu_to_le32(reg);
547
548                 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
549                                             conf->bssid, sizeof(conf->bssid));
550         }
551 }
552
553 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
554                                struct rt2x00lib_erp *erp)
555 {
556         u32 reg;
557
558         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
559         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
560         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
561
562         rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
563         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
564                            !!erp->short_preamble);
565         rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
566
567         rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
568
569         rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
570         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
571         rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
572
573         rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
574         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
575         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
576         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
577         rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
578 }
579
580 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
581                                       struct antenna_setup *ant)
582 {
583         u8 r3;
584         u8 r4;
585         u8 r77;
586         u8 temp;
587
588         rt73usb_bbp_read(rt2x00dev, 3, &r3);
589         rt73usb_bbp_read(rt2x00dev, 4, &r4);
590         rt73usb_bbp_read(rt2x00dev, 77, &r77);
591
592         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
593
594         /*
595          * Configure the RX antenna.
596          */
597         switch (ant->rx) {
598         case ANTENNA_HW_DIVERSITY:
599                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
600                 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
601                        && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
602                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
603                 break;
604         case ANTENNA_A:
605                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
606                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
607                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
608                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
609                 else
610                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
611                 break;
612         case ANTENNA_B:
613         default:
614                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
615                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
616                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
617                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
618                 else
619                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
620                 break;
621         }
622
623         rt73usb_bbp_write(rt2x00dev, 77, r77);
624         rt73usb_bbp_write(rt2x00dev, 3, r3);
625         rt73usb_bbp_write(rt2x00dev, 4, r4);
626 }
627
628 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
629                                       struct antenna_setup *ant)
630 {
631         u8 r3;
632         u8 r4;
633         u8 r77;
634
635         rt73usb_bbp_read(rt2x00dev, 3, &r3);
636         rt73usb_bbp_read(rt2x00dev, 4, &r4);
637         rt73usb_bbp_read(rt2x00dev, 77, &r77);
638
639         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
640         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
641                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
642
643         /*
644          * Configure the RX antenna.
645          */
646         switch (ant->rx) {
647         case ANTENNA_HW_DIVERSITY:
648                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649                 break;
650         case ANTENNA_A:
651                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
652                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
653                 break;
654         case ANTENNA_B:
655         default:
656                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
658                 break;
659         }
660
661         rt73usb_bbp_write(rt2x00dev, 77, r77);
662         rt73usb_bbp_write(rt2x00dev, 3, r3);
663         rt73usb_bbp_write(rt2x00dev, 4, r4);
664 }
665
666 struct antenna_sel {
667         u8 word;
668         /*
669          * value[0] -> non-LNA
670          * value[1] -> LNA
671          */
672         u8 value[2];
673 };
674
675 static const struct antenna_sel antenna_sel_a[] = {
676         { 96,  { 0x58, 0x78 } },
677         { 104, { 0x38, 0x48 } },
678         { 75,  { 0xfe, 0x80 } },
679         { 86,  { 0xfe, 0x80 } },
680         { 88,  { 0xfe, 0x80 } },
681         { 35,  { 0x60, 0x60 } },
682         { 97,  { 0x58, 0x58 } },
683         { 98,  { 0x58, 0x58 } },
684 };
685
686 static const struct antenna_sel antenna_sel_bg[] = {
687         { 96,  { 0x48, 0x68 } },
688         { 104, { 0x2c, 0x3c } },
689         { 75,  { 0xfe, 0x80 } },
690         { 86,  { 0xfe, 0x80 } },
691         { 88,  { 0xfe, 0x80 } },
692         { 35,  { 0x50, 0x50 } },
693         { 97,  { 0x48, 0x48 } },
694         { 98,  { 0x48, 0x48 } },
695 };
696
697 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
698                                struct antenna_setup *ant)
699 {
700         const struct antenna_sel *sel;
701         unsigned int lna;
702         unsigned int i;
703         u32 reg;
704
705         /*
706          * We should never come here because rt2x00lib is supposed
707          * to catch this and send us the correct antenna explicitely.
708          */
709         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
710                ant->tx == ANTENNA_SW_DIVERSITY);
711
712         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
713                 sel = antenna_sel_a;
714                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
715         } else {
716                 sel = antenna_sel_bg;
717                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
718         }
719
720         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
721                 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
722
723         rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
724
725         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
726                            (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
727         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
728                            (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
729
730         rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
731
732         if (rt2x00_rf(&rt2x00dev->chip, RF5226) ||
733             rt2x00_rf(&rt2x00dev->chip, RF5225))
734                 rt73usb_config_antenna_5x(rt2x00dev, ant);
735         else if (rt2x00_rf(&rt2x00dev->chip, RF2528) ||
736                  rt2x00_rf(&rt2x00dev->chip, RF2527))
737                 rt73usb_config_antenna_2x(rt2x00dev, ant);
738 }
739
740 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
741                                     struct rt2x00lib_conf *libconf)
742 {
743         u16 eeprom;
744         short lna_gain = 0;
745
746         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
747                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
748                         lna_gain += 14;
749
750                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
751                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
752         } else {
753                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
754                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
755         }
756
757         rt2x00dev->lna_gain = lna_gain;
758 }
759
760 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
761                                    struct rf_channel *rf, const int txpower)
762 {
763         u8 r3;
764         u8 r94;
765         u8 smart;
766
767         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
768         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
769
770         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
771                   rt2x00_rf(&rt2x00dev->chip, RF2527));
772
773         rt73usb_bbp_read(rt2x00dev, 3, &r3);
774         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
775         rt73usb_bbp_write(rt2x00dev, 3, r3);
776
777         r94 = 6;
778         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
779                 r94 += txpower - MAX_TXPOWER;
780         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
781                 r94 += txpower;
782         rt73usb_bbp_write(rt2x00dev, 94, r94);
783
784         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
785         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
786         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
787         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
788
789         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
790         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
791         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
792         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
793
794         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
795         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
796         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
797         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
798
799         udelay(10);
800 }
801
802 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
803                                    const int txpower)
804 {
805         struct rf_channel rf;
806
807         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
808         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
809         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
810         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
811
812         rt73usb_config_channel(rt2x00dev, &rf, txpower);
813 }
814
815 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
816                                        struct rt2x00lib_conf *libconf)
817 {
818         u32 reg;
819
820         rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
821         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
822                            libconf->conf->long_frame_max_tx_count);
823         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
824                            libconf->conf->short_frame_max_tx_count);
825         rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
826 }
827
828 static void rt73usb_config_duration(struct rt2x00_dev *rt2x00dev,
829                                     struct rt2x00lib_conf *libconf)
830 {
831         u32 reg;
832
833         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
834         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
835         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
836
837         rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
838         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
839         rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
840
841         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
842         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
843                            libconf->conf->beacon_int * 16);
844         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
845 }
846
847 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
848                                 struct rt2x00lib_conf *libconf)
849 {
850         enum dev_state state =
851             (libconf->conf->flags & IEEE80211_CONF_PS) ?
852                 STATE_SLEEP : STATE_AWAKE;
853         u32 reg;
854
855         if (state == STATE_SLEEP) {
856                 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
857                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
858                                    libconf->conf->beacon_int - 10);
859                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
860                                    libconf->conf->listen_interval - 1);
861                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
862
863                 /* We must first disable autowake before it can be enabled */
864                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
865                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
866
867                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
868                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
869
870                 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
871                                             USB_MODE_SLEEP, REGISTER_TIMEOUT);
872         } else {
873                 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
874                                             USB_MODE_WAKEUP, REGISTER_TIMEOUT);
875
876                 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
877                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
878                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
879                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
880                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
881                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
882         }
883 }
884
885 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
886                            struct rt2x00lib_conf *libconf,
887                            const unsigned int flags)
888 {
889         /* Always recalculate LNA gain before changing configuration */
890         rt73usb_config_lna_gain(rt2x00dev, libconf);
891
892         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
893                 rt73usb_config_channel(rt2x00dev, &libconf->rf,
894                                        libconf->conf->power_level);
895         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
896             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
897                 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
898         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
899                 rt73usb_config_retry_limit(rt2x00dev, libconf);
900         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
901                 rt73usb_config_duration(rt2x00dev, libconf);
902         if (flags & IEEE80211_CONF_CHANGE_PS)
903                 rt73usb_config_ps(rt2x00dev, libconf);
904 }
905
906 /*
907  * Link tuning
908  */
909 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
910                                struct link_qual *qual)
911 {
912         u32 reg;
913
914         /*
915          * Update FCS error count from register.
916          */
917         rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
918         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
919
920         /*
921          * Update False CCA count from register.
922          */
923         rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
924         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
925 }
926
927 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
928 {
929         rt73usb_bbp_write(rt2x00dev, 17, 0x20);
930         rt2x00dev->link.vgc_level = 0x20;
931 }
932
933 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev)
934 {
935         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
936         u8 r17;
937         u8 up_bound;
938         u8 low_bound;
939
940         rt73usb_bbp_read(rt2x00dev, 17, &r17);
941
942         /*
943          * Determine r17 bounds.
944          */
945         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
946                 low_bound = 0x28;
947                 up_bound = 0x48;
948
949                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
950                         low_bound += 0x10;
951                         up_bound += 0x10;
952                 }
953         } else {
954                 if (rssi > -82) {
955                         low_bound = 0x1c;
956                         up_bound = 0x40;
957                 } else if (rssi > -84) {
958                         low_bound = 0x1c;
959                         up_bound = 0x20;
960                 } else {
961                         low_bound = 0x1c;
962                         up_bound = 0x1c;
963                 }
964
965                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
966                         low_bound += 0x14;
967                         up_bound += 0x10;
968                 }
969         }
970
971         /*
972          * If we are not associated, we should go straight to the
973          * dynamic CCA tuning.
974          */
975         if (!rt2x00dev->intf_associated)
976                 goto dynamic_cca_tune;
977
978         /*
979          * Special big-R17 for very short distance
980          */
981         if (rssi > -35) {
982                 if (r17 != 0x60)
983                         rt73usb_bbp_write(rt2x00dev, 17, 0x60);
984                 return;
985         }
986
987         /*
988          * Special big-R17 for short distance
989          */
990         if (rssi >= -58) {
991                 if (r17 != up_bound)
992                         rt73usb_bbp_write(rt2x00dev, 17, up_bound);
993                 return;
994         }
995
996         /*
997          * Special big-R17 for middle-short distance
998          */
999         if (rssi >= -66) {
1000                 low_bound += 0x10;
1001                 if (r17 != low_bound)
1002                         rt73usb_bbp_write(rt2x00dev, 17, low_bound);
1003                 return;
1004         }
1005
1006         /*
1007          * Special mid-R17 for middle distance
1008          */
1009         if (rssi >= -74) {
1010                 if (r17 != (low_bound + 0x10))
1011                         rt73usb_bbp_write(rt2x00dev, 17, low_bound + 0x08);
1012                 return;
1013         }
1014
1015         /*
1016          * Special case: Change up_bound based on the rssi.
1017          * Lower up_bound when rssi is weaker then -74 dBm.
1018          */
1019         up_bound -= 2 * (-74 - rssi);
1020         if (low_bound > up_bound)
1021                 up_bound = low_bound;
1022
1023         if (r17 > up_bound) {
1024                 rt73usb_bbp_write(rt2x00dev, 17, up_bound);
1025                 return;
1026         }
1027
1028 dynamic_cca_tune:
1029
1030         /*
1031          * r17 does not yet exceed upper limit, continue and base
1032          * the r17 tuning on the false CCA count.
1033          */
1034         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
1035                 r17 += 4;
1036                 if (r17 > up_bound)
1037                         r17 = up_bound;
1038                 rt73usb_bbp_write(rt2x00dev, 17, r17);
1039         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1040                 r17 -= 4;
1041                 if (r17 < low_bound)
1042                         r17 = low_bound;
1043                 rt73usb_bbp_write(rt2x00dev, 17, r17);
1044         }
1045 }
1046
1047 /*
1048  * Firmware functions
1049  */
1050 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1051 {
1052         return FIRMWARE_RT2571;
1053 }
1054
1055 static u16 rt73usb_get_firmware_crc(const void *data, const size_t len)
1056 {
1057         u16 crc;
1058
1059         /*
1060          * Use the crc itu-t algorithm.
1061          * The last 2 bytes in the firmware array are the crc checksum itself,
1062          * this means that we should never pass those 2 bytes to the crc
1063          * algorithm.
1064          */
1065         crc = crc_itu_t(0, data, len - 2);
1066         crc = crc_itu_t_byte(crc, 0);
1067         crc = crc_itu_t_byte(crc, 0);
1068
1069         return crc;
1070 }
1071
1072 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1073                                  const size_t len)
1074 {
1075         unsigned int i;
1076         int status;
1077         u32 reg;
1078
1079         /*
1080          * Wait for stable hardware.
1081          */
1082         for (i = 0; i < 100; i++) {
1083                 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1084                 if (reg)
1085                         break;
1086                 msleep(1);
1087         }
1088
1089         if (!reg) {
1090                 ERROR(rt2x00dev, "Unstable hardware.\n");
1091                 return -EBUSY;
1092         }
1093
1094         /*
1095          * Write firmware to device.
1096          */
1097         rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1098                                             USB_VENDOR_REQUEST_OUT,
1099                                             FIRMWARE_IMAGE_BASE,
1100                                             data, len,
1101                                             REGISTER_TIMEOUT32(len));
1102
1103         /*
1104          * Send firmware request to device to load firmware,
1105          * we need to specify a long timeout time.
1106          */
1107         status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1108                                              0, USB_MODE_FIRMWARE,
1109                                              REGISTER_TIMEOUT_FIRMWARE);
1110         if (status < 0) {
1111                 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1112                 return status;
1113         }
1114
1115         return 0;
1116 }
1117
1118 /*
1119  * Initialization functions.
1120  */
1121 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1122 {
1123         u32 reg;
1124
1125         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1126         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1127         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1128         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1129         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1130
1131         rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1132         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1133         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1134         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1135         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1136         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1137         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1138         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1139         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1140         rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1141
1142         /*
1143          * CCK TXD BBP registers
1144          */
1145         rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1146         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1147         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1148         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1149         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1150         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1151         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1152         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1153         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1154         rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1155
1156         /*
1157          * OFDM TXD BBP registers
1158          */
1159         rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1160         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1161         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1162         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1163         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1164         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1165         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1166         rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1167
1168         rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1169         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1170         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1171         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1172         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1173         rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1174
1175         rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1176         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1177         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1178         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1179         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1180         rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1181
1182         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1183         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1184         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1185         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1186         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1187         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1188         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1189         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1190
1191         rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1192
1193         rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1194         rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1195         rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1196
1197         rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1198
1199         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1200                 return -EBUSY;
1201
1202         rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1203
1204         /*
1205          * Invalidate all Shared Keys (SEC_CSR0),
1206          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1207          */
1208         rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1209         rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1210         rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1211
1212         reg = 0x000023b0;
1213         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
1214             rt2x00_rf(&rt2x00dev->chip, RF2527))
1215                 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1216         rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1217
1218         rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1219         rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1220         rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1221
1222         rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1223         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1224         rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1225
1226         /*
1227          * Clear all beacons
1228          * For the Beacon base registers we only need to clear
1229          * the first byte since that byte contains the VALID and OWNER
1230          * bits which (when set to 0) will invalidate the entire beacon.
1231          */
1232         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1233         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1234         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1235         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1236
1237         /*
1238          * We must clear the error counters.
1239          * These registers are cleared on read,
1240          * so we may pass a useless variable to store the value.
1241          */
1242         rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1243         rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1244         rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1245
1246         /*
1247          * Reset MAC and BBP registers.
1248          */
1249         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1250         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1251         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1252         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1253
1254         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1255         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1256         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1257         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1258
1259         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1260         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1261         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1262
1263         return 0;
1264 }
1265
1266 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1267 {
1268         unsigned int i;
1269         u8 value;
1270
1271         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1272                 rt73usb_bbp_read(rt2x00dev, 0, &value);
1273                 if ((value != 0xff) && (value != 0x00))
1274                         return 0;
1275                 udelay(REGISTER_BUSY_DELAY);
1276         }
1277
1278         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1279         return -EACCES;
1280 }
1281
1282 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1283 {
1284         unsigned int i;
1285         u16 eeprom;
1286         u8 reg_id;
1287         u8 value;
1288
1289         if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1290                 return -EACCES;
1291
1292         rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1293         rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1294         rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1295         rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1296         rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1297         rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1298         rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1299         rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1300         rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1301         rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1302         rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1303         rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1304         rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1305         rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1306         rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1307         rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1308         rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1309         rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1310         rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1311         rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1312         rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1313         rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1314         rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1315         rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1316         rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1317
1318         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1319                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1320
1321                 if (eeprom != 0xffff && eeprom != 0x0000) {
1322                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1323                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1324                         rt73usb_bbp_write(rt2x00dev, reg_id, value);
1325                 }
1326         }
1327
1328         return 0;
1329 }
1330
1331 /*
1332  * Device state switch handlers.
1333  */
1334 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1335                               enum dev_state state)
1336 {
1337         u32 reg;
1338
1339         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1340         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1341                            (state == STATE_RADIO_RX_OFF) ||
1342                            (state == STATE_RADIO_RX_OFF_LINK));
1343         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1344 }
1345
1346 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1347 {
1348         /*
1349          * Initialize all registers.
1350          */
1351         if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1352                      rt73usb_init_bbp(rt2x00dev)))
1353                 return -EIO;
1354
1355         return 0;
1356 }
1357
1358 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1359 {
1360         rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1361
1362         /*
1363          * Disable synchronisation.
1364          */
1365         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1366
1367         rt2x00usb_disable_radio(rt2x00dev);
1368 }
1369
1370 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1371 {
1372         u32 reg;
1373         unsigned int i;
1374         char put_to_sleep;
1375
1376         put_to_sleep = (state != STATE_AWAKE);
1377
1378         rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1379         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1380         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1381         rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1382
1383         /*
1384          * Device is not guaranteed to be in the requested state yet.
1385          * We must wait until the register indicates that the
1386          * device has entered the correct state.
1387          */
1388         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1389                 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1390                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1391                 if (state == !put_to_sleep)
1392                         return 0;
1393                 msleep(10);
1394         }
1395
1396         return -EBUSY;
1397 }
1398
1399 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1400                                     enum dev_state state)
1401 {
1402         int retval = 0;
1403
1404         switch (state) {
1405         case STATE_RADIO_ON:
1406                 retval = rt73usb_enable_radio(rt2x00dev);
1407                 break;
1408         case STATE_RADIO_OFF:
1409                 rt73usb_disable_radio(rt2x00dev);
1410                 break;
1411         case STATE_RADIO_RX_ON:
1412         case STATE_RADIO_RX_ON_LINK:
1413         case STATE_RADIO_RX_OFF:
1414         case STATE_RADIO_RX_OFF_LINK:
1415                 rt73usb_toggle_rx(rt2x00dev, state);
1416                 break;
1417         case STATE_RADIO_IRQ_ON:
1418         case STATE_RADIO_IRQ_OFF:
1419                 /* No support, but no error either */
1420                 break;
1421         case STATE_DEEP_SLEEP:
1422         case STATE_SLEEP:
1423         case STATE_STANDBY:
1424         case STATE_AWAKE:
1425                 retval = rt73usb_set_state(rt2x00dev, state);
1426                 break;
1427         default:
1428                 retval = -ENOTSUPP;
1429                 break;
1430         }
1431
1432         if (unlikely(retval))
1433                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1434                       state, retval);
1435
1436         return retval;
1437 }
1438
1439 /*
1440  * TX descriptor initialization
1441  */
1442 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1443                                   struct sk_buff *skb,
1444                                   struct txentry_desc *txdesc)
1445 {
1446         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1447         __le32 *txd = skbdesc->desc;
1448         u32 word;
1449
1450         /*
1451          * Start writing the descriptor words.
1452          */
1453         rt2x00_desc_read(txd, 1, &word);
1454         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1455         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1456         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1457         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1458         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1459         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1460                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1461         rt2x00_desc_write(txd, 1, word);
1462
1463         rt2x00_desc_read(txd, 2, &word);
1464         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1465         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1466         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1467         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1468         rt2x00_desc_write(txd, 2, word);
1469
1470         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1471                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1472                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1473         }
1474
1475         rt2x00_desc_read(txd, 5, &word);
1476         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1477                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1478         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1479         rt2x00_desc_write(txd, 5, word);
1480
1481         rt2x00_desc_read(txd, 0, &word);
1482         rt2x00_set_field32(&word, TXD_W0_BURST,
1483                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1484         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1485         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1486                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1487         rt2x00_set_field32(&word, TXD_W0_ACK,
1488                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1489         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1490                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1491         rt2x00_set_field32(&word, TXD_W0_OFDM,
1492                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1493         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1494         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1495                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1496         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1497                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1498         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1499                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1500         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1501         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1502         rt2x00_set_field32(&word, TXD_W0_BURST2,
1503                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1504         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1505         rt2x00_desc_write(txd, 0, word);
1506 }
1507
1508 /*
1509  * TX data initialization
1510  */
1511 static void rt73usb_write_beacon(struct queue_entry *entry)
1512 {
1513         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1514         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1515         unsigned int beacon_base;
1516         u32 reg;
1517
1518         /*
1519          * Add the descriptor in front of the skb.
1520          */
1521         skb_push(entry->skb, entry->queue->desc_size);
1522         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1523         skbdesc->desc = entry->skb->data;
1524
1525         /*
1526          * Disable beaconing while we are reloading the beacon data,
1527          * otherwise we might be sending out invalid data.
1528          */
1529         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1530         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1531         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1532         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1533         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1534
1535         /*
1536          * Write entire beacon with descriptor to register.
1537          */
1538         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1539         rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1540                                             USB_VENDOR_REQUEST_OUT, beacon_base,
1541                                             entry->skb->data, entry->skb->len,
1542                                             REGISTER_TIMEOUT32(entry->skb->len));
1543
1544         /*
1545          * Clean up the beacon skb.
1546          */
1547         dev_kfree_skb(entry->skb);
1548         entry->skb = NULL;
1549 }
1550
1551 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1552 {
1553         int length;
1554
1555         /*
1556          * The length _must_ be a multiple of 4,
1557          * but it must _not_ be a multiple of the USB packet size.
1558          */
1559         length = roundup(entry->skb->len, 4);
1560         length += (4 * !(length % entry->queue->usb_maxpacket));
1561
1562         return length;
1563 }
1564
1565 static void rt73usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1566                                   const enum data_queue_qid queue)
1567 {
1568         u32 reg;
1569
1570         if (queue != QID_BEACON) {
1571                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1572                 return;
1573         }
1574
1575         /*
1576          * For Wi-Fi faily generated beacons between participating stations.
1577          * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1578          */
1579         rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1580
1581         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1582         if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1583                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1584                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1585                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1586                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1587         }
1588 }
1589
1590 /*
1591  * RX control handlers
1592  */
1593 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1594 {
1595         u8 offset = rt2x00dev->lna_gain;
1596         u8 lna;
1597
1598         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1599         switch (lna) {
1600         case 3:
1601                 offset += 90;
1602                 break;
1603         case 2:
1604                 offset += 74;
1605                 break;
1606         case 1:
1607                 offset += 64;
1608                 break;
1609         default:
1610                 return 0;
1611         }
1612
1613         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1614                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1615                         if (lna == 3 || lna == 2)
1616                                 offset += 10;
1617                 } else {
1618                         if (lna == 3)
1619                                 offset += 6;
1620                         else if (lna == 2)
1621                                 offset += 8;
1622                 }
1623         }
1624
1625         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1626 }
1627
1628 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1629                                 struct rxdone_entry_desc *rxdesc)
1630 {
1631         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1632         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1633         __le32 *rxd = (__le32 *)entry->skb->data;
1634         u32 word0;
1635         u32 word1;
1636
1637         /*
1638          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1639          * frame data in rt2x00usb.
1640          */
1641         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1642         rxd = (__le32 *)skbdesc->desc;
1643
1644         /*
1645          * It is now safe to read the descriptor on all architectures.
1646          */
1647         rt2x00_desc_read(rxd, 0, &word0);
1648         rt2x00_desc_read(rxd, 1, &word1);
1649
1650         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1651                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1652
1653         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1654                 rxdesc->cipher =
1655                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1656                 rxdesc->cipher_status =
1657                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1658         }
1659
1660         if (rxdesc->cipher != CIPHER_NONE) {
1661                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1662                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1663                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1664
1665                 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1666                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1667
1668                 /*
1669                  * Hardware has stripped IV/EIV data from 802.11 frame during
1670                  * decryption. It has provided the data seperately but rt2x00lib
1671                  * should decide if it should be reinserted.
1672                  */
1673                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1674
1675                 /*
1676                  * FIXME: Legacy driver indicates that the frame does
1677                  * contain the Michael Mic. Unfortunately, in rt2x00
1678                  * the MIC seems to be missing completely...
1679                  */
1680                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1681
1682                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1683                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1684                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1685                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1686         }
1687
1688         /*
1689          * Obtain the status about this packet.
1690          * When frame was received with an OFDM bitrate,
1691          * the signal is the PLCP value. If it was received with
1692          * a CCK bitrate the signal is the rate in 100kbit/s.
1693          */
1694         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1695         rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1696         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1697
1698         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1699                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1700         else
1701                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1702         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1703                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1704
1705         /*
1706          * Set skb pointers, and update frame information.
1707          */
1708         skb_pull(entry->skb, entry->queue->desc_size);
1709         skb_trim(entry->skb, rxdesc->size);
1710 }
1711
1712 /*
1713  * Device probe functions.
1714  */
1715 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1716 {
1717         u16 word;
1718         u8 *mac;
1719         s8 value;
1720
1721         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1722
1723         /*
1724          * Start validation of the data that has been read.
1725          */
1726         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1727         if (!is_valid_ether_addr(mac)) {
1728                 random_ether_addr(mac);
1729                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1730         }
1731
1732         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1733         if (word == 0xffff) {
1734                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1735                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1736                                    ANTENNA_B);
1737                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1738                                    ANTENNA_B);
1739                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1740                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1741                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1742                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1743                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1744                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1745         }
1746
1747         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1748         if (word == 0xffff) {
1749                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1750                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1751                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1752         }
1753
1754         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1755         if (word == 0xffff) {
1756                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1757                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1758                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1759                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1760                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1761                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1762                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1763                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1764                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1765                                    LED_MODE_DEFAULT);
1766                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1767                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1768         }
1769
1770         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1771         if (word == 0xffff) {
1772                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1773                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1774                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1775                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1776         }
1777
1778         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1779         if (word == 0xffff) {
1780                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1781                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1782                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1783                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1784         } else {
1785                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1786                 if (value < -10 || value > 10)
1787                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1788                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1789                 if (value < -10 || value > 10)
1790                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1791                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1792         }
1793
1794         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1795         if (word == 0xffff) {
1796                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1797                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1798                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1799                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1800         } else {
1801                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1802                 if (value < -10 || value > 10)
1803                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1804                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1805                 if (value < -10 || value > 10)
1806                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1807                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1808         }
1809
1810         return 0;
1811 }
1812
1813 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1814 {
1815         u32 reg;
1816         u16 value;
1817         u16 eeprom;
1818
1819         /*
1820          * Read EEPROM word for configuration.
1821          */
1822         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1823
1824         /*
1825          * Identify RF chipset.
1826          */
1827         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1828         rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1829         rt2x00_set_chip(rt2x00dev, RT2571, value, reg);
1830
1831         if (!rt2x00_check_rev(&rt2x00dev->chip, 0x25730)) {
1832                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1833                 return -ENODEV;
1834         }
1835
1836         if (!rt2x00_rf(&rt2x00dev->chip, RF5226) &&
1837             !rt2x00_rf(&rt2x00dev->chip, RF2528) &&
1838             !rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1839             !rt2x00_rf(&rt2x00dev->chip, RF2527)) {
1840                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1841                 return -ENODEV;
1842         }
1843
1844         /*
1845          * Identify default antenna configuration.
1846          */
1847         rt2x00dev->default_ant.tx =
1848             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1849         rt2x00dev->default_ant.rx =
1850             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1851
1852         /*
1853          * Read the Frame type.
1854          */
1855         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1856                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1857
1858         /*
1859          * Read frequency offset.
1860          */
1861         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1862         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1863
1864         /*
1865          * Read external LNA informations.
1866          */
1867         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1868
1869         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1870                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1871                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1872         }
1873
1874         /*
1875          * Store led settings, for correct led behaviour.
1876          */
1877 #ifdef CONFIG_RT2X00_LIB_LEDS
1878         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1879
1880         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1881         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1882         if (value == LED_MODE_SIGNAL_STRENGTH)
1883                 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1884                                  LED_TYPE_QUALITY);
1885
1886         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1887         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1888                            rt2x00_get_field16(eeprom,
1889                                               EEPROM_LED_POLARITY_GPIO_0));
1890         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1891                            rt2x00_get_field16(eeprom,
1892                                               EEPROM_LED_POLARITY_GPIO_1));
1893         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1894                            rt2x00_get_field16(eeprom,
1895                                               EEPROM_LED_POLARITY_GPIO_2));
1896         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1897                            rt2x00_get_field16(eeprom,
1898                                               EEPROM_LED_POLARITY_GPIO_3));
1899         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1900                            rt2x00_get_field16(eeprom,
1901                                               EEPROM_LED_POLARITY_GPIO_4));
1902         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1903                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1904         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1905                            rt2x00_get_field16(eeprom,
1906                                               EEPROM_LED_POLARITY_RDY_G));
1907         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1908                            rt2x00_get_field16(eeprom,
1909                                               EEPROM_LED_POLARITY_RDY_A));
1910 #endif /* CONFIG_RT2X00_LIB_LEDS */
1911
1912         return 0;
1913 }
1914
1915 /*
1916  * RF value list for RF2528
1917  * Supports: 2.4 GHz
1918  */
1919 static const struct rf_channel rf_vals_bg_2528[] = {
1920         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1921         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1922         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1923         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1924         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1925         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1926         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1927         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1928         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1929         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1930         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1931         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1932         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1933         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1934 };
1935
1936 /*
1937  * RF value list for RF5226
1938  * Supports: 2.4 GHz & 5.2 GHz
1939  */
1940 static const struct rf_channel rf_vals_5226[] = {
1941         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1942         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1943         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1944         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1945         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1946         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1947         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1948         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1949         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1950         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1951         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1952         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1953         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1954         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1955
1956         /* 802.11 UNI / HyperLan 2 */
1957         { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1958         { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1959         { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1960         { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1961         { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1962         { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
1963         { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
1964         { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
1965
1966         /* 802.11 HyperLan 2 */
1967         { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
1968         { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
1969         { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
1970         { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
1971         { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
1972         { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
1973         { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
1974         { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
1975         { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
1976         { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
1977
1978         /* 802.11 UNII */
1979         { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
1980         { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
1981         { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
1982         { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
1983         { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
1984         { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
1985
1986         /* MMAC(Japan)J52 ch 34,38,42,46 */
1987         { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
1988         { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
1989         { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
1990         { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
1991 };
1992
1993 /*
1994  * RF value list for RF5225 & RF2527
1995  * Supports: 2.4 GHz & 5.2 GHz
1996  */
1997 static const struct rf_channel rf_vals_5225_2527[] = {
1998         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
1999         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2000         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2001         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2002         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2003         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2004         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2005         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2006         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2007         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2008         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2009         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2010         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2011         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2012
2013         /* 802.11 UNI / HyperLan 2 */
2014         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2015         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2016         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2017         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2018         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2019         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2020         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2021         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2022
2023         /* 802.11 HyperLan 2 */
2024         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2025         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2026         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2027         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2028         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2029         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2030         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2031         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2032         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2033         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2034
2035         /* 802.11 UNII */
2036         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2037         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2038         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2039         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2040         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2041         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2042
2043         /* MMAC(Japan)J52 ch 34,38,42,46 */
2044         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2045         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2046         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2047         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2048 };
2049
2050
2051 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2052 {
2053         struct hw_mode_spec *spec = &rt2x00dev->spec;
2054         struct channel_info *info;
2055         char *tx_power;
2056         unsigned int i;
2057
2058         /*
2059          * Initialize all hw fields.
2060          */
2061         rt2x00dev->hw->flags =
2062             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2063             IEEE80211_HW_SIGNAL_DBM;
2064         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
2065
2066         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2067         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2068                                 rt2x00_eeprom_addr(rt2x00dev,
2069                                                    EEPROM_MAC_ADDR_0));
2070
2071         /*
2072          * Initialize hw_mode information.
2073          */
2074         spec->supported_bands = SUPPORT_BAND_2GHZ;
2075         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2076
2077         if (rt2x00_rf(&rt2x00dev->chip, RF2528)) {
2078                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2079                 spec->channels = rf_vals_bg_2528;
2080         } else if (rt2x00_rf(&rt2x00dev->chip, RF5226)) {
2081                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2082                 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2083                 spec->channels = rf_vals_5226;
2084         } else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) {
2085                 spec->num_channels = 14;
2086                 spec->channels = rf_vals_5225_2527;
2087         } else if (rt2x00_rf(&rt2x00dev->chip, RF5225)) {
2088                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2089                 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2090                 spec->channels = rf_vals_5225_2527;
2091         }
2092
2093         /*
2094          * Create channel information array
2095          */
2096         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2097         if (!info)
2098                 return -ENOMEM;
2099
2100         spec->channels_info = info;
2101
2102         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2103         for (i = 0; i < 14; i++)
2104                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2105
2106         if (spec->num_channels > 14) {
2107                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2108                 for (i = 14; i < spec->num_channels; i++)
2109                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2110         }
2111
2112         return 0;
2113 }
2114
2115 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2116 {
2117         int retval;
2118
2119         /*
2120          * Allocate eeprom data.
2121          */
2122         retval = rt73usb_validate_eeprom(rt2x00dev);
2123         if (retval)
2124                 return retval;
2125
2126         retval = rt73usb_init_eeprom(rt2x00dev);
2127         if (retval)
2128                 return retval;
2129
2130         /*
2131          * Initialize hw specifications.
2132          */
2133         retval = rt73usb_probe_hw_mode(rt2x00dev);
2134         if (retval)
2135                 return retval;
2136
2137         /*
2138          * This device requires firmware.
2139          */
2140         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2141         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
2142         if (!modparam_nohwcrypt)
2143                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2144
2145         /*
2146          * Set the rssi offset.
2147          */
2148         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2149
2150         return 0;
2151 }
2152
2153 /*
2154  * IEEE80211 stack callback functions.
2155  */
2156 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2157                            const struct ieee80211_tx_queue_params *params)
2158 {
2159         struct rt2x00_dev *rt2x00dev = hw->priv;
2160         struct data_queue *queue;
2161         struct rt2x00_field32 field;
2162         int retval;
2163         u32 reg;
2164
2165         /*
2166          * First pass the configuration through rt2x00lib, that will
2167          * update the queue settings and validate the input. After that
2168          * we are free to update the registers based on the value
2169          * in the queue parameter.
2170          */
2171         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2172         if (retval)
2173                 return retval;
2174
2175         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2176
2177         /* Update WMM TXOP register */
2178         if (queue_idx < 2) {
2179                 field.bit_offset = queue_idx * 16;
2180                 field.bit_mask = 0xffff << field.bit_offset;
2181
2182                 rt2x00usb_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2183                 rt2x00_set_field32(&reg, field, queue->txop);
2184                 rt2x00usb_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2185         } else if (queue_idx < 4) {
2186                 field.bit_offset = (queue_idx - 2) * 16;
2187                 field.bit_mask = 0xffff << field.bit_offset;
2188
2189                 rt2x00usb_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2190                 rt2x00_set_field32(&reg, field, queue->txop);
2191                 rt2x00usb_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2192         }
2193
2194         /* Update WMM registers */
2195         field.bit_offset = queue_idx * 4;
2196         field.bit_mask = 0xf << field.bit_offset;
2197
2198         rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2199         rt2x00_set_field32(&reg, field, queue->aifs);
2200         rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2201
2202         rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2203         rt2x00_set_field32(&reg, field, queue->cw_min);
2204         rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2205
2206         rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2207         rt2x00_set_field32(&reg, field, queue->cw_max);
2208         rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2209
2210         return 0;
2211 }
2212
2213 #if 0
2214 /*
2215  * Mac80211 demands get_tsf must be atomic.
2216  * This is not possible for rt73usb since all register access
2217  * functions require sleeping. Untill mac80211 no longer needs
2218  * get_tsf to be atomic, this function should be disabled.
2219  */
2220 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2221 {
2222         struct rt2x00_dev *rt2x00dev = hw->priv;
2223         u64 tsf;
2224         u32 reg;
2225
2226         rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2227         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2228         rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2229         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2230
2231         return tsf;
2232 }
2233 #else
2234 #define rt73usb_get_tsf NULL
2235 #endif
2236
2237 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2238         .tx                     = rt2x00mac_tx,
2239         .start                  = rt2x00mac_start,
2240         .stop                   = rt2x00mac_stop,
2241         .add_interface          = rt2x00mac_add_interface,
2242         .remove_interface       = rt2x00mac_remove_interface,
2243         .config                 = rt2x00mac_config,
2244         .config_interface       = rt2x00mac_config_interface,
2245         .configure_filter       = rt2x00mac_configure_filter,
2246         .set_key                = rt2x00mac_set_key,
2247         .get_stats              = rt2x00mac_get_stats,
2248         .bss_info_changed       = rt2x00mac_bss_info_changed,
2249         .conf_tx                = rt73usb_conf_tx,
2250         .get_tx_stats           = rt2x00mac_get_tx_stats,
2251         .get_tsf                = rt73usb_get_tsf,
2252 };
2253
2254 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2255         .probe_hw               = rt73usb_probe_hw,
2256         .get_firmware_name      = rt73usb_get_firmware_name,
2257         .get_firmware_crc       = rt73usb_get_firmware_crc,
2258         .load_firmware          = rt73usb_load_firmware,
2259         .initialize             = rt2x00usb_initialize,
2260         .uninitialize           = rt2x00usb_uninitialize,
2261         .clear_entry            = rt2x00usb_clear_entry,
2262         .set_device_state       = rt73usb_set_device_state,
2263         .link_stats             = rt73usb_link_stats,
2264         .reset_tuner            = rt73usb_reset_tuner,
2265         .link_tuner             = rt73usb_link_tuner,
2266         .write_tx_desc          = rt73usb_write_tx_desc,
2267         .write_tx_data          = rt2x00usb_write_tx_data,
2268         .write_beacon           = rt73usb_write_beacon,
2269         .get_tx_data_len        = rt73usb_get_tx_data_len,
2270         .kick_tx_queue          = rt73usb_kick_tx_queue,
2271         .fill_rxdone            = rt73usb_fill_rxdone,
2272         .config_shared_key      = rt73usb_config_shared_key,
2273         .config_pairwise_key    = rt73usb_config_pairwise_key,
2274         .config_filter          = rt73usb_config_filter,
2275         .config_intf            = rt73usb_config_intf,
2276         .config_erp             = rt73usb_config_erp,
2277         .config_ant             = rt73usb_config_ant,
2278         .config                 = rt73usb_config,
2279 };
2280
2281 static const struct data_queue_desc rt73usb_queue_rx = {
2282         .entry_num              = RX_ENTRIES,
2283         .data_size              = DATA_FRAME_SIZE,
2284         .desc_size              = RXD_DESC_SIZE,
2285         .priv_size              = sizeof(struct queue_entry_priv_usb),
2286 };
2287
2288 static const struct data_queue_desc rt73usb_queue_tx = {
2289         .entry_num              = TX_ENTRIES,
2290         .data_size              = DATA_FRAME_SIZE,
2291         .desc_size              = TXD_DESC_SIZE,
2292         .priv_size              = sizeof(struct queue_entry_priv_usb),
2293 };
2294
2295 static const struct data_queue_desc rt73usb_queue_bcn = {
2296         .entry_num              = 4 * BEACON_ENTRIES,
2297         .data_size              = MGMT_FRAME_SIZE,
2298         .desc_size              = TXINFO_SIZE,
2299         .priv_size              = sizeof(struct queue_entry_priv_usb),
2300 };
2301
2302 static const struct rt2x00_ops rt73usb_ops = {
2303         .name           = KBUILD_MODNAME,
2304         .max_sta_intf   = 1,
2305         .max_ap_intf    = 4,
2306         .eeprom_size    = EEPROM_SIZE,
2307         .rf_size        = RF_SIZE,
2308         .tx_queues      = NUM_TX_QUEUES,
2309         .rx             = &rt73usb_queue_rx,
2310         .tx             = &rt73usb_queue_tx,
2311         .bcn            = &rt73usb_queue_bcn,
2312         .lib            = &rt73usb_rt2x00_ops,
2313         .hw             = &rt73usb_mac80211_ops,
2314 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2315         .debugfs        = &rt73usb_rt2x00debug,
2316 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2317 };
2318
2319 /*
2320  * rt73usb module information.
2321  */
2322 static struct usb_device_id rt73usb_device_table[] = {
2323         /* AboCom */
2324         { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2325         /* Askey */
2326         { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2327         /* ASUS */
2328         { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2329         { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2330         /* Belkin */
2331         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2332         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2333         { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2334         { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2335         /* Billionton */
2336         { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2337         /* Buffalo */
2338         { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2339         /* CNet */
2340         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2341         { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2342         /* Conceptronic */
2343         { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2344         /* Corega */
2345         { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2346         /* D-Link */
2347         { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2348         { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2349         { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2350         { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2351         /* Gemtek */
2352         { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2353         /* Gigabyte */
2354         { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2355         { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2356         /* Huawei-3Com */
2357         { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2358         /* Hercules */
2359         { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2360         { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2361         /* Linksys */
2362         { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2363         { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2364         { USB_DEVICE(0x13b1, 0x0028), USB_DEVICE_DATA(&rt73usb_ops) },
2365         /* MSI */
2366         { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2367         { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2368         { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2369         { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2370         /* Ralink */
2371         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2372         { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2373         /* Qcom */
2374         { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2375         { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2376         { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2377         /* Senao */
2378         { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2379         /* Sitecom */
2380         { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2381         { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2382         /* Surecom */
2383         { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2384         /* Planex */
2385         { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2386         { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2387         { 0, }
2388 };
2389
2390 MODULE_AUTHOR(DRV_PROJECT);
2391 MODULE_VERSION(DRV_VERSION);
2392 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2393 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2394 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2395 MODULE_FIRMWARE(FIRMWARE_RT2571);
2396 MODULE_LICENSE("GPL");
2397
2398 static struct usb_driver rt73usb_driver = {
2399         .name           = KBUILD_MODNAME,
2400         .id_table       = rt73usb_device_table,
2401         .probe          = rt2x00usb_probe,
2402         .disconnect     = rt2x00usb_disconnect,
2403         .suspend        = rt2x00usb_suspend,
2404         .resume         = rt2x00usb_resume,
2405 };
2406
2407 static int __init rt73usb_init(void)
2408 {
2409         return usb_register(&rt73usb_driver);
2410 }
2411
2412 static void __exit rt73usb_exit(void)
2413 {
2414         usb_deregister(&rt73usb_driver);
2415 }
2416
2417 module_init(rt73usb_init);
2418 module_exit(rt73usb_exit);