wimax/i2400m: rename misleading I2400M_PL_PAD to I2400M_PL_ALIGN
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2400pci
23         Abstract: rt2400pci device specific routines.
24         Supported chipsets: RT2460.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 #define WAIT_FOR_BBP(__dev, __reg) \
53         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56
57 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58                                 const unsigned int word, const u8 value)
59 {
60         u32 reg;
61
62         mutex_lock(&rt2x00dev->csr_mutex);
63
64         /*
65          * Wait until the BBP becomes available, afterwards we
66          * can safely write the new data into the register.
67          */
68         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69                 reg = 0;
70                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74
75                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
76         }
77
78         mutex_unlock(&rt2x00dev->csr_mutex);
79 }
80
81 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82                                const unsigned int word, u8 *value)
83 {
84         u32 reg;
85
86         mutex_lock(&rt2x00dev->csr_mutex);
87
88         /*
89          * Wait until the BBP becomes available, afterwards we
90          * can safely write the read request into the register.
91          * After the data has been written, we wait until hardware
92          * returns the correct value, if at any time the register
93          * doesn't become available in time, reg will be 0xffffffff
94          * which means we return 0xff to the caller.
95          */
96         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97                 reg = 0;
98                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101
102                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103
104                 WAIT_FOR_BBP(rt2x00dev, &reg);
105         }
106
107         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108
109         mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113                                const unsigned int word, const u32 value)
114 {
115         u32 reg;
116
117         mutex_lock(&rt2x00dev->csr_mutex);
118
119         /*
120          * Wait until the RF becomes available, afterwards we
121          * can safely write the new data into the register.
122          */
123         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124                 reg = 0;
125                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
129
130                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131                 rt2x00_rf_write(rt2x00dev, word, value);
132         }
133
134         mutex_unlock(&rt2x00dev->csr_mutex);
135 }
136
137 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
138 {
139         struct rt2x00_dev *rt2x00dev = eeprom->data;
140         u32 reg;
141
142         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
143
144         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146         eeprom->reg_data_clock =
147             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148         eeprom->reg_chip_select =
149             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
150 }
151
152 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
153 {
154         struct rt2x00_dev *rt2x00dev = eeprom->data;
155         u32 reg = 0;
156
157         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160                            !!eeprom->reg_data_clock);
161         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162                            !!eeprom->reg_chip_select);
163
164         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
165 }
166
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2400pci_rt2x00debug = {
169         .owner  = THIS_MODULE,
170         .csr    = {
171                 .read           = rt2x00pci_register_read,
172                 .write          = rt2x00pci_register_write,
173                 .flags          = RT2X00DEBUGFS_OFFSET,
174                 .word_base      = CSR_REG_BASE,
175                 .word_size      = sizeof(u32),
176                 .word_count     = CSR_REG_SIZE / sizeof(u32),
177         },
178         .eeprom = {
179                 .read           = rt2x00_eeprom_read,
180                 .write          = rt2x00_eeprom_write,
181                 .word_base      = EEPROM_BASE,
182                 .word_size      = sizeof(u16),
183                 .word_count     = EEPROM_SIZE / sizeof(u16),
184         },
185         .bbp    = {
186                 .read           = rt2400pci_bbp_read,
187                 .write          = rt2400pci_bbp_write,
188                 .word_base      = BBP_BASE,
189                 .word_size      = sizeof(u8),
190                 .word_count     = BBP_SIZE / sizeof(u8),
191         },
192         .rf     = {
193                 .read           = rt2x00_rf_read,
194                 .write          = rt2400pci_rf_write,
195                 .word_base      = RF_BASE,
196                 .word_size      = sizeof(u32),
197                 .word_count     = RF_SIZE / sizeof(u32),
198         },
199 };
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
201
202 #ifdef CONFIG_RT2X00_LIB_RFKILL
203 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205         u32 reg;
206
207         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210 #else
211 #define rt2400pci_rfkill_poll   NULL
212 #endif /* CONFIG_RT2X00_LIB_RFKILL */
213
214 #ifdef CONFIG_RT2X00_LIB_LEDS
215 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
216                                      enum led_brightness brightness)
217 {
218         struct rt2x00_led *led =
219             container_of(led_cdev, struct rt2x00_led, led_dev);
220         unsigned int enabled = brightness != LED_OFF;
221         u32 reg;
222
223         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
224
225         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
226                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
227         else if (led->type == LED_TYPE_ACTIVITY)
228                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
229
230         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
231 }
232
233 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
234                                unsigned long *delay_on,
235                                unsigned long *delay_off)
236 {
237         struct rt2x00_led *led =
238             container_of(led_cdev, struct rt2x00_led, led_dev);
239         u32 reg;
240
241         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
242         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
243         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
244         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
245
246         return 0;
247 }
248
249 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
250                                struct rt2x00_led *led,
251                                enum led_type type)
252 {
253         led->rt2x00dev = rt2x00dev;
254         led->type = type;
255         led->led_dev.brightness_set = rt2400pci_brightness_set;
256         led->led_dev.blink_set = rt2400pci_blink_set;
257         led->flags = LED_INITIALIZED;
258 }
259 #endif /* CONFIG_RT2X00_LIB_LEDS */
260
261 /*
262  * Configuration handlers.
263  */
264 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
265                                     const unsigned int filter_flags)
266 {
267         u32 reg;
268
269         /*
270          * Start configuration steps.
271          * Note that the version error will always be dropped
272          * since there is no filter for it at this time.
273          */
274         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
275         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
276                            !(filter_flags & FIF_FCSFAIL));
277         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
278                            !(filter_flags & FIF_PLCPFAIL));
279         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
280                            !(filter_flags & FIF_CONTROL));
281         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
282                            !(filter_flags & FIF_PROMISC_IN_BSS));
283         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
284                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
285                            !rt2x00dev->intf_ap_count);
286         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
287         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
288 }
289
290 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
291                                   struct rt2x00_intf *intf,
292                                   struct rt2x00intf_conf *conf,
293                                   const unsigned int flags)
294 {
295         unsigned int bcn_preload;
296         u32 reg;
297
298         if (flags & CONFIG_UPDATE_TYPE) {
299                 /*
300                  * Enable beacon config
301                  */
302                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
303                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
304                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
305                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
306
307                 /*
308                  * Enable synchronisation.
309                  */
310                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
311                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
312                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
313                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
314                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
315         }
316
317         if (flags & CONFIG_UPDATE_MAC)
318                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
319                                               conf->mac, sizeof(conf->mac));
320
321         if (flags & CONFIG_UPDATE_BSSID)
322                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
323                                               conf->bssid, sizeof(conf->bssid));
324 }
325
326 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
327                                  struct rt2x00lib_erp *erp)
328 {
329         int preamble_mask;
330         u32 reg;
331
332         /*
333          * When short preamble is enabled, we should set bit 0x08
334          */
335         preamble_mask = erp->short_preamble << 3;
336
337         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
338         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, erp->ack_timeout);
339         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
340                            erp->ack_consume_time);
341         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
342         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
343         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
344
345         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
346         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
347         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
348         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
349         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
350
351         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
352         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
353         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
354         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
355         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
356
357         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
358         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
359         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
360         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
361         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
362
363         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
364         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
365         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
366         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
367         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
368
369         rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
370
371         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
372         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
373         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
374
375         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
376         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
377         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
378         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
379
380         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
381         rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
382         rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
383         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
384
385         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
386         rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
387         rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
388         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
389 }
390
391 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
392                                  struct antenna_setup *ant)
393 {
394         u8 r1;
395         u8 r4;
396
397         /*
398          * We should never come here because rt2x00lib is supposed
399          * to catch this and send us the correct antenna explicitely.
400          */
401         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
402                ant->tx == ANTENNA_SW_DIVERSITY);
403
404         rt2400pci_bbp_read(rt2x00dev, 4, &r4);
405         rt2400pci_bbp_read(rt2x00dev, 1, &r1);
406
407         /*
408          * Configure the TX antenna.
409          */
410         switch (ant->tx) {
411         case ANTENNA_HW_DIVERSITY:
412                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
413                 break;
414         case ANTENNA_A:
415                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
416                 break;
417         case ANTENNA_B:
418         default:
419                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
420                 break;
421         }
422
423         /*
424          * Configure the RX antenna.
425          */
426         switch (ant->rx) {
427         case ANTENNA_HW_DIVERSITY:
428                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
429                 break;
430         case ANTENNA_A:
431                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
432                 break;
433         case ANTENNA_B:
434         default:
435                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
436                 break;
437         }
438
439         rt2400pci_bbp_write(rt2x00dev, 4, r4);
440         rt2400pci_bbp_write(rt2x00dev, 1, r1);
441 }
442
443 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
444                                      struct rf_channel *rf)
445 {
446         /*
447          * Switch on tuning bits.
448          */
449         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
450         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
451
452         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
453         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
454         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
455
456         /*
457          * RF2420 chipset don't need any additional actions.
458          */
459         if (rt2x00_rf(&rt2x00dev->chip, RF2420))
460                 return;
461
462         /*
463          * For the RT2421 chipsets we need to write an invalid
464          * reference clock rate to activate auto_tune.
465          * After that we set the value back to the correct channel.
466          */
467         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
468         rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
469         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
470
471         msleep(1);
472
473         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
474         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
475         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
476
477         msleep(1);
478
479         /*
480          * Switch off tuning bits.
481          */
482         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
483         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
484
485         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
486         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
487
488         /*
489          * Clear false CRC during channel switch.
490          */
491         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
492 }
493
494 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
495 {
496         rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
497 }
498
499 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
500                                          struct rt2x00lib_conf *libconf)
501 {
502         u32 reg;
503
504         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
505         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
506                            libconf->conf->long_frame_max_tx_count);
507         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
508                            libconf->conf->short_frame_max_tx_count);
509         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
510 }
511
512 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
513                                 struct rt2x00lib_conf *libconf)
514 {
515         enum dev_state state =
516             (libconf->conf->flags & IEEE80211_CONF_PS) ?
517                 STATE_SLEEP : STATE_AWAKE;
518         u32 reg;
519
520         if (state == STATE_SLEEP) {
521                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
522                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
523                                    (rt2x00dev->beacon_int - 20) * 16);
524                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
525                                    libconf->conf->listen_interval - 1);
526
527                 /* We must first disable autowake before it can be enabled */
528                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
529                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
530
531                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
532                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
533         }
534
535         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
536 }
537
538 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
539                              struct rt2x00lib_conf *libconf,
540                              const unsigned int flags)
541 {
542         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
543                 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
544         if (flags & IEEE80211_CONF_CHANGE_POWER)
545                 rt2400pci_config_txpower(rt2x00dev,
546                                          libconf->conf->power_level);
547         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
548                 rt2400pci_config_retry_limit(rt2x00dev, libconf);
549         if (flags & IEEE80211_CONF_CHANGE_PS)
550                 rt2400pci_config_ps(rt2x00dev, libconf);
551 }
552
553 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
554                                 const int cw_min, const int cw_max)
555 {
556         u32 reg;
557
558         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
559         rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
560         rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
561         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
562 }
563
564 /*
565  * Link tuning
566  */
567 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
568                                  struct link_qual *qual)
569 {
570         u32 reg;
571         u8 bbp;
572
573         /*
574          * Update FCS error count from register.
575          */
576         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
577         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
578
579         /*
580          * Update False CCA count from register.
581          */
582         rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
583         qual->false_cca = bbp;
584 }
585
586 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
587                                      struct link_qual *qual, u8 vgc_level)
588 {
589         rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
590         qual->vgc_level = vgc_level;
591         qual->vgc_level_reg = vgc_level;
592 }
593
594 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
595                                   struct link_qual *qual)
596 {
597         rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
598 }
599
600 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
601                                  struct link_qual *qual, const u32 count)
602 {
603         /*
604          * The link tuner should not run longer then 60 seconds,
605          * and should run once every 2 seconds.
606          */
607         if (count > 60 || !(count & 1))
608                 return;
609
610         /*
611          * Base r13 link tuning on the false cca count.
612          */
613         if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
614                 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
615         else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
616                 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
617 }
618
619 /*
620  * Initialization functions.
621  */
622 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
623 {
624         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
625         u32 word;
626
627         if (entry->queue->qid == QID_RX) {
628                 rt2x00_desc_read(entry_priv->desc, 0, &word);
629
630                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
631         } else {
632                 rt2x00_desc_read(entry_priv->desc, 0, &word);
633
634                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
635                         rt2x00_get_field32(word, TXD_W0_VALID));
636         }
637 }
638
639 static void rt2400pci_clear_entry(struct queue_entry *entry)
640 {
641         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
642         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
643         u32 word;
644
645         if (entry->queue->qid == QID_RX) {
646                 rt2x00_desc_read(entry_priv->desc, 2, &word);
647                 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
648                 rt2x00_desc_write(entry_priv->desc, 2, word);
649
650                 rt2x00_desc_read(entry_priv->desc, 1, &word);
651                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
652                 rt2x00_desc_write(entry_priv->desc, 1, word);
653
654                 rt2x00_desc_read(entry_priv->desc, 0, &word);
655                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
656                 rt2x00_desc_write(entry_priv->desc, 0, word);
657         } else {
658                 rt2x00_desc_read(entry_priv->desc, 0, &word);
659                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
660                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
661                 rt2x00_desc_write(entry_priv->desc, 0, word);
662         }
663 }
664
665 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
666 {
667         struct queue_entry_priv_pci *entry_priv;
668         u32 reg;
669
670         /*
671          * Initialize registers.
672          */
673         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
674         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
675         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
676         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
677         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
678         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
679
680         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
681         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
682         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
683                            entry_priv->desc_dma);
684         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
685
686         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
687         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
688         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
689                            entry_priv->desc_dma);
690         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
691
692         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
693         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
694         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
695                            entry_priv->desc_dma);
696         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
697
698         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
699         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
700         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
701                            entry_priv->desc_dma);
702         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
703
704         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
705         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
706         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
707         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
708
709         entry_priv = rt2x00dev->rx->entries[0].priv_data;
710         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
711         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
712                            entry_priv->desc_dma);
713         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
714
715         return 0;
716 }
717
718 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
719 {
720         u32 reg;
721
722         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
723         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
724         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
725         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
726
727         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
728         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
729         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
730         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
731         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
732
733         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
734         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
735                            (rt2x00dev->rx->data_size / 128));
736         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
737
738         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
739         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
740         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
741         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
742         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
743         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
744         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
745         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
746         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
747         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
748
749         rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
750
751         rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
752         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
753         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
754         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
755         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
756         rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
757
758         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
759         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
760         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
761         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
762         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
763         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
764         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
765         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
766
767         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
768
769         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
770                 return -EBUSY;
771
772         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
773         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
774
775         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
776         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
777         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
778
779         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
780         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
781         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
782         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
783         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
784         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
785
786         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
787         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
788         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
789         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
790         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
791
792         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
793         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
794         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
795         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
796
797         /*
798          * We must clear the FCS and FIFO error count.
799          * These registers are cleared on read,
800          * so we may pass a useless variable to store the value.
801          */
802         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
803         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
804
805         return 0;
806 }
807
808 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
809 {
810         unsigned int i;
811         u8 value;
812
813         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
814                 rt2400pci_bbp_read(rt2x00dev, 0, &value);
815                 if ((value != 0xff) && (value != 0x00))
816                         return 0;
817                 udelay(REGISTER_BUSY_DELAY);
818         }
819
820         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
821         return -EACCES;
822 }
823
824 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
825 {
826         unsigned int i;
827         u16 eeprom;
828         u8 reg_id;
829         u8 value;
830
831         if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
832                 return -EACCES;
833
834         rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
835         rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
836         rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
837         rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
838         rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
839         rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
840         rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
841         rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
842         rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
843         rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
844         rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
845         rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
846         rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
847         rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
848
849         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
850                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
851
852                 if (eeprom != 0xffff && eeprom != 0x0000) {
853                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
854                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
855                         rt2400pci_bbp_write(rt2x00dev, reg_id, value);
856                 }
857         }
858
859         return 0;
860 }
861
862 /*
863  * Device state switch handlers.
864  */
865 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
866                                 enum dev_state state)
867 {
868         u32 reg;
869
870         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
871         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
872                            (state == STATE_RADIO_RX_OFF) ||
873                            (state == STATE_RADIO_RX_OFF_LINK));
874         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
875 }
876
877 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
878                                  enum dev_state state)
879 {
880         int mask = (state == STATE_RADIO_IRQ_OFF);
881         u32 reg;
882
883         /*
884          * When interrupts are being enabled, the interrupt registers
885          * should clear the register to assure a clean state.
886          */
887         if (state == STATE_RADIO_IRQ_ON) {
888                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
889                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
890         }
891
892         /*
893          * Only toggle the interrupts bits we are going to use.
894          * Non-checked interrupt bits are disabled by default.
895          */
896         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
897         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
898         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
899         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
900         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
901         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
902         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
903 }
904
905 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
906 {
907         /*
908          * Initialize all registers.
909          */
910         if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
911                      rt2400pci_init_registers(rt2x00dev) ||
912                      rt2400pci_init_bbp(rt2x00dev)))
913                 return -EIO;
914
915         return 0;
916 }
917
918 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
919 {
920         /*
921          * Disable power
922          */
923         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
924 }
925
926 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
927                                enum dev_state state)
928 {
929         u32 reg;
930         unsigned int i;
931         char put_to_sleep;
932         char bbp_state;
933         char rf_state;
934
935         put_to_sleep = (state != STATE_AWAKE);
936
937         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
938         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
939         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
940         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
941         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
942         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
943
944         /*
945          * Device is not guaranteed to be in the requested state yet.
946          * We must wait until the register indicates that the
947          * device has entered the correct state.
948          */
949         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
950                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
951                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
952                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
953                 if (bbp_state == state && rf_state == state)
954                         return 0;
955                 msleep(10);
956         }
957
958         return -EBUSY;
959 }
960
961 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
962                                       enum dev_state state)
963 {
964         int retval = 0;
965
966         switch (state) {
967         case STATE_RADIO_ON:
968                 retval = rt2400pci_enable_radio(rt2x00dev);
969                 break;
970         case STATE_RADIO_OFF:
971                 rt2400pci_disable_radio(rt2x00dev);
972                 break;
973         case STATE_RADIO_RX_ON:
974         case STATE_RADIO_RX_ON_LINK:
975         case STATE_RADIO_RX_OFF:
976         case STATE_RADIO_RX_OFF_LINK:
977                 rt2400pci_toggle_rx(rt2x00dev, state);
978                 break;
979         case STATE_RADIO_IRQ_ON:
980         case STATE_RADIO_IRQ_OFF:
981                 rt2400pci_toggle_irq(rt2x00dev, state);
982                 break;
983         case STATE_DEEP_SLEEP:
984         case STATE_SLEEP:
985         case STATE_STANDBY:
986         case STATE_AWAKE:
987                 retval = rt2400pci_set_state(rt2x00dev, state);
988                 break;
989         default:
990                 retval = -ENOTSUPP;
991                 break;
992         }
993
994         if (unlikely(retval))
995                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
996                       state, retval);
997
998         return retval;
999 }
1000
1001 /*
1002  * TX descriptor initialization
1003  */
1004 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1005                                     struct sk_buff *skb,
1006                                     struct txentry_desc *txdesc)
1007 {
1008         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1009         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1010         __le32 *txd = skbdesc->desc;
1011         u32 word;
1012
1013         /*
1014          * Start writing the descriptor words.
1015          */
1016         rt2x00_desc_read(entry_priv->desc, 1, &word);
1017         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1018         rt2x00_desc_write(entry_priv->desc, 1, word);
1019
1020         rt2x00_desc_read(txd, 2, &word);
1021         rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
1022         rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1023         rt2x00_desc_write(txd, 2, word);
1024
1025         rt2x00_desc_read(txd, 3, &word);
1026         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1027         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1028         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1029         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1030         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1031         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1032         rt2x00_desc_write(txd, 3, word);
1033
1034         rt2x00_desc_read(txd, 4, &word);
1035         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1036         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1037         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1038         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1039         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1040         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1041         rt2x00_desc_write(txd, 4, word);
1042
1043         rt2x00_desc_read(txd, 0, &word);
1044         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1045         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1046         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1047                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1048         rt2x00_set_field32(&word, TXD_W0_ACK,
1049                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1050         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1051                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1052         rt2x00_set_field32(&word, TXD_W0_RTS,
1053                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1054         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1055         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1056                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1057         rt2x00_desc_write(txd, 0, word);
1058 }
1059
1060 /*
1061  * TX data initialization
1062  */
1063 static void rt2400pci_write_beacon(struct queue_entry *entry)
1064 {
1065         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1066         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1067         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1068         u32 word;
1069         u32 reg;
1070
1071         /*
1072          * Disable beaconing while we are reloading the beacon data,
1073          * otherwise we might be sending out invalid data.
1074          */
1075         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1076         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1077         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1078         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1079         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1080
1081         /*
1082          * Replace rt2x00lib allocated descriptor with the
1083          * pointer to the _real_ hardware descriptor.
1084          * After that, map the beacon to DMA and update the
1085          * descriptor.
1086          */
1087         memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1088         skbdesc->desc = entry_priv->desc;
1089
1090         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1091
1092         rt2x00_desc_read(entry_priv->desc, 1, &word);
1093         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1094         rt2x00_desc_write(entry_priv->desc, 1, word);
1095 }
1096
1097 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1098                                     const enum data_queue_qid queue)
1099 {
1100         u32 reg;
1101
1102         if (queue == QID_BEACON) {
1103                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1104                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1105                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1106                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1107                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1108                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1109                 }
1110                 return;
1111         }
1112
1113         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1114         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1115         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1116         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1117         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1118 }
1119
1120 static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1121                                     const enum data_queue_qid qid)
1122 {
1123         u32 reg;
1124
1125         if (qid == QID_BEACON) {
1126                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1127         } else {
1128                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1129                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1130                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1131         }
1132 }
1133
1134 /*
1135  * RX control handlers
1136  */
1137 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1138                                   struct rxdone_entry_desc *rxdesc)
1139 {
1140         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1141         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1142         u32 word0;
1143         u32 word2;
1144         u32 word3;
1145         u32 word4;
1146         u64 tsf;
1147         u32 rx_low;
1148         u32 rx_high;
1149
1150         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1151         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1152         rt2x00_desc_read(entry_priv->desc, 3, &word3);
1153         rt2x00_desc_read(entry_priv->desc, 4, &word4);
1154
1155         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1156                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1157         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1158                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1159
1160         /*
1161          * We only get the lower 32bits from the timestamp,
1162          * to get the full 64bits we must complement it with
1163          * the timestamp from get_tsf().
1164          * Note that when a wraparound of the lower 32bits
1165          * has occurred between the frame arrival and the get_tsf()
1166          * call, we must decrease the higher 32bits with 1 to get
1167          * to correct value.
1168          */
1169         tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1170         rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1171         rx_high = upper_32_bits(tsf);
1172
1173         if ((u32)tsf <= rx_low)
1174                 rx_high--;
1175
1176         /*
1177          * Obtain the status about this packet.
1178          * The signal is the PLCP value, and needs to be stripped
1179          * of the preamble bit (0x08).
1180          */
1181         rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1182         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1183         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1184             entry->queue->rt2x00dev->rssi_offset;
1185         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1186
1187         rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1188         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1189                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1190 }
1191
1192 /*
1193  * Interrupt functions.
1194  */
1195 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1196                              const enum data_queue_qid queue_idx)
1197 {
1198         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1199         struct queue_entry_priv_pci *entry_priv;
1200         struct queue_entry *entry;
1201         struct txdone_entry_desc txdesc;
1202         u32 word;
1203
1204         while (!rt2x00queue_empty(queue)) {
1205                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1206                 entry_priv = entry->priv_data;
1207                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1208
1209                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1210                     !rt2x00_get_field32(word, TXD_W0_VALID))
1211                         break;
1212
1213                 /*
1214                  * Obtain the status about this packet.
1215                  */
1216                 txdesc.flags = 0;
1217                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1218                 case 0: /* Success */
1219                 case 1: /* Success with retry */
1220                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1221                         break;
1222                 case 2: /* Failure, excessive retries */
1223                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1224                         /* Don't break, this is a failed frame! */
1225                 default: /* Failure */
1226                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1227                 }
1228                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1229
1230                 rt2x00lib_txdone(entry, &txdesc);
1231         }
1232 }
1233
1234 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1235 {
1236         struct rt2x00_dev *rt2x00dev = dev_instance;
1237         u32 reg;
1238
1239         /*
1240          * Get the interrupt sources & saved to local variable.
1241          * Write register value back to clear pending interrupts.
1242          */
1243         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1244         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1245
1246         if (!reg)
1247                 return IRQ_NONE;
1248
1249         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1250                 return IRQ_HANDLED;
1251
1252         /*
1253          * Handle interrupts, walk through all bits
1254          * and run the tasks, the bits are checked in order of
1255          * priority.
1256          */
1257
1258         /*
1259          * 1 - Beacon timer expired interrupt.
1260          */
1261         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1262                 rt2x00lib_beacondone(rt2x00dev);
1263
1264         /*
1265          * 2 - Rx ring done interrupt.
1266          */
1267         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1268                 rt2x00pci_rxdone(rt2x00dev);
1269
1270         /*
1271          * 3 - Atim ring transmit done interrupt.
1272          */
1273         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1274                 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1275
1276         /*
1277          * 4 - Priority ring transmit done interrupt.
1278          */
1279         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1280                 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1281
1282         /*
1283          * 5 - Tx ring transmit done interrupt.
1284          */
1285         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1286                 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1287
1288         return IRQ_HANDLED;
1289 }
1290
1291 /*
1292  * Device probe functions.
1293  */
1294 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1295 {
1296         struct eeprom_93cx6 eeprom;
1297         u32 reg;
1298         u16 word;
1299         u8 *mac;
1300
1301         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1302
1303         eeprom.data = rt2x00dev;
1304         eeprom.register_read = rt2400pci_eepromregister_read;
1305         eeprom.register_write = rt2400pci_eepromregister_write;
1306         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1307             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1308         eeprom.reg_data_in = 0;
1309         eeprom.reg_data_out = 0;
1310         eeprom.reg_data_clock = 0;
1311         eeprom.reg_chip_select = 0;
1312
1313         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1314                                EEPROM_SIZE / sizeof(u16));
1315
1316         /*
1317          * Start validation of the data that has been read.
1318          */
1319         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1320         if (!is_valid_ether_addr(mac)) {
1321                 random_ether_addr(mac);
1322                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1323         }
1324
1325         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1326         if (word == 0xffff) {
1327                 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1328                 return -EINVAL;
1329         }
1330
1331         return 0;
1332 }
1333
1334 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1335 {
1336         u32 reg;
1337         u16 value;
1338         u16 eeprom;
1339
1340         /*
1341          * Read EEPROM word for configuration.
1342          */
1343         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1344
1345         /*
1346          * Identify RF chipset.
1347          */
1348         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1349         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1350         rt2x00_set_chip_rf(rt2x00dev, value, reg);
1351
1352         if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1353             !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1354                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1355                 return -ENODEV;
1356         }
1357
1358         /*
1359          * Identify default antenna configuration.
1360          */
1361         rt2x00dev->default_ant.tx =
1362             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1363         rt2x00dev->default_ant.rx =
1364             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1365
1366         /*
1367          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1368          * I am not 100% sure about this, but the legacy drivers do not
1369          * indicate antenna swapping in software is required when
1370          * diversity is enabled.
1371          */
1372         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1373                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1374         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1375                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1376
1377         /*
1378          * Store led mode, for correct led behaviour.
1379          */
1380 #ifdef CONFIG_RT2X00_LIB_LEDS
1381         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1382
1383         rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1384         if (value == LED_MODE_TXRX_ACTIVITY ||
1385             value == LED_MODE_DEFAULT ||
1386             value == LED_MODE_ASUS)
1387                 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1388                                    LED_TYPE_ACTIVITY);
1389 #endif /* CONFIG_RT2X00_LIB_LEDS */
1390
1391         /*
1392          * Detect if this device has an hardware controlled radio.
1393          */
1394 #ifdef CONFIG_RT2X00_LIB_RFKILL
1395         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1396                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1397 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1398
1399         /*
1400          * Check if the BBP tuning should be enabled.
1401          */
1402         if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1403                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1404
1405         return 0;
1406 }
1407
1408 /*
1409  * RF value list for RF2420 & RF2421
1410  * Supports: 2.4 GHz
1411  */
1412 static const struct rf_channel rf_vals_b[] = {
1413         { 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1414         { 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1415         { 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1416         { 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1417         { 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1418         { 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1419         { 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1420         { 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1421         { 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1422         { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1423         { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1424         { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1425         { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1426         { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1427 };
1428
1429 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1430 {
1431         struct hw_mode_spec *spec = &rt2x00dev->spec;
1432         struct channel_info *info;
1433         char *tx_power;
1434         unsigned int i;
1435
1436         /*
1437          * Initialize all hw fields.
1438          */
1439         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1440                                IEEE80211_HW_SIGNAL_DBM |
1441                                IEEE80211_HW_SUPPORTS_PS |
1442                                IEEE80211_HW_PS_NULLFUNC_STACK;
1443         rt2x00dev->hw->extra_tx_headroom = 0;
1444
1445         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1446         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1447                                 rt2x00_eeprom_addr(rt2x00dev,
1448                                                    EEPROM_MAC_ADDR_0));
1449
1450         /*
1451          * Initialize hw_mode information.
1452          */
1453         spec->supported_bands = SUPPORT_BAND_2GHZ;
1454         spec->supported_rates = SUPPORT_RATE_CCK;
1455
1456         spec->num_channels = ARRAY_SIZE(rf_vals_b);
1457         spec->channels = rf_vals_b;
1458
1459         /*
1460          * Create channel information array
1461          */
1462         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1463         if (!info)
1464                 return -ENOMEM;
1465
1466         spec->channels_info = info;
1467
1468         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1469         for (i = 0; i < 14; i++)
1470                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1471
1472         return 0;
1473 }
1474
1475 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1476 {
1477         int retval;
1478
1479         /*
1480          * Allocate eeprom data.
1481          */
1482         retval = rt2400pci_validate_eeprom(rt2x00dev);
1483         if (retval)
1484                 return retval;
1485
1486         retval = rt2400pci_init_eeprom(rt2x00dev);
1487         if (retval)
1488                 return retval;
1489
1490         /*
1491          * Initialize hw specifications.
1492          */
1493         retval = rt2400pci_probe_hw_mode(rt2x00dev);
1494         if (retval)
1495                 return retval;
1496
1497         /*
1498          * This device requires the atim queue and DMA-mapped skbs.
1499          */
1500         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1501         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1502
1503         /*
1504          * Set the rssi offset.
1505          */
1506         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1507
1508         return 0;
1509 }
1510
1511 /*
1512  * IEEE80211 stack callback functions.
1513  */
1514 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1515                              const struct ieee80211_tx_queue_params *params)
1516 {
1517         struct rt2x00_dev *rt2x00dev = hw->priv;
1518
1519         /*
1520          * We don't support variating cw_min and cw_max variables
1521          * per queue. So by default we only configure the TX queue,
1522          * and ignore all other configurations.
1523          */
1524         if (queue != 0)
1525                 return -EINVAL;
1526
1527         if (rt2x00mac_conf_tx(hw, queue, params))
1528                 return -EINVAL;
1529
1530         /*
1531          * Write configuration to register.
1532          */
1533         rt2400pci_config_cw(rt2x00dev,
1534                             rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1535
1536         return 0;
1537 }
1538
1539 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1540 {
1541         struct rt2x00_dev *rt2x00dev = hw->priv;
1542         u64 tsf;
1543         u32 reg;
1544
1545         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1546         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1547         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1548         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1549
1550         return tsf;
1551 }
1552
1553 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1554 {
1555         struct rt2x00_dev *rt2x00dev = hw->priv;
1556         u32 reg;
1557
1558         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1559         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1560 }
1561
1562 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1563         .tx                     = rt2x00mac_tx,
1564         .start                  = rt2x00mac_start,
1565         .stop                   = rt2x00mac_stop,
1566         .add_interface          = rt2x00mac_add_interface,
1567         .remove_interface       = rt2x00mac_remove_interface,
1568         .config                 = rt2x00mac_config,
1569         .configure_filter       = rt2x00mac_configure_filter,
1570         .get_stats              = rt2x00mac_get_stats,
1571         .bss_info_changed       = rt2x00mac_bss_info_changed,
1572         .conf_tx                = rt2400pci_conf_tx,
1573         .get_tx_stats           = rt2x00mac_get_tx_stats,
1574         .get_tsf                = rt2400pci_get_tsf,
1575         .tx_last_beacon         = rt2400pci_tx_last_beacon,
1576 };
1577
1578 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1579         .irq_handler            = rt2400pci_interrupt,
1580         .probe_hw               = rt2400pci_probe_hw,
1581         .initialize             = rt2x00pci_initialize,
1582         .uninitialize           = rt2x00pci_uninitialize,
1583         .get_entry_state        = rt2400pci_get_entry_state,
1584         .clear_entry            = rt2400pci_clear_entry,
1585         .set_device_state       = rt2400pci_set_device_state,
1586         .rfkill_poll            = rt2400pci_rfkill_poll,
1587         .link_stats             = rt2400pci_link_stats,
1588         .reset_tuner            = rt2400pci_reset_tuner,
1589         .link_tuner             = rt2400pci_link_tuner,
1590         .write_tx_desc          = rt2400pci_write_tx_desc,
1591         .write_tx_data          = rt2x00pci_write_tx_data,
1592         .write_beacon           = rt2400pci_write_beacon,
1593         .kick_tx_queue          = rt2400pci_kick_tx_queue,
1594         .kill_tx_queue          = rt2400pci_kill_tx_queue,
1595         .fill_rxdone            = rt2400pci_fill_rxdone,
1596         .config_filter          = rt2400pci_config_filter,
1597         .config_intf            = rt2400pci_config_intf,
1598         .config_erp             = rt2400pci_config_erp,
1599         .config_ant             = rt2400pci_config_ant,
1600         .config                 = rt2400pci_config,
1601 };
1602
1603 static const struct data_queue_desc rt2400pci_queue_rx = {
1604         .entry_num              = RX_ENTRIES,
1605         .data_size              = DATA_FRAME_SIZE,
1606         .desc_size              = RXD_DESC_SIZE,
1607         .priv_size              = sizeof(struct queue_entry_priv_pci),
1608 };
1609
1610 static const struct data_queue_desc rt2400pci_queue_tx = {
1611         .entry_num              = TX_ENTRIES,
1612         .data_size              = DATA_FRAME_SIZE,
1613         .desc_size              = TXD_DESC_SIZE,
1614         .priv_size              = sizeof(struct queue_entry_priv_pci),
1615 };
1616
1617 static const struct data_queue_desc rt2400pci_queue_bcn = {
1618         .entry_num              = BEACON_ENTRIES,
1619         .data_size              = MGMT_FRAME_SIZE,
1620         .desc_size              = TXD_DESC_SIZE,
1621         .priv_size              = sizeof(struct queue_entry_priv_pci),
1622 };
1623
1624 static const struct data_queue_desc rt2400pci_queue_atim = {
1625         .entry_num              = ATIM_ENTRIES,
1626         .data_size              = DATA_FRAME_SIZE,
1627         .desc_size              = TXD_DESC_SIZE,
1628         .priv_size              = sizeof(struct queue_entry_priv_pci),
1629 };
1630
1631 static const struct rt2x00_ops rt2400pci_ops = {
1632         .name           = KBUILD_MODNAME,
1633         .max_sta_intf   = 1,
1634         .max_ap_intf    = 1,
1635         .eeprom_size    = EEPROM_SIZE,
1636         .rf_size        = RF_SIZE,
1637         .tx_queues      = NUM_TX_QUEUES,
1638         .rx             = &rt2400pci_queue_rx,
1639         .tx             = &rt2400pci_queue_tx,
1640         .bcn            = &rt2400pci_queue_bcn,
1641         .atim           = &rt2400pci_queue_atim,
1642         .lib            = &rt2400pci_rt2x00_ops,
1643         .hw             = &rt2400pci_mac80211_ops,
1644 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1645         .debugfs        = &rt2400pci_rt2x00debug,
1646 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1647 };
1648
1649 /*
1650  * RT2400pci module information.
1651  */
1652 static struct pci_device_id rt2400pci_device_table[] = {
1653         { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1654         { 0, }
1655 };
1656
1657 MODULE_AUTHOR(DRV_PROJECT);
1658 MODULE_VERSION(DRV_VERSION);
1659 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1660 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1661 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1662 MODULE_LICENSE("GPL");
1663
1664 static struct pci_driver rt2400pci_driver = {
1665         .name           = KBUILD_MODNAME,
1666         .id_table       = rt2400pci_device_table,
1667         .probe          = rt2x00pci_probe,
1668         .remove         = __devexit_p(rt2x00pci_remove),
1669         .suspend        = rt2x00pci_suspend,
1670         .resume         = rt2x00pci_resume,
1671 };
1672
1673 static int __init rt2400pci_init(void)
1674 {
1675         return pci_register_driver(&rt2400pci_driver);
1676 }
1677
1678 static void __exit rt2400pci_exit(void)
1679 {
1680         pci_unregister_driver(&rt2400pci_driver);
1681 }
1682
1683 module_init(rt2400pci_init);
1684 module_exit(rt2400pci_exit);