2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/crypto.h>
34 #include <linux/hw_random.h>
35 #include <linux/ktime.h>
37 #include <crypto/algapi.h>
38 #include <crypto/des.h>
40 #include <asm/kmap_types.h>
48 #define dprintk(f, a...) printk(f, ##a)
50 #define dprintk(f, a...) do {} while (0)
53 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
54 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
55 MODULE_PARM_DESC(hifn_pll_ref,
56 "PLL reference clock (pci[freq] or ext[freq], default ext)");
58 static atomic_t hifn_dev_number;
60 #define ACRYPTO_OP_DECRYPT 0
61 #define ACRYPTO_OP_ENCRYPT 1
62 #define ACRYPTO_OP_HMAC 2
63 #define ACRYPTO_OP_RNG 3
65 #define ACRYPTO_MODE_ECB 0
66 #define ACRYPTO_MODE_CBC 1
67 #define ACRYPTO_MODE_CFB 2
68 #define ACRYPTO_MODE_OFB 3
70 #define ACRYPTO_TYPE_AES_128 0
71 #define ACRYPTO_TYPE_AES_192 1
72 #define ACRYPTO_TYPE_AES_256 2
73 #define ACRYPTO_TYPE_3DES 3
74 #define ACRYPTO_TYPE_DES 4
76 #define PCI_VENDOR_ID_HIFN 0x13A3
77 #define PCI_DEVICE_ID_HIFN_7955 0x0020
78 #define PCI_DEVICE_ID_HIFN_7956 0x001d
80 /* I/O region sizes */
82 #define HIFN_BAR0_SIZE 0x1000
83 #define HIFN_BAR1_SIZE 0x2000
84 #define HIFN_BAR2_SIZE 0x8000
88 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
89 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
90 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
91 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
92 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
93 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
94 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
95 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
96 #define HIFN_CHIP_ID 0x98 /* Chip ID */
99 * Processing Unit Registers (offset from BASEREG0)
101 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
102 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
103 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
104 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
105 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
106 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
107 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
108 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
109 #define HIFN_0_SPACESIZE 0x20 /* Register space size */
111 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
112 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
113 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
114 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
115 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
116 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
118 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
119 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
120 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
121 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
122 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
123 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
124 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
125 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
126 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
127 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
128 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
130 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
131 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
132 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
133 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
134 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
135 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
136 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
137 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
138 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
139 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
140 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
141 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
142 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
143 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
144 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
145 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
146 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
147 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
148 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
149 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
150 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
151 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
152 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
153 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
155 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
156 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
157 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
158 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
159 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
160 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
161 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
162 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
163 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
164 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
165 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
167 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
168 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
169 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
170 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
171 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
172 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
173 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
174 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
175 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
176 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
177 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
178 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
179 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
180 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
181 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
182 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
183 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
184 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
186 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
187 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
188 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
190 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
191 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
194 * DMA Interface Registers (offset from BASEREG1)
196 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
197 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
198 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
199 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
200 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
201 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
202 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
203 #define HIFN_1_PLL 0x4c /* 795x: PLL config */
204 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
205 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
206 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
207 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
208 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
209 #define HIFN_1_REVID 0x98 /* Revision ID */
210 #define HIFN_1_UNLOCK_SECRET1 0xf4
211 #define HIFN_1_UNLOCK_SECRET2 0xfc
212 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
213 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
214 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
215 #define HIFN_1_PUB_OP 0x308 /* Public Operand */
216 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */
217 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
218 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
219 #define HIFN_1_RNG_DATA 0x318 /* RNG data */
220 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
221 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
223 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
224 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
225 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
226 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
227 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
228 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
229 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
230 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
231 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
232 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
233 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
234 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
235 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
236 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
237 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
238 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
239 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
240 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
241 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
242 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
243 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
244 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
245 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
246 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
247 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
248 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
249 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
250 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
251 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
252 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
253 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
254 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
255 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
256 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
257 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
258 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
259 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
260 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
261 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
263 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
264 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
265 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
266 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
267 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
268 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
269 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
270 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
271 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
272 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
273 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
274 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
275 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
276 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
277 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
278 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
279 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
280 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
281 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
282 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
283 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
284 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
285 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
287 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
288 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
289 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
290 #define HIFN_DMACNFG_UNLOCK 0x00000800
291 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
292 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
293 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
294 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
295 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
297 /* PLL configuration register */
298 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
299 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
300 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
301 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
302 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
303 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
304 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
305 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
306 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
307 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
308 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
309 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
310 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
311 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
312 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
313 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
314 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
316 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
318 /* Public key reset register (HIFN_1_PUB_RESET) */
319 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
321 /* Public base address register (HIFN_1_PUB_BASE) */
322 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
324 /* Public operand length register (HIFN_1_PUB_OPLEN) */
325 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
326 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
327 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
328 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent lenght shift */
329 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
330 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
332 /* Public operation register (HIFN_1_PUB_OP) */
333 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
334 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
335 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
336 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
337 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
338 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
339 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
340 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
341 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
342 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
343 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
344 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
345 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
346 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
347 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
348 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
349 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
350 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
351 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
352 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
354 /* Public status register (HIFN_1_PUB_STATUS) */
355 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
356 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
358 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
359 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
361 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
362 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
364 #define HIFN_NAMESIZE 32
365 #define HIFN_MAX_RESULT_ORDER 5
367 #define HIFN_D_CMD_RSIZE 24*4
368 #define HIFN_D_SRC_RSIZE 80*4
369 #define HIFN_D_DST_RSIZE 80*4
370 #define HIFN_D_RES_RSIZE 24*4
372 #define HIFN_D_DST_DALIGN 4
374 #define HIFN_QUEUE_LENGTH HIFN_D_CMD_RSIZE-1
376 #define AES_MIN_KEY_SIZE 16
377 #define AES_MAX_KEY_SIZE 32
379 #define HIFN_DES_KEY_LENGTH 8
380 #define HIFN_3DES_KEY_LENGTH 24
381 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
382 #define HIFN_IV_LENGTH 8
383 #define HIFN_AES_IV_LENGTH 16
384 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
386 #define HIFN_MAC_KEY_LENGTH 64
387 #define HIFN_MD5_LENGTH 16
388 #define HIFN_SHA1_LENGTH 20
389 #define HIFN_MAC_TRUNC_LENGTH 12
391 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
392 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
393 #define HIFN_USED_RESULT 12
402 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1];
403 struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1];
404 struct hifn_desc dstr[HIFN_D_DST_RSIZE+1];
405 struct hifn_desc resr[HIFN_D_RES_RSIZE+1];
407 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
408 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
410 u64 test_src, test_dst;
413 * Our current positions for insertion and removal from the descriptor
416 volatile int cmdi, srci, dsti, resi;
417 volatile int cmdu, srcu, dstu, resu;
418 int cmdk, srck, dstk, resk;
421 #define HIFN_FLAG_CMD_BUSY (1<<0)
422 #define HIFN_FLAG_SRC_BUSY (1<<1)
423 #define HIFN_FLAG_DST_BUSY (1<<2)
424 #define HIFN_FLAG_RES_BUSY (1<<3)
425 #define HIFN_FLAG_OLD_KEY (1<<4)
427 #define HIFN_DEFAULT_ACTIVE_NUM 5
431 char name[HIFN_NAMESIZE];
435 struct pci_dev *pdev;
436 void __iomem *bar[3];
438 unsigned long result_mem;
446 void *sa[HIFN_D_RES_RSIZE];
454 struct delayed_work work;
456 unsigned long success;
457 unsigned long prev_success;
461 struct tasklet_struct tasklet;
463 struct crypto_queue queue;
464 struct list_head alg_list;
466 unsigned int pk_clk_freq;
468 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
469 unsigned int rng_wait_time;
475 #define HIFN_D_LENGTH 0x0000ffff
476 #define HIFN_D_NOINVALID 0x01000000
477 #define HIFN_D_MASKDONEIRQ 0x02000000
478 #define HIFN_D_DESTOVER 0x04000000
479 #define HIFN_D_OVER 0x08000000
480 #define HIFN_D_LAST 0x20000000
481 #define HIFN_D_JUMP 0x40000000
482 #define HIFN_D_VALID 0x80000000
484 struct hifn_base_command
486 volatile __le16 masks;
487 volatile __le16 session_num;
488 volatile __le16 total_source_count;
489 volatile __le16 total_dest_count;
492 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
493 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
494 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
495 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
496 #define HIFN_BASE_CMD_DECODE 0x2000
497 #define HIFN_BASE_CMD_SRCLEN_M 0xc000
498 #define HIFN_BASE_CMD_SRCLEN_S 14
499 #define HIFN_BASE_CMD_DSTLEN_M 0x3000
500 #define HIFN_BASE_CMD_DSTLEN_S 12
501 #define HIFN_BASE_CMD_LENMASK_HI 0x30000
502 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
505 * Structure to help build up the command data structure.
507 struct hifn_crypt_command
509 volatile __le16 masks;
510 volatile __le16 header_skip;
511 volatile __le16 source_count;
512 volatile __le16 reserved;
515 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
516 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
517 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
518 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
519 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
520 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
521 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
522 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
523 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
524 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
525 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
526 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
527 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
528 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
529 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
530 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
531 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
532 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
533 #define HIFN_CRYPT_CMD_SRCLEN_S 14
536 * Structure to help build up the command data structure.
538 struct hifn_mac_command
540 volatile __le16 masks;
541 volatile __le16 header_skip;
542 volatile __le16 source_count;
543 volatile __le16 reserved;
546 #define HIFN_MAC_CMD_ALG_MASK 0x0001
547 #define HIFN_MAC_CMD_ALG_SHA1 0x0000
548 #define HIFN_MAC_CMD_ALG_MD5 0x0001
549 #define HIFN_MAC_CMD_MODE_MASK 0x000c
550 #define HIFN_MAC_CMD_MODE_HMAC 0x0000
551 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
552 #define HIFN_MAC_CMD_MODE_HASH 0x0008
553 #define HIFN_MAC_CMD_MODE_FULL 0x0004
554 #define HIFN_MAC_CMD_TRUNC 0x0010
555 #define HIFN_MAC_CMD_RESULT 0x0020
556 #define HIFN_MAC_CMD_APPEND 0x0040
557 #define HIFN_MAC_CMD_SRCLEN_M 0xc000
558 #define HIFN_MAC_CMD_SRCLEN_S 14
561 * MAC POS IPsec initiates authentication after encryption on encodes
562 * and before decryption on decodes.
564 #define HIFN_MAC_CMD_POS_IPSEC 0x0200
565 #define HIFN_MAC_CMD_NEW_KEY 0x0800
567 struct hifn_comp_command
569 volatile __le16 masks;
570 volatile __le16 header_skip;
571 volatile __le16 source_count;
572 volatile __le16 reserved;
575 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
576 #define HIFN_COMP_CMD_SRCLEN_S 14
577 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
578 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
579 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
580 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
581 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
582 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
583 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
584 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
586 struct hifn_base_result
588 volatile __le16 flags;
589 volatile __le16 session;
590 volatile __le16 src_cnt; /* 15:0 of source count */
591 volatile __le16 dst_cnt; /* 15:0 of dest count */
594 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
595 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
596 #define HIFN_BASE_RES_SRCLEN_S 14
597 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
598 #define HIFN_BASE_RES_DSTLEN_S 12
600 struct hifn_comp_result
602 volatile __le16 flags;
606 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
607 #define HIFN_COMP_RES_LCB_S 8
608 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
609 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
610 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
612 struct hifn_mac_result
614 volatile __le16 flags;
615 volatile __le16 reserved;
616 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
619 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
620 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
622 struct hifn_crypt_result
624 volatile __le16 flags;
625 volatile __le16 reserved;
628 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
630 #ifndef HIFN_POLL_FREQUENCY
631 #define HIFN_POLL_FREQUENCY 0x1
634 #ifndef HIFN_POLL_SCALAR
635 #define HIFN_POLL_SCALAR 0x0
638 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
639 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
641 struct hifn_crypto_alg
643 struct list_head entry;
644 struct crypto_alg alg;
645 struct hifn_device *dev;
648 #define ASYNC_SCATTERLIST_CACHE 16
650 #define ASYNC_FLAGS_MISALIGNED (1<<0)
652 struct ablkcipher_walk
654 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
661 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH], *iv;
662 struct hifn_device *dev;
663 unsigned int keysize, ivsize;
664 u8 op, type, mode, unused;
665 struct ablkcipher_walk walk;
669 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
671 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
675 ret = readl(dev->bar[0] + reg);
680 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
684 ret = readl(dev->bar[1] + reg);
689 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
691 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
694 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
696 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
699 static void hifn_wait_puc(struct hifn_device *dev)
704 for (i=10000; i > 0; --i) {
705 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
706 if (!(ret & HIFN_PUCTRL_RESET))
713 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
716 static void hifn_reset_puc(struct hifn_device *dev)
718 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
722 static void hifn_stop_device(struct hifn_device *dev)
724 hifn_write_1(dev, HIFN_1_DMA_CSR,
725 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
726 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
727 hifn_write_0(dev, HIFN_0_PUIER, 0);
728 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
731 static void hifn_reset_dma(struct hifn_device *dev, int full)
733 hifn_stop_device(dev);
736 * Setting poll frequency and others to 0.
738 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
739 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
746 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
749 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
750 HIFN_DMACNFG_MSTRESET);
754 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
755 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
760 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
765 for (i = 0; i < cnt; i++) {
775 a = (v & 1) ^ (a << 1);
781 static struct pci2id {
788 PCI_DEVICE_ID_HIFN_7955,
789 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
790 0x00, 0x00, 0x00, 0x00, 0x00 }
794 PCI_DEVICE_ID_HIFN_7956,
795 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
796 0x00, 0x00, 0x00, 0x00, 0x00 }
800 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
801 static int hifn_rng_data_present(struct hwrng *rng, int wait)
803 struct hifn_device *dev = (struct hifn_device *)rng->priv;
806 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
807 nsec -= dev->rng_wait_time;
816 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
818 struct hifn_device *dev = (struct hifn_device *)rng->priv;
820 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
821 dev->rngtime = ktime_get();
825 static int hifn_register_rng(struct hifn_device *dev)
828 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
830 dev->rng_wait_time = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
833 dev->rng.name = dev->name;
834 dev->rng.data_present = hifn_rng_data_present,
835 dev->rng.data_read = hifn_rng_data_read,
836 dev->rng.priv = (unsigned long)dev;
838 return hwrng_register(&dev->rng);
841 static void hifn_unregister_rng(struct hifn_device *dev)
843 hwrng_unregister(&dev->rng);
846 #define hifn_register_rng(dev) 0
847 #define hifn_unregister_rng(dev)
850 static int hifn_init_pubrng(struct hifn_device *dev)
854 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
857 for (i=100; i > 0; --i) {
860 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
865 dprintk("Chip %s: Failed to initialise public key engine.\n",
868 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
869 dev->dmareg |= HIFN_DMAIER_PUBDONE;
870 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
872 dprintk("Chip %s: Public key engine has been sucessfully "
873 "initialised.\n", dev->name);
880 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
881 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
882 dprintk("Chip %s: RNG engine has been successfully initialised.\n",
885 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
886 /* First value must be discarded */
887 hifn_read_1(dev, HIFN_1_RNG_DATA);
888 dev->rngtime = ktime_get();
893 static int hifn_enable_crypto(struct hifn_device *dev)
899 for (i = 0; i < sizeof(pci2id)/sizeof(pci2id[0]); i++) {
900 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
901 pci2id[i].pci_prod == dev->pdev->device) {
902 offtbl = pci2id[i].card_id;
907 if (offtbl == NULL) {
908 dprintk("Chip %s: Unknown card!\n", dev->name);
912 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
914 hifn_write_1(dev, HIFN_1_DMA_CNFG,
915 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
916 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
918 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
920 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
923 for (i=0; i<12; ++i) {
924 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
925 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
929 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
931 dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
936 static void hifn_init_dma(struct hifn_device *dev)
938 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
939 u32 dptr = dev->desc_dma;
942 for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
943 dma->cmdr[i].p = __cpu_to_le32(dptr +
944 offsetof(struct hifn_dma, command_bufs[i][0]));
945 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
946 dma->resr[i].p = __cpu_to_le32(dptr +
947 offsetof(struct hifn_dma, result_bufs[i][0]));
950 * Setup LAST descriptors.
952 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
953 offsetof(struct hifn_dma, cmdr[0]));
954 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
955 offsetof(struct hifn_dma, srcr[0]));
956 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
957 offsetof(struct hifn_dma, dstr[0]));
958 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
959 offsetof(struct hifn_dma, resr[0]));
961 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
962 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
963 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
967 * Initialize the PLL. We need to know the frequency of the reference clock
968 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
969 * allows us to operate without the risk of overclocking the chip. If it
970 * actually uses 33MHz, the chip will operate at half the speed, this can be
971 * overriden by specifying the frequency as module parameter (pci33).
973 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
974 * stable clock and the PCI clock frequency may vary, so the default is the
975 * external clock. There is no way to find out its frequency, we default to
976 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
977 * has an external crystal populated at 66MHz.
979 static void hifn_init_pll(struct hifn_device *dev)
981 unsigned int freq, m;
984 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
986 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
987 pllcfg |= HIFN_PLL_REF_CLK_PLL;
989 pllcfg |= HIFN_PLL_REF_CLK_HBI;
991 if (hifn_pll_ref[3] != '\0')
992 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
995 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
996 "override with hifn_pll_ref=%.3s<frequency>\n",
1000 m = HIFN_PLL_FCK_MAX / freq;
1002 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
1004 pllcfg |= HIFN_PLL_IS_1_8;
1006 pllcfg |= HIFN_PLL_IS_9_12;
1008 /* Select clock source and enable clock bypass */
1009 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1010 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1012 /* Let the chip lock to the input clock */
1015 /* Disable clock bypass */
1016 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1017 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1019 /* Switch the engines to the PLL */
1020 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1021 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1024 * The Fpk_clk runs at half the total speed. Its frequency is needed to
1025 * calculate the minimum time between two reads of the rng. Since 33MHz
1026 * is actually 33.333... we overestimate the frequency here, resulting
1027 * in slightly larger intervals.
1029 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1032 static void hifn_init_registers(struct hifn_device *dev)
1034 u32 dptr = dev->desc_dma;
1036 /* Initialization magic... */
1037 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1038 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1039 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1041 /* write all 4 ring address registers */
1042 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1043 offsetof(struct hifn_dma, cmdr[0]));
1044 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1045 offsetof(struct hifn_dma, srcr[0]));
1046 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1047 offsetof(struct hifn_dma, dstr[0]));
1048 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1049 offsetof(struct hifn_dma, resr[0]));
1053 hifn_write_1(dev, HIFN_1_DMA_CSR,
1054 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1055 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1056 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1057 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1058 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1059 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1060 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1061 HIFN_DMACSR_S_WAIT |
1062 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1063 HIFN_DMACSR_C_WAIT |
1064 HIFN_DMACSR_ENGINE |
1065 HIFN_DMACSR_PUBDONE);
1067 hifn_write_1(dev, HIFN_1_DMA_CSR,
1068 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1069 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1070 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1071 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1072 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1073 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1074 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1075 HIFN_DMACSR_S_WAIT |
1076 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1077 HIFN_DMACSR_C_WAIT |
1078 HIFN_DMACSR_ENGINE |
1079 HIFN_DMACSR_PUBDONE);
1081 hifn_read_1(dev, HIFN_1_DMA_CSR);
1083 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1084 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1085 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1087 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1089 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1090 hifn_read_1(dev, HIFN_1_DMA_IER);
1092 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1093 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1094 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1097 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1101 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1102 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1103 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1104 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1105 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1108 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1109 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1111 struct hifn_base_command *base_cmd;
1114 base_cmd = (struct hifn_base_command *)buf_pos;
1115 base_cmd->masks = __cpu_to_le16(mask);
1116 base_cmd->total_source_count =
1117 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1118 base_cmd->total_dest_count =
1119 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1123 base_cmd->session_num = __cpu_to_le16(snum |
1124 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1125 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1127 return sizeof(struct hifn_base_command);
1130 static int hifn_setup_crypto_command(struct hifn_device *dev,
1131 u8 *buf, unsigned dlen, unsigned slen,
1132 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1134 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1135 struct hifn_crypt_command *cry_cmd;
1139 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1141 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1143 cry_cmd->masks = __cpu_to_le16(mode |
1144 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1145 HIFN_CRYPT_CMD_SRCLEN_M));
1146 cry_cmd->header_skip = 0;
1147 cry_cmd->reserved = 0;
1149 buf_pos += sizeof(struct hifn_crypt_command);
1152 if (dma->cmdu > 1) {
1153 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1154 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1158 memcpy(buf_pos, key, keylen);
1162 memcpy(buf_pos, iv, ivsize);
1166 cmd_len = buf_pos - buf;
1171 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1172 struct hifn_context *ctx, void *priv, unsigned int nbytes)
1174 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1175 int cmd_len, sa_idx;
1180 buf_pos = buf = dma->command_bufs[dma->cmdi];
1184 case ACRYPTO_OP_DECRYPT:
1185 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1187 case ACRYPTO_OP_ENCRYPT:
1188 mask = HIFN_BASE_CMD_CRYPT;
1190 case ACRYPTO_OP_HMAC:
1191 mask = HIFN_BASE_CMD_MAC;
1197 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1198 nbytes, mask, dev->snum);
1200 if (ctx->op == ACRYPTO_OP_ENCRYPT || ctx->op == ACRYPTO_OP_DECRYPT) {
1204 md |= HIFN_CRYPT_CMD_NEW_KEY;
1205 if (ctx->iv && ctx->mode != ACRYPTO_MODE_ECB)
1206 md |= HIFN_CRYPT_CMD_NEW_IV;
1208 switch (ctx->mode) {
1209 case ACRYPTO_MODE_ECB:
1210 md |= HIFN_CRYPT_CMD_MODE_ECB;
1212 case ACRYPTO_MODE_CBC:
1213 md |= HIFN_CRYPT_CMD_MODE_CBC;
1215 case ACRYPTO_MODE_CFB:
1216 md |= HIFN_CRYPT_CMD_MODE_CFB;
1218 case ACRYPTO_MODE_OFB:
1219 md |= HIFN_CRYPT_CMD_MODE_OFB;
1225 switch (ctx->type) {
1226 case ACRYPTO_TYPE_AES_128:
1227 if (ctx->keysize != 16)
1229 md |= HIFN_CRYPT_CMD_KSZ_128 |
1230 HIFN_CRYPT_CMD_ALG_AES;
1232 case ACRYPTO_TYPE_AES_192:
1233 if (ctx->keysize != 24)
1235 md |= HIFN_CRYPT_CMD_KSZ_192 |
1236 HIFN_CRYPT_CMD_ALG_AES;
1238 case ACRYPTO_TYPE_AES_256:
1239 if (ctx->keysize != 32)
1241 md |= HIFN_CRYPT_CMD_KSZ_256 |
1242 HIFN_CRYPT_CMD_ALG_AES;
1244 case ACRYPTO_TYPE_3DES:
1245 if (ctx->keysize != 24)
1247 md |= HIFN_CRYPT_CMD_ALG_3DES;
1249 case ACRYPTO_TYPE_DES:
1250 if (ctx->keysize != 8)
1252 md |= HIFN_CRYPT_CMD_ALG_DES;
1258 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1259 nbytes, nbytes, ctx->key, ctx->keysize,
1260 ctx->iv, ctx->ivsize, md);
1263 dev->sa[sa_idx] = priv;
1265 cmd_len = buf_pos - buf;
1266 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1267 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1269 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1270 dma->cmdr[dma->cmdi].l = __cpu_to_le32(HIFN_MAX_COMMAND |
1271 HIFN_D_VALID | HIFN_D_LAST |
1272 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1275 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1277 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1278 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1279 dev->flags |= HIFN_FLAG_CMD_BUSY;
1287 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1288 unsigned int offset, unsigned int size)
1290 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1294 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1298 dma->srcr[idx].p = __cpu_to_le32(addr);
1299 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1300 HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST);
1302 if (++idx == HIFN_D_SRC_RSIZE) {
1303 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1305 HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1312 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1313 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1314 dev->flags |= HIFN_FLAG_SRC_BUSY;
1320 static void hifn_setup_res_desc(struct hifn_device *dev)
1322 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1324 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1325 HIFN_D_VALID | HIFN_D_LAST);
1327 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1328 * HIFN_D_LAST | HIFN_D_NOINVALID);
1331 if (++dma->resi == HIFN_D_RES_RSIZE) {
1332 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1333 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1339 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1340 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1341 dev->flags |= HIFN_FLAG_RES_BUSY;
1345 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1346 unsigned offset, unsigned size)
1348 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1352 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1355 dma->dstr[idx].p = __cpu_to_le32(addr);
1356 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1357 HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST);
1359 if (++idx == HIFN_D_DST_RSIZE) {
1360 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1361 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1362 HIFN_D_LAST | HIFN_D_NOINVALID);
1368 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1369 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1370 dev->flags |= HIFN_FLAG_DST_BUSY;
1374 static int hifn_setup_dma(struct hifn_device *dev, struct page *spage, unsigned int soff,
1375 struct page *dpage, unsigned int doff, unsigned int nbytes, void *priv,
1376 struct hifn_context *ctx)
1378 dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, nbytes: %u, priv: %p, ctx: %p.\n",
1379 dev->name, spage, soff, dpage, doff, nbytes, priv, ctx);
1381 hifn_setup_src_desc(dev, spage, soff, nbytes);
1382 hifn_setup_cmd_desc(dev, ctx, priv, nbytes);
1383 hifn_setup_dst_desc(dev, dpage, doff, nbytes);
1384 hifn_setup_res_desc(dev);
1388 static int ablkcipher_walk_init(struct ablkcipher_walk *w,
1389 int num, gfp_t gfp_flags)
1393 num = min(ASYNC_SCATTERLIST_CACHE, num);
1394 sg_init_table(w->cache, num);
1397 for (i=0; i<num; ++i) {
1398 struct page *page = alloc_page(gfp_flags);
1399 struct scatterlist *s;
1406 sg_set_page(s, page, PAGE_SIZE, 0);
1413 static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
1417 for (i=0; i<w->num; ++i) {
1418 struct scatterlist *s = &w->cache[i];
1420 __free_page(sg_page(s));
1428 static int ablkcipher_add(void *daddr, unsigned int *drestp, struct scatterlist *src,
1429 unsigned int size, unsigned int *nbytesp)
1431 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1435 if (drest < size || size > nbytes)
1439 copy = min(drest, min(size, src->length));
1441 saddr = kmap_atomic(sg_page(src), KM_SOFTIRQ1);
1442 memcpy(daddr, saddr + src->offset, copy);
1443 kunmap_atomic(saddr, KM_SOFTIRQ1);
1450 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1451 __func__, copy, size, drest, nbytes);
1463 static int ablkcipher_walk(struct ablkcipher_request *req,
1464 struct ablkcipher_walk *w)
1466 struct scatterlist *src, *dst, *t;
1468 unsigned int nbytes = req->nbytes, offset, copy, diff;
1474 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1477 src = &req->src[idx];
1478 dst = &req->dst[idx];
1480 dprintk("\n%s: slen: %u, dlen: %u, soff: %u, doff: %u, offset: %u, "
1482 __func__, src->length, dst->length, src->offset,
1483 dst->offset, offset, nbytes);
1485 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1486 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1488 unsigned slen = min(src->length - offset, nbytes);
1489 unsigned dlen = PAGE_SIZE;
1493 daddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
1494 err = ablkcipher_add(daddr, &dlen, src, slen, &nbytes);
1500 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1501 diff = slen & (HIFN_D_DST_DALIGN - 1);
1503 if (dlen < nbytes) {
1505 * Destination page does not have enough space
1506 * to put there additional blocksized chunk,
1507 * so we mark that page as containing only
1508 * blocksize aligned chunks:
1509 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1510 * and increase number of bytes to be processed
1517 * Temporary of course...
1518 * Kick author if you will catch this one.
1520 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1521 "slen: %u, offset: %u.\n",
1522 __func__, dlen, nbytes, slen, offset);
1523 printk(KERN_ERR "%s: please contact author to fix this "
1524 "issue, generally you should not catch "
1525 "this path under any condition but who "
1526 "knows how did you use crypto code.\n"
1527 "Thank you.\n", __func__);
1530 copy += diff + nbytes;
1532 src = &req->src[idx];
1534 err = ablkcipher_add(daddr + slen, &dlen, src, nbytes, &nbytes);
1544 kunmap_atomic(daddr, KM_SOFTIRQ0);
1546 nbytes -= min(src->length, nbytes);
1556 kunmap_atomic(daddr, KM_SOFTIRQ0);
1560 static int hifn_setup_session(struct ablkcipher_request *req)
1562 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1563 struct hifn_device *dev = ctx->dev;
1564 struct page *spage, *dpage;
1565 unsigned long soff, doff, dlen, flags;
1566 unsigned int nbytes = req->nbytes, idx = 0, len;
1567 int err = -EINVAL, sg_num;
1568 struct scatterlist *src, *dst, *t;
1570 if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB)
1573 ctx->walk.flags = 0;
1576 dst = &req->dst[idx];
1577 dlen = min(dst->length, nbytes);
1579 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1580 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1581 ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1587 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1588 err = ablkcipher_walk_init(&ctx->walk, idx, GFP_ATOMIC);
1593 nbytes = req->nbytes;
1596 sg_num = ablkcipher_walk(req, &ctx->walk);
1601 atomic_set(&ctx->sg_num, sg_num);
1603 spin_lock_irqsave(&dev->lock, flags);
1604 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1610 dev->started += sg_num;
1613 src = &req->src[idx];
1614 dst = &req->dst[idx];
1615 t = &ctx->walk.cache[idx];
1618 spage = dpage = sg_page(t);
1622 spage = sg_page(src);
1625 dpage = sg_page(dst);
1633 err = hifn_setup_dma(dev, spage, soff, dpage, doff, nbytes,
1638 nbytes -= min(len, nbytes);
1641 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1642 spin_unlock_irqrestore(&dev->lock, flags);
1647 spin_unlock_irqrestore(&dev->lock, flags);
1650 dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1651 "type: %u, err: %d.\n",
1652 dev->name, ctx->iv, ctx->ivsize,
1653 ctx->key, ctx->keysize,
1654 ctx->mode, ctx->op, ctx->type, err);
1659 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1663 struct hifn_context ctx;
1664 u8 fips_aes_ecb_from_zero[16] = {
1665 0x66, 0xE9, 0x4B, 0xD4,
1666 0xEF, 0x8A, 0x2C, 0x3B,
1667 0x88, 0x4C, 0xFA, 0x59,
1668 0xCA, 0x34, 0x2B, 0x2E};
1670 memset(src, 0, sizeof(src));
1671 memset(ctx.key, 0, sizeof(ctx.key));
1677 ctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1678 ctx.mode = ACRYPTO_MODE_ECB;
1679 ctx.type = ACRYPTO_TYPE_AES_128;
1680 atomic_set(&ctx.sg_num, 1);
1682 err = hifn_setup_dma(dev,
1683 virt_to_page(src), offset_in_page(src),
1684 virt_to_page(src), offset_in_page(src),
1685 sizeof(src), NULL, &ctx);
1691 dprintk("%s: decoded: ", dev->name);
1692 for (n=0; n<sizeof(src); ++n)
1693 dprintk("%02x ", src[n]);
1695 dprintk("%s: FIPS : ", dev->name);
1696 for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1697 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1700 if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1701 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1702 "passed.\n", dev->name);
1707 printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1711 static int hifn_start_device(struct hifn_device *dev)
1715 hifn_reset_dma(dev, 1);
1717 err = hifn_enable_crypto(dev);
1721 hifn_reset_puc(dev);
1725 hifn_init_registers(dev);
1727 hifn_init_pubrng(dev);
1732 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1733 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1735 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1739 if (srest < size || size > nbytes)
1743 copy = min(srest, min(dst->length, size));
1745 daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1746 memcpy(daddr + dst->offset + offset, saddr, copy);
1747 kunmap_atomic(daddr, KM_IRQ0);
1755 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1756 __func__, copy, size, srest, nbytes);
1768 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1770 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1771 struct hifn_device *dev;
1773 dprintk("%s: req: %p, ctx: %p.\n", __func__, req, ctx);
1776 dprintk("%s: req: %p, started: %d, sg_num: %d.\n",
1777 __func__, req, dev->started, atomic_read(&ctx->sg_num));
1779 if (--dev->started < 0)
1782 if (atomic_dec_and_test(&ctx->sg_num)) {
1783 unsigned int nbytes = req->nbytes;
1785 struct scatterlist *dst, *t;
1788 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1790 t = &ctx->walk.cache[idx];
1791 dst = &req->dst[idx];
1793 dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1794 "sg_page(dst): %p, dst->length: %u, "
1796 __func__, sg_page(t), t->length,
1797 sg_page(dst), dst->length, nbytes);
1800 nbytes -= min(dst->length, nbytes);
1805 saddr = kmap_atomic(sg_page(t), KM_IRQ1);
1807 err = ablkcipher_get(saddr, &t->length, t->offset,
1808 dst, nbytes, &nbytes);
1810 kunmap_atomic(saddr, KM_IRQ1);
1815 kunmap_atomic(saddr, KM_IRQ1);
1818 ablkcipher_walk_exit(&ctx->walk);
1821 req->base.complete(&req->base, error);
1825 static void hifn_check_for_completion(struct hifn_device *dev, int error)
1828 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1830 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1831 struct hifn_desc *d = &dma->resr[i];
1833 if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) {
1836 hifn_process_ready(dev->sa[i], error);
1840 if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER))
1841 if (printk_ratelimit())
1842 printk("%s: overflow detected [d: %u, o: %u] "
1843 "at %d resr: l: %08x, p: %08x.\n",
1845 !!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)),
1846 !!(d->l & __cpu_to_le32(HIFN_D_OVER)),
1851 static void hifn_clear_rings(struct hifn_device *dev)
1853 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1856 dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1857 "k: %d.%d.%d.%d.\n",
1859 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1860 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1861 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1863 i = dma->resk; u = dma->resu;
1865 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1868 if (i != HIFN_D_RES_RSIZE)
1871 if (++i == (HIFN_D_RES_RSIZE + 1))
1874 dma->resk = i; dma->resu = u;
1876 i = dma->srck; u = dma->srcu;
1878 if (i == HIFN_D_SRC_RSIZE)
1880 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1884 dma->srck = i; dma->srcu = u;
1886 i = dma->cmdk; u = dma->cmdu;
1888 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1890 if (i != HIFN_D_CMD_RSIZE)
1892 if (++i == (HIFN_D_CMD_RSIZE + 1))
1895 dma->cmdk = i; dma->cmdu = u;
1897 i = dma->dstk; u = dma->dstu;
1899 if (i == HIFN_D_DST_RSIZE)
1901 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1905 dma->dstk = i; dma->dstu = u;
1907 dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1908 "k: %d.%d.%d.%d.\n",
1910 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1911 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1912 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1915 static void hifn_work(struct work_struct *work)
1917 struct delayed_work *dw = container_of(work, struct delayed_work, work);
1918 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1919 unsigned long flags;
1923 spin_lock_irqsave(&dev->lock, flags);
1924 if (dev->active == 0) {
1925 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1927 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1928 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1929 r |= HIFN_DMACSR_C_CTRL_DIS;
1931 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1932 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1933 r |= HIFN_DMACSR_S_CTRL_DIS;
1935 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1936 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1937 r |= HIFN_DMACSR_D_CTRL_DIS;
1939 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1940 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1941 r |= HIFN_DMACSR_R_CTRL_DIS;
1944 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1948 if (dev->prev_success == dev->success && dev->started)
1950 dev->prev_success = dev->success;
1951 spin_unlock_irqrestore(&dev->lock, flags);
1954 dprintk("%s: r: %08x, active: %d, started: %d, "
1955 "success: %lu: reset: %d.\n",
1956 dev->name, r, dev->active, dev->started,
1957 dev->success, reset);
1959 if (++dev->reset >= 5) {
1960 dprintk("%s: really hard reset.\n", dev->name);
1961 hifn_reset_dma(dev, 1);
1962 hifn_stop_device(dev);
1963 hifn_start_device(dev);
1967 spin_lock_irqsave(&dev->lock, flags);
1968 hifn_check_for_completion(dev, -EBUSY);
1969 hifn_clear_rings(dev);
1971 spin_unlock_irqrestore(&dev->lock, flags);
1974 schedule_delayed_work(&dev->work, HZ);
1977 static irqreturn_t hifn_interrupt(int irq, void *data)
1979 struct hifn_device *dev = (struct hifn_device *)data;
1980 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1981 u32 dmacsr, restart;
1983 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1985 dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1986 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1987 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1988 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1989 dma->cmdi, dma->srci, dma->dsti, dma->resi);
1991 if ((dmacsr & dev->dmareg) == 0)
1994 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1996 if (dmacsr & HIFN_DMACSR_ENGINE)
1997 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1998 if (dmacsr & HIFN_DMACSR_PUBDONE)
1999 hifn_write_1(dev, HIFN_1_PUB_STATUS,
2000 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
2002 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
2004 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
2006 if (printk_ratelimit())
2007 printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
2008 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
2009 !!(dmacsr & HIFN_DMACSR_D_OVER),
2010 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
2011 if (!!(puisr & HIFN_PUISR_DSTOVER))
2012 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
2013 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
2014 HIFN_DMACSR_D_OVER));
2017 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
2018 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
2020 if (printk_ratelimit())
2021 printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
2022 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
2023 !!(dmacsr & HIFN_DMACSR_S_ABORT),
2024 !!(dmacsr & HIFN_DMACSR_D_ABORT),
2025 !!(dmacsr & HIFN_DMACSR_R_ABORT));
2026 hifn_reset_dma(dev, 1);
2028 hifn_init_registers(dev);
2031 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2032 dprintk("%s: wait on command.\n", dev->name);
2033 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2034 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2037 tasklet_schedule(&dev->tasklet);
2038 hifn_clear_rings(dev);
2043 static void hifn_flush(struct hifn_device *dev)
2045 unsigned long flags;
2046 struct crypto_async_request *async_req;
2047 struct hifn_context *ctx;
2048 struct ablkcipher_request *req;
2049 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2052 spin_lock_irqsave(&dev->lock, flags);
2053 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2054 struct hifn_desc *d = &dma->resr[i];
2057 hifn_process_ready(dev->sa[i],
2058 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2062 while ((async_req = crypto_dequeue_request(&dev->queue))) {
2063 ctx = crypto_tfm_ctx(async_req->tfm);
2064 req = container_of(async_req, struct ablkcipher_request, base);
2066 hifn_process_ready(req, -ENODEV);
2068 spin_unlock_irqrestore(&dev->lock, flags);
2071 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2074 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2075 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2076 struct hifn_device *dev = ctx->dev;
2078 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2079 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2083 if (len == HIFN_DES_KEY_LENGTH) {
2084 u32 tmp[DES_EXPKEY_WORDS];
2085 int ret = des_ekey(tmp, key);
2087 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2088 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2093 dev->flags &= ~HIFN_FLAG_OLD_KEY;
2095 memcpy(ctx->key, key, len);
2101 static int hifn_handle_req(struct ablkcipher_request *req)
2103 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2104 struct hifn_device *dev = ctx->dev;
2107 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2108 err = hifn_setup_session(req);
2110 if (err == -EAGAIN) {
2111 unsigned long flags;
2113 spin_lock_irqsave(&dev->lock, flags);
2114 err = ablkcipher_enqueue_request(&dev->queue, req);
2115 spin_unlock_irqrestore(&dev->lock, flags);
2121 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2124 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2127 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2129 if (req->info && mode != ACRYPTO_MODE_ECB) {
2130 if (type == ACRYPTO_TYPE_AES_128)
2131 ivsize = HIFN_AES_IV_LENGTH;
2132 else if (type == ACRYPTO_TYPE_DES)
2133 ivsize = HIFN_DES_KEY_LENGTH;
2134 else if (type == ACRYPTO_TYPE_3DES)
2135 ivsize = HIFN_3DES_KEY_LENGTH;
2138 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2139 if (ctx->keysize == 24)
2140 type = ACRYPTO_TYPE_AES_192;
2141 else if (ctx->keysize == 32)
2142 type = ACRYPTO_TYPE_AES_256;
2148 ctx->iv = req->info;
2149 ctx->ivsize = ivsize;
2152 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2153 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2154 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2157 return hifn_handle_req(req);
2160 static int hifn_process_queue(struct hifn_device *dev)
2162 struct crypto_async_request *async_req;
2163 struct hifn_context *ctx;
2164 struct ablkcipher_request *req;
2165 unsigned long flags;
2168 while (dev->started < HIFN_QUEUE_LENGTH) {
2169 spin_lock_irqsave(&dev->lock, flags);
2170 async_req = crypto_dequeue_request(&dev->queue);
2171 spin_unlock_irqrestore(&dev->lock, flags);
2176 ctx = crypto_tfm_ctx(async_req->tfm);
2177 req = container_of(async_req, struct ablkcipher_request, base);
2179 err = hifn_handle_req(req);
2187 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2191 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2192 struct hifn_device *dev = ctx->dev;
2194 err = hifn_setup_crypto_req(req, op, type, mode);
2198 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2199 hifn_process_queue(dev);
2201 return -EINPROGRESS;
2205 * AES ecryption functions.
2207 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2209 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2210 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2212 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2214 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2215 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2217 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2219 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2220 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2222 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2224 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2225 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2229 * AES decryption functions.
2231 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2233 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2234 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2236 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2238 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2239 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2241 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2243 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2244 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2246 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2248 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2249 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2253 * DES ecryption functions.
2255 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2257 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2258 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2260 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2262 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2263 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2265 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2267 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2268 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2270 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2272 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2273 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2277 * DES decryption functions.
2279 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2281 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2282 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2284 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2286 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2287 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2289 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2291 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2292 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2294 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2296 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2297 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2301 * 3DES ecryption functions.
2303 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2305 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2306 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2308 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2310 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2311 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2313 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2315 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2316 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2318 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2320 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2321 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2325 * 3DES decryption functions.
2327 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2329 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2330 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2332 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2334 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2335 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2337 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2339 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2340 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2342 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2344 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2345 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2348 struct hifn_alg_template
2350 char name[CRYPTO_MAX_ALG_NAME];
2351 char drv_name[CRYPTO_MAX_ALG_NAME];
2353 struct ablkcipher_alg ablkcipher;
2356 static struct hifn_alg_template hifn_alg_templates[] = {
2358 * 3DES ECB, CBC, CFB and OFB modes.
2361 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2363 .min_keysize = HIFN_3DES_KEY_LENGTH,
2364 .max_keysize = HIFN_3DES_KEY_LENGTH,
2365 .setkey = hifn_setkey,
2366 .encrypt = hifn_encrypt_3des_cfb,
2367 .decrypt = hifn_decrypt_3des_cfb,
2371 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2373 .min_keysize = HIFN_3DES_KEY_LENGTH,
2374 .max_keysize = HIFN_3DES_KEY_LENGTH,
2375 .setkey = hifn_setkey,
2376 .encrypt = hifn_encrypt_3des_ofb,
2377 .decrypt = hifn_decrypt_3des_ofb,
2381 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2383 .ivsize = HIFN_IV_LENGTH,
2384 .min_keysize = HIFN_3DES_KEY_LENGTH,
2385 .max_keysize = HIFN_3DES_KEY_LENGTH,
2386 .setkey = hifn_setkey,
2387 .encrypt = hifn_encrypt_3des_cbc,
2388 .decrypt = hifn_decrypt_3des_cbc,
2392 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2394 .min_keysize = HIFN_3DES_KEY_LENGTH,
2395 .max_keysize = HIFN_3DES_KEY_LENGTH,
2396 .setkey = hifn_setkey,
2397 .encrypt = hifn_encrypt_3des_ecb,
2398 .decrypt = hifn_decrypt_3des_ecb,
2403 * DES ECB, CBC, CFB and OFB modes.
2406 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2408 .min_keysize = HIFN_DES_KEY_LENGTH,
2409 .max_keysize = HIFN_DES_KEY_LENGTH,
2410 .setkey = hifn_setkey,
2411 .encrypt = hifn_encrypt_des_cfb,
2412 .decrypt = hifn_decrypt_des_cfb,
2416 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2418 .min_keysize = HIFN_DES_KEY_LENGTH,
2419 .max_keysize = HIFN_DES_KEY_LENGTH,
2420 .setkey = hifn_setkey,
2421 .encrypt = hifn_encrypt_des_ofb,
2422 .decrypt = hifn_decrypt_des_ofb,
2426 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2428 .ivsize = HIFN_IV_LENGTH,
2429 .min_keysize = HIFN_DES_KEY_LENGTH,
2430 .max_keysize = HIFN_DES_KEY_LENGTH,
2431 .setkey = hifn_setkey,
2432 .encrypt = hifn_encrypt_des_cbc,
2433 .decrypt = hifn_decrypt_des_cbc,
2437 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2439 .min_keysize = HIFN_DES_KEY_LENGTH,
2440 .max_keysize = HIFN_DES_KEY_LENGTH,
2441 .setkey = hifn_setkey,
2442 .encrypt = hifn_encrypt_des_ecb,
2443 .decrypt = hifn_decrypt_des_ecb,
2448 * AES ECB, CBC, CFB and OFB modes.
2451 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2453 .min_keysize = AES_MIN_KEY_SIZE,
2454 .max_keysize = AES_MAX_KEY_SIZE,
2455 .setkey = hifn_setkey,
2456 .encrypt = hifn_encrypt_aes_ecb,
2457 .decrypt = hifn_decrypt_aes_ecb,
2461 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2463 .ivsize = HIFN_AES_IV_LENGTH,
2464 .min_keysize = AES_MIN_KEY_SIZE,
2465 .max_keysize = AES_MAX_KEY_SIZE,
2466 .setkey = hifn_setkey,
2467 .encrypt = hifn_encrypt_aes_cbc,
2468 .decrypt = hifn_decrypt_aes_cbc,
2472 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2474 .min_keysize = AES_MIN_KEY_SIZE,
2475 .max_keysize = AES_MAX_KEY_SIZE,
2476 .setkey = hifn_setkey,
2477 .encrypt = hifn_encrypt_aes_cfb,
2478 .decrypt = hifn_decrypt_aes_cfb,
2482 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2484 .min_keysize = AES_MIN_KEY_SIZE,
2485 .max_keysize = AES_MAX_KEY_SIZE,
2486 .setkey = hifn_setkey,
2487 .encrypt = hifn_encrypt_aes_ofb,
2488 .decrypt = hifn_decrypt_aes_ofb,
2493 static int hifn_cra_init(struct crypto_tfm *tfm)
2495 struct crypto_alg *alg = tfm->__crt_alg;
2496 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2497 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2504 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2506 struct hifn_crypto_alg *alg;
2509 alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2513 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2514 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2515 t->drv_name, dev->name);
2517 alg->alg.cra_priority = 300;
2518 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
2519 alg->alg.cra_blocksize = t->bsize;
2520 alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2521 alg->alg.cra_alignmask = 0;
2522 alg->alg.cra_type = &crypto_ablkcipher_type;
2523 alg->alg.cra_module = THIS_MODULE;
2524 alg->alg.cra_u.ablkcipher = t->ablkcipher;
2525 alg->alg.cra_init = hifn_cra_init;
2529 list_add_tail(&alg->entry, &dev->alg_list);
2531 err = crypto_register_alg(&alg->alg);
2533 list_del(&alg->entry);
2540 static void hifn_unregister_alg(struct hifn_device *dev)
2542 struct hifn_crypto_alg *a, *n;
2544 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2545 list_del(&a->entry);
2546 crypto_unregister_alg(&a->alg);
2551 static int hifn_register_alg(struct hifn_device *dev)
2555 for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2556 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2564 hifn_unregister_alg(dev);
2568 static void hifn_tasklet_callback(unsigned long data)
2570 struct hifn_device *dev = (struct hifn_device *)data;
2573 * This is ok to call this without lock being held,
2574 * althogh it modifies some parameters used in parallel,
2575 * (like dev->success), but they are used in process
2576 * context or update is atomic (like setting dev->sa[i] to NULL).
2578 hifn_check_for_completion(dev, 0);
2581 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2584 struct hifn_device *dev;
2587 err = pci_enable_device(pdev);
2590 pci_set_master(pdev);
2592 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2594 goto err_out_disable_pci_device;
2596 snprintf(name, sizeof(name), "hifn%d",
2597 atomic_inc_return(&hifn_dev_number)-1);
2599 err = pci_request_regions(pdev, name);
2601 goto err_out_disable_pci_device;
2603 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2604 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2605 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2606 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2609 goto err_out_free_regions;
2612 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2616 goto err_out_free_regions;
2619 INIT_LIST_HEAD(&dev->alg_list);
2621 snprintf(dev->name, sizeof(dev->name), "%s", name);
2622 spin_lock_init(&dev->lock);
2624 for (i=0; i<3; ++i) {
2625 unsigned long addr, size;
2627 addr = pci_resource_start(pdev, i);
2628 size = pci_resource_len(pdev, i);
2630 dev->bar[i] = ioremap_nocache(addr, size);
2632 goto err_out_unmap_bars;
2635 dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER);
2636 if (!dev->result_mem) {
2637 dprintk("Failed to allocate %d pages for result_mem.\n",
2638 HIFN_MAX_RESULT_ORDER);
2639 goto err_out_unmap_bars;
2641 memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER));
2643 dev->dst = pci_map_single(pdev, (void *)dev->result_mem,
2644 PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE);
2646 dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2648 if (!dev->desc_virt) {
2649 dprintk("Failed to allocate descriptor rings.\n");
2650 goto err_out_free_result_pages;
2652 memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2655 dev->irq = pdev->irq;
2657 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2660 pci_set_drvdata(pdev, dev);
2662 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2664 crypto_init_queue(&dev->queue, 1);
2666 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2668 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2670 goto err_out_free_desc;
2673 err = hifn_start_device(dev);
2675 goto err_out_free_irq;
2677 err = hifn_test(dev, 1, 0);
2679 goto err_out_stop_device;
2681 err = hifn_register_rng(dev);
2683 goto err_out_stop_device;
2685 err = hifn_register_alg(dev);
2687 goto err_out_unregister_rng;
2689 INIT_DELAYED_WORK(&dev->work, hifn_work);
2690 schedule_delayed_work(&dev->work, HZ);
2692 dprintk("HIFN crypto accelerator card at %s has been "
2693 "successfully registered as %s.\n",
2694 pci_name(pdev), dev->name);
2698 err_out_unregister_rng:
2699 hifn_unregister_rng(dev);
2700 err_out_stop_device:
2701 hifn_reset_dma(dev, 1);
2702 hifn_stop_device(dev);
2704 free_irq(dev->irq, dev->name);
2705 tasklet_kill(&dev->tasklet);
2707 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2708 dev->desc_virt, dev->desc_dma);
2710 err_out_free_result_pages:
2711 pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2712 PCI_DMA_FROMDEVICE);
2713 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2718 iounmap(dev->bar[i]);
2720 err_out_free_regions:
2721 pci_release_regions(pdev);
2723 err_out_disable_pci_device:
2724 pci_disable_device(pdev);
2729 static void hifn_remove(struct pci_dev *pdev)
2732 struct hifn_device *dev;
2734 dev = pci_get_drvdata(pdev);
2737 cancel_delayed_work(&dev->work);
2738 flush_scheduled_work();
2740 hifn_unregister_rng(dev);
2741 hifn_unregister_alg(dev);
2742 hifn_reset_dma(dev, 1);
2743 hifn_stop_device(dev);
2745 free_irq(dev->irq, dev->name);
2746 tasklet_kill(&dev->tasklet);
2750 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2751 dev->desc_virt, dev->desc_dma);
2752 pci_unmap_single(pdev, dev->dst,
2753 PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2754 PCI_DMA_FROMDEVICE);
2755 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2758 iounmap(dev->bar[i]);
2763 pci_release_regions(pdev);
2764 pci_disable_device(pdev);
2767 static struct pci_device_id hifn_pci_tbl[] = {
2768 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2769 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2772 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2774 static struct pci_driver hifn_pci_driver = {
2776 .id_table = hifn_pci_tbl,
2777 .probe = hifn_probe,
2778 .remove = __devexit_p(hifn_remove),
2781 static int __devinit hifn_init(void)
2786 if (strncmp(hifn_pll_ref, "ext", 3) &&
2787 strncmp(hifn_pll_ref, "pci", 3)) {
2788 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2789 "must be pci or ext");
2794 * For the 7955/7956 the reference clock frequency must be in the
2795 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2796 * but this chip is currently not supported.
2798 if (hifn_pll_ref[3] != '\0') {
2799 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2800 if (freq < 20 || freq > 100) {
2801 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2802 "frequency, must be in the range "
2808 err = pci_register_driver(&hifn_pci_driver);
2810 dprintk("Failed to register PCI driver for %s device.\n",
2811 hifn_pci_driver.name);
2815 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2816 "has been successfully registered.\n");
2821 static void __devexit hifn_fini(void)
2823 pci_unregister_driver(&hifn_pci_driver);
2825 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2826 "has been successfully unregistered.\n");
2829 module_init(hifn_init);
2830 module_exit(hifn_fini);
2832 MODULE_LICENSE("GPL");
2833 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2834 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");