2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
30 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
31 * Added function return probes functionality
34 #include <linux/config.h>
35 #include <linux/kprobes.h>
36 #include <linux/ptrace.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/preempt.h>
41 #include <linux/moduleloader.h>
42 #include <asm/cacheflush.h>
43 #include <asm/pgtable.h>
44 #include <asm/kdebug.h>
46 static DECLARE_MUTEX(kprobe_mutex);
48 static struct kprobe *current_kprobe;
49 static unsigned long kprobe_status, kprobe_old_rflags, kprobe_saved_rflags;
50 static struct kprobe *kprobe_prev;
51 static unsigned long kprobe_status_prev, kprobe_old_rflags_prev, kprobe_saved_rflags_prev;
52 static struct pt_regs jprobe_saved_regs;
53 static long *jprobe_saved_rsp;
54 static kprobe_opcode_t *get_insn_slot(void);
55 static void free_insn_slot(kprobe_opcode_t *slot);
56 void jprobe_return_end(void);
58 /* copy of the kernel stack at the probe fire time */
59 static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE];
62 * returns non-zero if opcode modifies the interrupt flag.
64 static inline int is_IF_modifier(kprobe_opcode_t *insn)
69 case 0xcf: /* iret/iretd */
70 case 0x9d: /* popf/popfd */
74 if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
79 int arch_prepare_kprobe(struct kprobe *p)
81 /* insn: must be on special executable page on x86_64. */
83 p->ainsn.insn = get_insn_slot();
92 * Determine if the instruction uses the %rip-relative addressing mode.
93 * If it does, return the address of the 32-bit displacement word.
94 * If not, return null.
96 static inline s32 *is_riprel(u8 *insn)
98 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
99 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
100 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
101 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
102 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
104 static const u64 onebyte_has_modrm[256 / 64] = {
105 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
106 /* ------------------------------- */
107 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
108 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
109 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
110 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
111 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
112 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
113 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
114 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
115 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
116 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
117 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
118 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
119 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
120 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
121 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
122 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
123 /* ------------------------------- */
124 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
126 static const u64 twobyte_has_modrm[256 / 64] = {
127 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
128 /* ------------------------------- */
129 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
130 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
131 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
132 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
133 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
134 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
135 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
136 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
137 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
138 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
139 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
140 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
141 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
142 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
143 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
144 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
145 /* ------------------------------- */
146 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
151 /* Skip legacy instruction prefixes. */
171 /* Skip REX instruction prefix. */
172 if ((*insn & 0xf0) == 0x40)
175 if (*insn == 0x0f) { /* Two-byte opcode. */
177 need_modrm = test_bit(*insn, twobyte_has_modrm);
178 } else { /* One-byte opcode. */
179 need_modrm = test_bit(*insn, onebyte_has_modrm);
184 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
185 /* Displacement follows ModRM byte. */
186 return (s32 *) ++insn;
190 /* No %rip-relative addressing mode here. */
194 void arch_copy_kprobe(struct kprobe *p)
197 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
198 ripdisp = is_riprel(p->ainsn.insn);
201 * The copied instruction uses the %rip-relative
202 * addressing mode. Adjust the displacement for the
203 * difference between the original location of this
204 * instruction and the location of the copy that will
205 * actually be run. The tricky bit here is making sure
206 * that the sign extension happens correctly in this
207 * calculation, since we need a signed 32-bit result to
208 * be sign-extended to 64 bits when it's added to the
209 * %rip value and yield the same 64-bit result that the
210 * sign-extension of the original signed 32-bit
211 * displacement would have given.
213 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
214 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
217 p->opcode = *p->addr;
220 void arch_arm_kprobe(struct kprobe *p)
222 *p->addr = BREAKPOINT_INSTRUCTION;
223 flush_icache_range((unsigned long) p->addr,
224 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
227 void arch_disarm_kprobe(struct kprobe *p)
229 *p->addr = p->opcode;
230 flush_icache_range((unsigned long) p->addr,
231 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
234 void arch_remove_kprobe(struct kprobe *p)
237 free_insn_slot(p->ainsn.insn);
241 static inline void save_previous_kprobe(void)
243 kprobe_prev = current_kprobe;
244 kprobe_status_prev = kprobe_status;
245 kprobe_old_rflags_prev = kprobe_old_rflags;
246 kprobe_saved_rflags_prev = kprobe_saved_rflags;
249 static inline void restore_previous_kprobe(void)
251 current_kprobe = kprobe_prev;
252 kprobe_status = kprobe_status_prev;
253 kprobe_old_rflags = kprobe_old_rflags_prev;
254 kprobe_saved_rflags = kprobe_saved_rflags_prev;
257 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs)
260 kprobe_saved_rflags = kprobe_old_rflags
261 = (regs->eflags & (TF_MASK | IF_MASK));
262 if (is_IF_modifier(p->ainsn.insn))
263 kprobe_saved_rflags &= ~IF_MASK;
266 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
268 regs->eflags |= TF_MASK;
269 regs->eflags &= ~IF_MASK;
270 /*single step inline if the instruction is an int3*/
271 if (p->opcode == BREAKPOINT_INSTRUCTION)
272 regs->rip = (unsigned long)p->addr;
274 regs->rip = (unsigned long)p->ainsn.insn;
277 struct task_struct *arch_get_kprobe_task(void *ptr)
279 return ((struct thread_info *) (((unsigned long) ptr) &
280 (~(THREAD_SIZE -1))))->task;
283 void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs)
285 unsigned long *sara = (unsigned long *)regs->rsp;
286 struct kretprobe_instance *ri;
287 static void *orig_ret_addr;
290 * Save the return address when the return probe hits
291 * the first time, and use it to populate the (krprobe
292 * instance)->ret_addr for subsequent return probes at
293 * the same addrress since stack address would have
294 * the kretprobe_trampoline by then.
296 if (((void*) *sara) != kretprobe_trampoline)
297 orig_ret_addr = (void*) *sara;
299 if ((ri = get_free_rp_inst(rp)) != NULL) {
301 ri->stack_addr = sara;
302 ri->ret_addr = orig_ret_addr;
304 /* Replace the return addr with trampoline addr */
305 *sara = (unsigned long) &kretprobe_trampoline;
311 void arch_kprobe_flush_task(struct task_struct *tk)
313 struct kretprobe_instance *ri;
314 while ((ri = get_rp_inst_tsk(tk)) != NULL) {
315 *((unsigned long *)(ri->stack_addr)) =
316 (unsigned long) ri->ret_addr;
322 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
323 * remain disabled thorough out this function.
325 int kprobe_handler(struct pt_regs *regs)
329 kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
331 /* We're in an interrupt, but this is clear and BUG()-safe. */
334 /* Check we're not actually recursing */
335 if (kprobe_running()) {
336 /* We *are* holding lock here, so this is safe.
337 Disarm the probe we just hit, and ignore it. */
338 p = get_kprobe(addr);
340 if (kprobe_status == KPROBE_HIT_SS) {
341 regs->eflags &= ~TF_MASK;
342 regs->eflags |= kprobe_saved_rflags;
345 } else if (kprobe_status == KPROBE_HIT_SSDONE) {
346 /* TODO: Provide re-entrancy from
347 * post_kprobes_handler() and avoid exception
348 * stack corruption while single-stepping on
349 * the instruction of the new probe.
351 arch_disarm_kprobe(p);
352 regs->rip = (unsigned long)p->addr;
355 /* We have reentered the kprobe_handler(), since
356 * another probe was hit while within the
357 * handler. We here save the original kprobe
358 * variables and just single step on instruction
359 * of the new probe without calling any user
362 save_previous_kprobe();
363 set_current_kprobe(p, regs);
365 prepare_singlestep(p, regs);
366 kprobe_status = KPROBE_REENTER;
371 if (p->break_handler && p->break_handler(p, regs)) {
375 /* If it's not ours, can't be delete race, (we hold lock). */
380 p = get_kprobe(addr);
383 if (*addr != BREAKPOINT_INSTRUCTION) {
385 * The breakpoint instruction was removed right
386 * after we hit it. Another cpu has removed
387 * either a probepoint or a debugger breakpoint
388 * at this address. In either case, no further
389 * handling of this interrupt is appropriate.
393 /* Not one of ours: let kernel handle it */
397 kprobe_status = KPROBE_HIT_ACTIVE;
398 set_current_kprobe(p, regs);
400 if (p->pre_handler && p->pre_handler(p, regs))
401 /* handler has already set things up, so skip ss setup */
405 prepare_singlestep(p, regs);
406 kprobe_status = KPROBE_HIT_SS;
410 preempt_enable_no_resched();
415 * For function-return probes, init_kprobes() establishes a probepoint
416 * here. When a retprobed function returns, this probe is hit and
417 * trampoline_probe_handler() runs, calling the kretprobe's handler.
419 void kretprobe_trampoline_holder(void)
421 asm volatile ( ".global kretprobe_trampoline\n"
422 "kretprobe_trampoline: \n"
427 * Called when we hit the probe point at kretprobe_trampoline
429 int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
431 struct task_struct *tsk;
432 struct kretprobe_instance *ri;
433 struct hlist_head *head;
434 struct hlist_node *node;
435 unsigned long *sara = (unsigned long *)regs->rsp - 1;
437 tsk = arch_get_kprobe_task(sara);
438 head = kretprobe_inst_table_head(tsk);
440 hlist_for_each_entry(ri, node, head, hlist) {
441 if (ri->stack_addr == sara && ri->rp) {
443 ri->rp->handler(ri, regs);
449 void trampoline_post_handler(struct kprobe *p, struct pt_regs *regs,
452 struct kretprobe_instance *ri;
453 /* RA already popped */
454 unsigned long *sara = ((unsigned long *)regs->rsp) - 1;
456 while ((ri = get_rp_inst(sara))) {
457 regs->rip = (unsigned long)ri->ret_addr;
460 regs->eflags &= ~TF_MASK;
464 * Called after single-stepping. p->addr is the address of the
465 * instruction whose first byte has been replaced by the "int 3"
466 * instruction. To avoid the SMP problems that can occur when we
467 * temporarily put back the original opcode to single-step, we
468 * single-stepped a copy of the instruction. The address of this
469 * copy is p->ainsn.insn.
471 * This function prepares to return from the post-single-step
472 * interrupt. We have to fix up the stack as follows:
474 * 0) Except in the case of absolute or indirect jump or call instructions,
475 * the new rip is relative to the copied instruction. We need to make
476 * it relative to the original instruction.
478 * 1) If the single-stepped instruction was pushfl, then the TF and IF
479 * flags are set in the just-pushed eflags, and may need to be cleared.
481 * 2) If the single-stepped instruction was a call, the return address
482 * that is atop the stack is the address following the copied instruction.
483 * We need to make it the address following the original instruction.
485 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
487 unsigned long *tos = (unsigned long *)regs->rsp;
488 unsigned long next_rip = 0;
489 unsigned long copy_rip = (unsigned long)p->ainsn.insn;
490 unsigned long orig_rip = (unsigned long)p->addr;
491 kprobe_opcode_t *insn = p->ainsn.insn;
493 /*skip the REX prefix*/
494 if (*insn >= 0x40 && *insn <= 0x4f)
498 case 0x9c: /* pushfl */
499 *tos &= ~(TF_MASK | IF_MASK);
500 *tos |= kprobe_old_rflags;
502 case 0xc3: /* ret/lret */
506 regs->eflags &= ~TF_MASK;
507 /* rip is already adjusted, no more changes required*/
509 case 0xe8: /* call relative - Fix return addr */
510 *tos = orig_rip + (*tos - copy_rip);
513 if ((*insn & 0x30) == 0x10) {
514 /* call absolute, indirect */
515 /* Fix return addr; rip is correct. */
516 next_rip = regs->rip;
517 *tos = orig_rip + (*tos - copy_rip);
518 } else if (((*insn & 0x31) == 0x20) || /* jmp near, absolute indirect */
519 ((*insn & 0x31) == 0x21)) { /* jmp far, absolute indirect */
520 /* rip is correct. */
521 next_rip = regs->rip;
524 case 0xea: /* jmp absolute -- rip is correct */
525 next_rip = regs->rip;
531 regs->eflags &= ~TF_MASK;
533 regs->rip = next_rip;
535 regs->rip = orig_rip + (regs->rip - copy_rip);
540 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
541 * remain disabled thoroughout this function. And we hold kprobe lock.
543 int post_kprobe_handler(struct pt_regs *regs)
545 if (!kprobe_running())
548 if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
549 kprobe_status = KPROBE_HIT_SSDONE;
550 current_kprobe->post_handler(current_kprobe, regs, 0);
553 if (current_kprobe->post_handler != trampoline_post_handler)
554 resume_execution(current_kprobe, regs);
555 regs->eflags |= kprobe_saved_rflags;
557 /* Restore the original saved kprobes variables and continue. */
558 if (kprobe_status == KPROBE_REENTER) {
559 restore_previous_kprobe();
565 preempt_enable_no_resched();
568 * if somebody else is singlestepping across a probe point, eflags
569 * will have TF set, in which case, continue the remaining processing
570 * of do_debug, as if this is not a probe hit.
572 if (regs->eflags & TF_MASK)
578 /* Interrupts disabled, kprobe_lock held. */
579 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
581 if (current_kprobe->fault_handler
582 && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
585 if (kprobe_status & KPROBE_HIT_SS) {
586 resume_execution(current_kprobe, regs);
587 regs->eflags |= kprobe_old_rflags;
590 preempt_enable_no_resched();
596 * Wrapper routine for handling exceptions.
598 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
601 struct die_args *args = (struct die_args *)data;
604 if (kprobe_handler(args->regs))
608 if (post_kprobe_handler(args->regs))
612 if (kprobe_running() &&
613 kprobe_fault_handler(args->regs, args->trapnr))
617 if (kprobe_running() &&
618 kprobe_fault_handler(args->regs, args->trapnr))
627 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
629 struct jprobe *jp = container_of(p, struct jprobe, kp);
632 jprobe_saved_regs = *regs;
633 jprobe_saved_rsp = (long *) regs->rsp;
634 addr = (unsigned long)jprobe_saved_rsp;
636 * As Linus pointed out, gcc assumes that the callee
637 * owns the argument space and could overwrite it, e.g.
638 * tailcall optimization. So, to be absolutely safe
639 * we also save and restore enough stack bytes to cover
642 memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr));
643 regs->eflags &= ~IF_MASK;
644 regs->rip = (unsigned long)(jp->entry);
648 void jprobe_return(void)
650 preempt_enable_no_resched();
651 asm volatile (" xchg %%rbx,%%rsp \n"
653 " .globl jprobe_return_end \n"
654 " jprobe_return_end: \n"
656 (jprobe_saved_rsp):"memory");
659 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
661 u8 *addr = (u8 *) (regs->rip - 1);
662 unsigned long stack_addr = (unsigned long)jprobe_saved_rsp;
663 struct jprobe *jp = container_of(p, struct jprobe, kp);
665 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
666 if ((long *)regs->rsp != jprobe_saved_rsp) {
667 struct pt_regs *saved_regs =
668 container_of(jprobe_saved_rsp, struct pt_regs, rsp);
669 printk("current rsp %p does not match saved rsp %p\n",
670 (long *)regs->rsp, jprobe_saved_rsp);
671 printk("Saved registers for jprobe %p\n", jp);
672 show_registers(saved_regs);
673 printk("Current registers\n");
674 show_registers(regs);
677 *regs = jprobe_saved_regs;
678 memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack,
679 MIN_STACK_SIZE(stack_addr));
686 * kprobe->ainsn.insn points to the copy of the instruction to be single-stepped.
687 * By default on x86_64, pages we get from kmalloc or vmalloc are not
688 * executable. Single-stepping an instruction on such a page yields an
689 * oops. So instead of storing the instruction copies in their respective
690 * kprobe objects, we allocate a page, map it executable, and store all the
691 * instruction copies there. (We can allocate additional pages if somebody
692 * inserts a huge number of probes.) Each page can hold up to INSNS_PER_PAGE
693 * instruction slots, each of which is MAX_INSN_SIZE*sizeof(kprobe_opcode_t)
696 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE*sizeof(kprobe_opcode_t)))
697 struct kprobe_insn_page {
698 struct hlist_node hlist;
699 kprobe_opcode_t *insns; /* page of instruction slots */
700 char slot_used[INSNS_PER_PAGE];
704 static struct hlist_head kprobe_insn_pages;
707 * get_insn_slot() - Find a slot on an executable page for an instruction.
708 * We allocate an executable page if there's no room on existing ones.
710 static kprobe_opcode_t *get_insn_slot(void)
712 struct kprobe_insn_page *kip;
713 struct hlist_node *pos;
715 hlist_for_each(pos, &kprobe_insn_pages) {
716 kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
717 if (kip->nused < INSNS_PER_PAGE) {
719 for (i = 0; i < INSNS_PER_PAGE; i++) {
720 if (!kip->slot_used[i]) {
721 kip->slot_used[i] = 1;
723 return kip->insns + (i*MAX_INSN_SIZE);
726 /* Surprise! No unused slots. Fix kip->nused. */
727 kip->nused = INSNS_PER_PAGE;
731 /* All out of space. Need to allocate a new page. Use slot 0.*/
732 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
738 * For the %rip-relative displacement fixups to be doable, we
739 * need our instruction copy to be within +/- 2GB of any data it
740 * might access via %rip. That is, within 2GB of where the
741 * kernel image and loaded module images reside. So we allocate
742 * a page in the module loading area.
744 kip->insns = module_alloc(PAGE_SIZE);
749 INIT_HLIST_NODE(&kip->hlist);
750 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
751 memset(kip->slot_used, 0, INSNS_PER_PAGE);
752 kip->slot_used[0] = 1;
758 * free_insn_slot() - Free instruction slot obtained from get_insn_slot().
760 static void free_insn_slot(kprobe_opcode_t *slot)
762 struct kprobe_insn_page *kip;
763 struct hlist_node *pos;
765 hlist_for_each(pos, &kprobe_insn_pages) {
766 kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
767 if (kip->insns <= slot
768 && slot < kip->insns+(INSNS_PER_PAGE*MAX_INSN_SIZE)) {
769 int i = (slot - kip->insns) / MAX_INSN_SIZE;
770 kip->slot_used[i] = 0;
772 if (kip->nused == 0) {
774 * Page is no longer in use. Free it unless
775 * it's the last one. We keep the last one
776 * so as not to have to set it up again the
777 * next time somebody inserts a probe.
779 hlist_del(&kip->hlist);
780 if (hlist_empty(&kprobe_insn_pages)) {
781 INIT_HLIST_NODE(&kip->hlist);
782 hlist_add_head(&kip->hlist,
785 module_free(NULL, kip->insns);