Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[linux-2.6] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/memcontrol.h>
44 #include <linux/profile.h>
45 #include <linux/rmap.h>
46 #include <linux/acct.h>
47 #include <linux/tsacct_kern.h>
48 #include <linux/cn_proc.h>
49 #include <linux/freezer.h>
50 #include <linux/delayacct.h>
51 #include <linux/taskstats_kern.h>
52 #include <linux/random.h>
53 #include <linux/tty.h>
54 #include <linux/proc_fs.h>
55 #include <linux/blkdev.h>
56
57 #include <asm/pgtable.h>
58 #include <asm/pgalloc.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/cacheflush.h>
62 #include <asm/tlbflush.h>
63
64 /*
65  * Protected counters by write_lock_irq(&tasklist_lock)
66  */
67 unsigned long total_forks;      /* Handle normal Linux uptimes. */
68 int nr_threads;                 /* The idle threads do not count.. */
69
70 int max_threads;                /* tunable limit on nr_threads */
71
72 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
73
74 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
75
76 int nr_processes(void)
77 {
78         int cpu;
79         int total = 0;
80
81         for_each_online_cpu(cpu)
82                 total += per_cpu(process_counts, cpu);
83
84         return total;
85 }
86
87 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
88 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
89 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
90 static struct kmem_cache *task_struct_cachep;
91 #endif
92
93 /* SLAB cache for signal_struct structures (tsk->signal) */
94 static struct kmem_cache *signal_cachep;
95
96 /* SLAB cache for sighand_struct structures (tsk->sighand) */
97 struct kmem_cache *sighand_cachep;
98
99 /* SLAB cache for files_struct structures (tsk->files) */
100 struct kmem_cache *files_cachep;
101
102 /* SLAB cache for fs_struct structures (tsk->fs) */
103 struct kmem_cache *fs_cachep;
104
105 /* SLAB cache for vm_area_struct structures */
106 struct kmem_cache *vm_area_cachep;
107
108 /* SLAB cache for mm_struct structures (tsk->mm) */
109 static struct kmem_cache *mm_cachep;
110
111 void free_task(struct task_struct *tsk)
112 {
113         prop_local_destroy_single(&tsk->dirties);
114         free_thread_info(tsk->stack);
115         rt_mutex_debug_task_free(tsk);
116         free_task_struct(tsk);
117 }
118 EXPORT_SYMBOL(free_task);
119
120 void __put_task_struct(struct task_struct *tsk)
121 {
122         WARN_ON(!tsk->exit_state);
123         WARN_ON(atomic_read(&tsk->usage));
124         WARN_ON(tsk == current);
125
126         security_task_free(tsk);
127         free_uid(tsk->user);
128         put_group_info(tsk->group_info);
129         delayacct_tsk_free(tsk);
130
131         if (!profile_handoff_task(tsk))
132                 free_task(tsk);
133 }
134
135 /*
136  * macro override instead of weak attribute alias, to workaround
137  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
138  */
139 #ifndef arch_task_cache_init
140 #define arch_task_cache_init()
141 #endif
142
143 void __init fork_init(unsigned long mempages)
144 {
145 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
146 #ifndef ARCH_MIN_TASKALIGN
147 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
148 #endif
149         /* create a slab on which task_structs can be allocated */
150         task_struct_cachep =
151                 kmem_cache_create("task_struct", sizeof(struct task_struct),
152                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
153 #endif
154
155         /* do the arch specific task caches init */
156         arch_task_cache_init();
157
158         /*
159          * The default maximum number of threads is set to a safe
160          * value: the thread structures can take up at most half
161          * of memory.
162          */
163         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
164
165         /*
166          * we need to allow at least 20 threads to boot a system
167          */
168         if(max_threads < 20)
169                 max_threads = 20;
170
171         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
172         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
173         init_task.signal->rlim[RLIMIT_SIGPENDING] =
174                 init_task.signal->rlim[RLIMIT_NPROC];
175 }
176
177 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
178                                                struct task_struct *src)
179 {
180         *dst = *src;
181         return 0;
182 }
183
184 static struct task_struct *dup_task_struct(struct task_struct *orig)
185 {
186         struct task_struct *tsk;
187         struct thread_info *ti;
188         int err;
189
190         prepare_to_copy(orig);
191
192         tsk = alloc_task_struct();
193         if (!tsk)
194                 return NULL;
195
196         ti = alloc_thread_info(tsk);
197         if (!ti) {
198                 free_task_struct(tsk);
199                 return NULL;
200         }
201
202         err = arch_dup_task_struct(tsk, orig);
203         if (err)
204                 goto out;
205
206         tsk->stack = ti;
207
208         err = prop_local_init_single(&tsk->dirties);
209         if (err)
210                 goto out;
211
212         setup_thread_stack(tsk, orig);
213
214 #ifdef CONFIG_CC_STACKPROTECTOR
215         tsk->stack_canary = get_random_int();
216 #endif
217
218         /* One for us, one for whoever does the "release_task()" (usually parent) */
219         atomic_set(&tsk->usage,2);
220         atomic_set(&tsk->fs_excl, 0);
221 #ifdef CONFIG_BLK_DEV_IO_TRACE
222         tsk->btrace_seq = 0;
223 #endif
224         tsk->splice_pipe = NULL;
225         return tsk;
226
227 out:
228         free_thread_info(ti);
229         free_task_struct(tsk);
230         return NULL;
231 }
232
233 #ifdef CONFIG_MMU
234 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
235 {
236         struct vm_area_struct *mpnt, *tmp, **pprev;
237         struct rb_node **rb_link, *rb_parent;
238         int retval;
239         unsigned long charge;
240         struct mempolicy *pol;
241
242         down_write(&oldmm->mmap_sem);
243         flush_cache_dup_mm(oldmm);
244         /*
245          * Not linked in yet - no deadlock potential:
246          */
247         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
248
249         mm->locked_vm = 0;
250         mm->mmap = NULL;
251         mm->mmap_cache = NULL;
252         mm->free_area_cache = oldmm->mmap_base;
253         mm->cached_hole_size = ~0UL;
254         mm->map_count = 0;
255         cpus_clear(mm->cpu_vm_mask);
256         mm->mm_rb = RB_ROOT;
257         rb_link = &mm->mm_rb.rb_node;
258         rb_parent = NULL;
259         pprev = &mm->mmap;
260
261         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
262                 struct file *file;
263
264                 if (mpnt->vm_flags & VM_DONTCOPY) {
265                         long pages = vma_pages(mpnt);
266                         mm->total_vm -= pages;
267                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
268                                                                 -pages);
269                         continue;
270                 }
271                 charge = 0;
272                 if (mpnt->vm_flags & VM_ACCOUNT) {
273                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
274                         if (security_vm_enough_memory(len))
275                                 goto fail_nomem;
276                         charge = len;
277                 }
278                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
279                 if (!tmp)
280                         goto fail_nomem;
281                 *tmp = *mpnt;
282                 pol = mpol_dup(vma_policy(mpnt));
283                 retval = PTR_ERR(pol);
284                 if (IS_ERR(pol))
285                         goto fail_nomem_policy;
286                 vma_set_policy(tmp, pol);
287                 tmp->vm_flags &= ~VM_LOCKED;
288                 tmp->vm_mm = mm;
289                 tmp->vm_next = NULL;
290                 anon_vma_link(tmp);
291                 file = tmp->vm_file;
292                 if (file) {
293                         struct inode *inode = file->f_path.dentry->d_inode;
294                         get_file(file);
295                         if (tmp->vm_flags & VM_DENYWRITE)
296                                 atomic_dec(&inode->i_writecount);
297
298                         /* insert tmp into the share list, just after mpnt */
299                         spin_lock(&file->f_mapping->i_mmap_lock);
300                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
301                         flush_dcache_mmap_lock(file->f_mapping);
302                         vma_prio_tree_add(tmp, mpnt);
303                         flush_dcache_mmap_unlock(file->f_mapping);
304                         spin_unlock(&file->f_mapping->i_mmap_lock);
305                 }
306
307                 /*
308                  * Link in the new vma and copy the page table entries.
309                  */
310                 *pprev = tmp;
311                 pprev = &tmp->vm_next;
312
313                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
314                 rb_link = &tmp->vm_rb.rb_right;
315                 rb_parent = &tmp->vm_rb;
316
317                 mm->map_count++;
318                 retval = copy_page_range(mm, oldmm, mpnt);
319
320                 if (tmp->vm_ops && tmp->vm_ops->open)
321                         tmp->vm_ops->open(tmp);
322
323                 if (retval)
324                         goto out;
325         }
326         /* a new mm has just been created */
327         arch_dup_mmap(oldmm, mm);
328         retval = 0;
329 out:
330         up_write(&mm->mmap_sem);
331         flush_tlb_mm(oldmm);
332         up_write(&oldmm->mmap_sem);
333         return retval;
334 fail_nomem_policy:
335         kmem_cache_free(vm_area_cachep, tmp);
336 fail_nomem:
337         retval = -ENOMEM;
338         vm_unacct_memory(charge);
339         goto out;
340 }
341
342 static inline int mm_alloc_pgd(struct mm_struct * mm)
343 {
344         mm->pgd = pgd_alloc(mm);
345         if (unlikely(!mm->pgd))
346                 return -ENOMEM;
347         return 0;
348 }
349
350 static inline void mm_free_pgd(struct mm_struct * mm)
351 {
352         pgd_free(mm, mm->pgd);
353 }
354 #else
355 #define dup_mmap(mm, oldmm)     (0)
356 #define mm_alloc_pgd(mm)        (0)
357 #define mm_free_pgd(mm)
358 #endif /* CONFIG_MMU */
359
360 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
361
362 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
363 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
364
365 #include <linux/init_task.h>
366
367 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
368 {
369         atomic_set(&mm->mm_users, 1);
370         atomic_set(&mm->mm_count, 1);
371         init_rwsem(&mm->mmap_sem);
372         INIT_LIST_HEAD(&mm->mmlist);
373         mm->flags = (current->mm) ? current->mm->flags
374                                   : MMF_DUMP_FILTER_DEFAULT;
375         mm->core_waiters = 0;
376         mm->nr_ptes = 0;
377         set_mm_counter(mm, file_rss, 0);
378         set_mm_counter(mm, anon_rss, 0);
379         spin_lock_init(&mm->page_table_lock);
380         rwlock_init(&mm->ioctx_list_lock);
381         mm->ioctx_list = NULL;
382         mm->free_area_cache = TASK_UNMAPPED_BASE;
383         mm->cached_hole_size = ~0UL;
384         mm_init_owner(mm, p);
385
386         if (likely(!mm_alloc_pgd(mm))) {
387                 mm->def_flags = 0;
388                 return mm;
389         }
390
391         free_mm(mm);
392         return NULL;
393 }
394
395 /*
396  * Allocate and initialize an mm_struct.
397  */
398 struct mm_struct * mm_alloc(void)
399 {
400         struct mm_struct * mm;
401
402         mm = allocate_mm();
403         if (mm) {
404                 memset(mm, 0, sizeof(*mm));
405                 mm = mm_init(mm, current);
406         }
407         return mm;
408 }
409
410 /*
411  * Called when the last reference to the mm
412  * is dropped: either by a lazy thread or by
413  * mmput. Free the page directory and the mm.
414  */
415 void __mmdrop(struct mm_struct *mm)
416 {
417         BUG_ON(mm == &init_mm);
418         mm_free_pgd(mm);
419         destroy_context(mm);
420         free_mm(mm);
421 }
422 EXPORT_SYMBOL_GPL(__mmdrop);
423
424 /*
425  * Decrement the use count and release all resources for an mm.
426  */
427 void mmput(struct mm_struct *mm)
428 {
429         might_sleep();
430
431         if (atomic_dec_and_test(&mm->mm_users)) {
432                 exit_aio(mm);
433                 exit_mmap(mm);
434                 set_mm_exe_file(mm, NULL);
435                 if (!list_empty(&mm->mmlist)) {
436                         spin_lock(&mmlist_lock);
437                         list_del(&mm->mmlist);
438                         spin_unlock(&mmlist_lock);
439                 }
440                 put_swap_token(mm);
441                 mmdrop(mm);
442         }
443 }
444 EXPORT_SYMBOL_GPL(mmput);
445
446 /**
447  * get_task_mm - acquire a reference to the task's mm
448  *
449  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
450  * this kernel workthread has transiently adopted a user mm with use_mm,
451  * to do its AIO) is not set and if so returns a reference to it, after
452  * bumping up the use count.  User must release the mm via mmput()
453  * after use.  Typically used by /proc and ptrace.
454  */
455 struct mm_struct *get_task_mm(struct task_struct *task)
456 {
457         struct mm_struct *mm;
458
459         task_lock(task);
460         mm = task->mm;
461         if (mm) {
462                 if (task->flags & PF_BORROWED_MM)
463                         mm = NULL;
464                 else
465                         atomic_inc(&mm->mm_users);
466         }
467         task_unlock(task);
468         return mm;
469 }
470 EXPORT_SYMBOL_GPL(get_task_mm);
471
472 /* Please note the differences between mmput and mm_release.
473  * mmput is called whenever we stop holding onto a mm_struct,
474  * error success whatever.
475  *
476  * mm_release is called after a mm_struct has been removed
477  * from the current process.
478  *
479  * This difference is important for error handling, when we
480  * only half set up a mm_struct for a new process and need to restore
481  * the old one.  Because we mmput the new mm_struct before
482  * restoring the old one. . .
483  * Eric Biederman 10 January 1998
484  */
485 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
486 {
487         struct completion *vfork_done = tsk->vfork_done;
488
489         /* Get rid of any cached register state */
490         deactivate_mm(tsk, mm);
491
492         /* notify parent sleeping on vfork() */
493         if (vfork_done) {
494                 tsk->vfork_done = NULL;
495                 complete(vfork_done);
496         }
497
498         /*
499          * If we're exiting normally, clear a user-space tid field if
500          * requested.  We leave this alone when dying by signal, to leave
501          * the value intact in a core dump, and to save the unnecessary
502          * trouble otherwise.  Userland only wants this done for a sys_exit.
503          */
504         if (tsk->clear_child_tid
505             && !(tsk->flags & PF_SIGNALED)
506             && atomic_read(&mm->mm_users) > 1) {
507                 u32 __user * tidptr = tsk->clear_child_tid;
508                 tsk->clear_child_tid = NULL;
509
510                 /*
511                  * We don't check the error code - if userspace has
512                  * not set up a proper pointer then tough luck.
513                  */
514                 put_user(0, tidptr);
515                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
516         }
517 }
518
519 /*
520  * Allocate a new mm structure and copy contents from the
521  * mm structure of the passed in task structure.
522  */
523 struct mm_struct *dup_mm(struct task_struct *tsk)
524 {
525         struct mm_struct *mm, *oldmm = current->mm;
526         int err;
527
528         if (!oldmm)
529                 return NULL;
530
531         mm = allocate_mm();
532         if (!mm)
533                 goto fail_nomem;
534
535         memcpy(mm, oldmm, sizeof(*mm));
536
537         /* Initializing for Swap token stuff */
538         mm->token_priority = 0;
539         mm->last_interval = 0;
540
541         if (!mm_init(mm, tsk))
542                 goto fail_nomem;
543
544         if (init_new_context(tsk, mm))
545                 goto fail_nocontext;
546
547         dup_mm_exe_file(oldmm, mm);
548
549         err = dup_mmap(mm, oldmm);
550         if (err)
551                 goto free_pt;
552
553         mm->hiwater_rss = get_mm_rss(mm);
554         mm->hiwater_vm = mm->total_vm;
555
556         return mm;
557
558 free_pt:
559         mmput(mm);
560
561 fail_nomem:
562         return NULL;
563
564 fail_nocontext:
565         /*
566          * If init_new_context() failed, we cannot use mmput() to free the mm
567          * because it calls destroy_context()
568          */
569         mm_free_pgd(mm);
570         free_mm(mm);
571         return NULL;
572 }
573
574 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
575 {
576         struct mm_struct * mm, *oldmm;
577         int retval;
578
579         tsk->min_flt = tsk->maj_flt = 0;
580         tsk->nvcsw = tsk->nivcsw = 0;
581
582         tsk->mm = NULL;
583         tsk->active_mm = NULL;
584
585         /*
586          * Are we cloning a kernel thread?
587          *
588          * We need to steal a active VM for that..
589          */
590         oldmm = current->mm;
591         if (!oldmm)
592                 return 0;
593
594         if (clone_flags & CLONE_VM) {
595                 atomic_inc(&oldmm->mm_users);
596                 mm = oldmm;
597                 goto good_mm;
598         }
599
600         retval = -ENOMEM;
601         mm = dup_mm(tsk);
602         if (!mm)
603                 goto fail_nomem;
604
605 good_mm:
606         /* Initializing for Swap token stuff */
607         mm->token_priority = 0;
608         mm->last_interval = 0;
609
610         tsk->mm = mm;
611         tsk->active_mm = mm;
612         return 0;
613
614 fail_nomem:
615         return retval;
616 }
617
618 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
619 {
620         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
621         /* We don't need to lock fs - think why ;-) */
622         if (fs) {
623                 atomic_set(&fs->count, 1);
624                 rwlock_init(&fs->lock);
625                 fs->umask = old->umask;
626                 read_lock(&old->lock);
627                 fs->root = old->root;
628                 path_get(&old->root);
629                 fs->pwd = old->pwd;
630                 path_get(&old->pwd);
631                 if (old->altroot.dentry) {
632                         fs->altroot = old->altroot;
633                         path_get(&old->altroot);
634                 } else {
635                         fs->altroot.mnt = NULL;
636                         fs->altroot.dentry = NULL;
637                 }
638                 read_unlock(&old->lock);
639         }
640         return fs;
641 }
642
643 struct fs_struct *copy_fs_struct(struct fs_struct *old)
644 {
645         return __copy_fs_struct(old);
646 }
647
648 EXPORT_SYMBOL_GPL(copy_fs_struct);
649
650 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
651 {
652         if (clone_flags & CLONE_FS) {
653                 atomic_inc(&current->fs->count);
654                 return 0;
655         }
656         tsk->fs = __copy_fs_struct(current->fs);
657         if (!tsk->fs)
658                 return -ENOMEM;
659         return 0;
660 }
661
662 static int count_open_files(struct fdtable *fdt)
663 {
664         int size = fdt->max_fds;
665         int i;
666
667         /* Find the last open fd */
668         for (i = size/(8*sizeof(long)); i > 0; ) {
669                 if (fdt->open_fds->fds_bits[--i])
670                         break;
671         }
672         i = (i+1) * 8 * sizeof(long);
673         return i;
674 }
675
676 static struct files_struct *alloc_files(void)
677 {
678         struct files_struct *newf;
679         struct fdtable *fdt;
680
681         newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
682         if (!newf)
683                 goto out;
684
685         atomic_set(&newf->count, 1);
686
687         spin_lock_init(&newf->file_lock);
688         newf->next_fd = 0;
689         fdt = &newf->fdtab;
690         fdt->max_fds = NR_OPEN_DEFAULT;
691         fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
692         fdt->open_fds = (fd_set *)&newf->open_fds_init;
693         fdt->fd = &newf->fd_array[0];
694         INIT_RCU_HEAD(&fdt->rcu);
695         fdt->next = NULL;
696         rcu_assign_pointer(newf->fdt, fdt);
697 out:
698         return newf;
699 }
700
701 /*
702  * Allocate a new files structure and copy contents from the
703  * passed in files structure.
704  * errorp will be valid only when the returned files_struct is NULL.
705  */
706 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
707 {
708         struct files_struct *newf;
709         struct file **old_fds, **new_fds;
710         int open_files, size, i;
711         struct fdtable *old_fdt, *new_fdt;
712
713         *errorp = -ENOMEM;
714         newf = alloc_files();
715         if (!newf)
716                 goto out;
717
718         spin_lock(&oldf->file_lock);
719         old_fdt = files_fdtable(oldf);
720         new_fdt = files_fdtable(newf);
721         open_files = count_open_files(old_fdt);
722
723         /*
724          * Check whether we need to allocate a larger fd array and fd set.
725          * Note: we're not a clone task, so the open count won't change.
726          */
727         if (open_files > new_fdt->max_fds) {
728                 new_fdt->max_fds = 0;
729                 spin_unlock(&oldf->file_lock);
730                 spin_lock(&newf->file_lock);
731                 *errorp = expand_files(newf, open_files-1);
732                 spin_unlock(&newf->file_lock);
733                 if (*errorp < 0)
734                         goto out_release;
735                 new_fdt = files_fdtable(newf);
736                 /*
737                  * Reacquire the oldf lock and a pointer to its fd table
738                  * who knows it may have a new bigger fd table. We need
739                  * the latest pointer.
740                  */
741                 spin_lock(&oldf->file_lock);
742                 old_fdt = files_fdtable(oldf);
743         }
744
745         old_fds = old_fdt->fd;
746         new_fds = new_fdt->fd;
747
748         memcpy(new_fdt->open_fds->fds_bits,
749                 old_fdt->open_fds->fds_bits, open_files/8);
750         memcpy(new_fdt->close_on_exec->fds_bits,
751                 old_fdt->close_on_exec->fds_bits, open_files/8);
752
753         for (i = open_files; i != 0; i--) {
754                 struct file *f = *old_fds++;
755                 if (f) {
756                         get_file(f);
757                 } else {
758                         /*
759                          * The fd may be claimed in the fd bitmap but not yet
760                          * instantiated in the files array if a sibling thread
761                          * is partway through open().  So make sure that this
762                          * fd is available to the new process.
763                          */
764                         FD_CLR(open_files - i, new_fdt->open_fds);
765                 }
766                 rcu_assign_pointer(*new_fds++, f);
767         }
768         spin_unlock(&oldf->file_lock);
769
770         /* compute the remainder to be cleared */
771         size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
772
773         /* This is long word aligned thus could use a optimized version */
774         memset(new_fds, 0, size);
775
776         if (new_fdt->max_fds > open_files) {
777                 int left = (new_fdt->max_fds-open_files)/8;
778                 int start = open_files / (8 * sizeof(unsigned long));
779
780                 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
781                 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
782         }
783
784         return newf;
785
786 out_release:
787         kmem_cache_free(files_cachep, newf);
788 out:
789         return NULL;
790 }
791
792 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
793 {
794         struct files_struct *oldf, *newf;
795         int error = 0;
796
797         /*
798          * A background process may not have any files ...
799          */
800         oldf = current->files;
801         if (!oldf)
802                 goto out;
803
804         if (clone_flags & CLONE_FILES) {
805                 atomic_inc(&oldf->count);
806                 goto out;
807         }
808
809         newf = dup_fd(oldf, &error);
810         if (!newf)
811                 goto out;
812
813         tsk->files = newf;
814         error = 0;
815 out:
816         return error;
817 }
818
819 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
820 {
821 #ifdef CONFIG_BLOCK
822         struct io_context *ioc = current->io_context;
823
824         if (!ioc)
825                 return 0;
826         /*
827          * Share io context with parent, if CLONE_IO is set
828          */
829         if (clone_flags & CLONE_IO) {
830                 tsk->io_context = ioc_task_link(ioc);
831                 if (unlikely(!tsk->io_context))
832                         return -ENOMEM;
833         } else if (ioprio_valid(ioc->ioprio)) {
834                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
835                 if (unlikely(!tsk->io_context))
836                         return -ENOMEM;
837
838                 tsk->io_context->ioprio = ioc->ioprio;
839         }
840 #endif
841         return 0;
842 }
843
844 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
845 {
846         struct sighand_struct *sig;
847
848         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
849                 atomic_inc(&current->sighand->count);
850                 return 0;
851         }
852         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
853         rcu_assign_pointer(tsk->sighand, sig);
854         if (!sig)
855                 return -ENOMEM;
856         atomic_set(&sig->count, 1);
857         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
858         return 0;
859 }
860
861 void __cleanup_sighand(struct sighand_struct *sighand)
862 {
863         if (atomic_dec_and_test(&sighand->count))
864                 kmem_cache_free(sighand_cachep, sighand);
865 }
866
867 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
868 {
869         struct signal_struct *sig;
870         int ret;
871
872         if (clone_flags & CLONE_THREAD) {
873                 atomic_inc(&current->signal->count);
874                 atomic_inc(&current->signal->live);
875                 return 0;
876         }
877         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
878         tsk->signal = sig;
879         if (!sig)
880                 return -ENOMEM;
881
882         ret = copy_thread_group_keys(tsk);
883         if (ret < 0) {
884                 kmem_cache_free(signal_cachep, sig);
885                 return ret;
886         }
887
888         atomic_set(&sig->count, 1);
889         atomic_set(&sig->live, 1);
890         init_waitqueue_head(&sig->wait_chldexit);
891         sig->flags = 0;
892         sig->group_exit_code = 0;
893         sig->group_exit_task = NULL;
894         sig->group_stop_count = 0;
895         sig->curr_target = NULL;
896         init_sigpending(&sig->shared_pending);
897         INIT_LIST_HEAD(&sig->posix_timers);
898
899         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
900         sig->it_real_incr.tv64 = 0;
901         sig->real_timer.function = it_real_fn;
902
903         sig->it_virt_expires = cputime_zero;
904         sig->it_virt_incr = cputime_zero;
905         sig->it_prof_expires = cputime_zero;
906         sig->it_prof_incr = cputime_zero;
907
908         sig->leader = 0;        /* session leadership doesn't inherit */
909         sig->tty_old_pgrp = NULL;
910
911         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
912         sig->gtime = cputime_zero;
913         sig->cgtime = cputime_zero;
914         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
915         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
916         sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
917         sig->sum_sched_runtime = 0;
918         INIT_LIST_HEAD(&sig->cpu_timers[0]);
919         INIT_LIST_HEAD(&sig->cpu_timers[1]);
920         INIT_LIST_HEAD(&sig->cpu_timers[2]);
921         taskstats_tgid_init(sig);
922
923         task_lock(current->group_leader);
924         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
925         task_unlock(current->group_leader);
926
927         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
928                 /*
929                  * New sole thread in the process gets an expiry time
930                  * of the whole CPU time limit.
931                  */
932                 tsk->it_prof_expires =
933                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
934         }
935         acct_init_pacct(&sig->pacct);
936
937         tty_audit_fork(sig);
938
939         return 0;
940 }
941
942 void __cleanup_signal(struct signal_struct *sig)
943 {
944         exit_thread_group_keys(sig);
945         kmem_cache_free(signal_cachep, sig);
946 }
947
948 static void cleanup_signal(struct task_struct *tsk)
949 {
950         struct signal_struct *sig = tsk->signal;
951
952         atomic_dec(&sig->live);
953
954         if (atomic_dec_and_test(&sig->count))
955                 __cleanup_signal(sig);
956 }
957
958 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
959 {
960         unsigned long new_flags = p->flags;
961
962         new_flags &= ~PF_SUPERPRIV;
963         new_flags |= PF_FORKNOEXEC;
964         if (!(clone_flags & CLONE_PTRACE))
965                 p->ptrace = 0;
966         p->flags = new_flags;
967         clear_freeze_flag(p);
968 }
969
970 asmlinkage long sys_set_tid_address(int __user *tidptr)
971 {
972         current->clear_child_tid = tidptr;
973
974         return task_pid_vnr(current);
975 }
976
977 static void rt_mutex_init_task(struct task_struct *p)
978 {
979         spin_lock_init(&p->pi_lock);
980 #ifdef CONFIG_RT_MUTEXES
981         plist_head_init(&p->pi_waiters, &p->pi_lock);
982         p->pi_blocked_on = NULL;
983 #endif
984 }
985
986 #ifdef CONFIG_MM_OWNER
987 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
988 {
989         mm->owner = p;
990 }
991 #endif /* CONFIG_MM_OWNER */
992
993 /*
994  * This creates a new process as a copy of the old one,
995  * but does not actually start it yet.
996  *
997  * It copies the registers, and all the appropriate
998  * parts of the process environment (as per the clone
999  * flags). The actual kick-off is left to the caller.
1000  */
1001 static struct task_struct *copy_process(unsigned long clone_flags,
1002                                         unsigned long stack_start,
1003                                         struct pt_regs *regs,
1004                                         unsigned long stack_size,
1005                                         int __user *child_tidptr,
1006                                         struct pid *pid)
1007 {
1008         int retval;
1009         struct task_struct *p;
1010         int cgroup_callbacks_done = 0;
1011
1012         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1013                 return ERR_PTR(-EINVAL);
1014
1015         /*
1016          * Thread groups must share signals as well, and detached threads
1017          * can only be started up within the thread group.
1018          */
1019         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1020                 return ERR_PTR(-EINVAL);
1021
1022         /*
1023          * Shared signal handlers imply shared VM. By way of the above,
1024          * thread groups also imply shared VM. Blocking this case allows
1025          * for various simplifications in other code.
1026          */
1027         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1028                 return ERR_PTR(-EINVAL);
1029
1030         retval = security_task_create(clone_flags);
1031         if (retval)
1032                 goto fork_out;
1033
1034         retval = -ENOMEM;
1035         p = dup_task_struct(current);
1036         if (!p)
1037                 goto fork_out;
1038
1039         rt_mutex_init_task(p);
1040
1041 #ifdef CONFIG_TRACE_IRQFLAGS
1042         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1043         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1044 #endif
1045         retval = -EAGAIN;
1046         if (atomic_read(&p->user->processes) >=
1047                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1048                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1049                     p->user != current->nsproxy->user_ns->root_user)
1050                         goto bad_fork_free;
1051         }
1052
1053         atomic_inc(&p->user->__count);
1054         atomic_inc(&p->user->processes);
1055         get_group_info(p->group_info);
1056
1057         /*
1058          * If multiple threads are within copy_process(), then this check
1059          * triggers too late. This doesn't hurt, the check is only there
1060          * to stop root fork bombs.
1061          */
1062         if (nr_threads >= max_threads)
1063                 goto bad_fork_cleanup_count;
1064
1065         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1066                 goto bad_fork_cleanup_count;
1067
1068         if (p->binfmt && !try_module_get(p->binfmt->module))
1069                 goto bad_fork_cleanup_put_domain;
1070
1071         p->did_exec = 0;
1072         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1073         copy_flags(clone_flags, p);
1074         INIT_LIST_HEAD(&p->children);
1075         INIT_LIST_HEAD(&p->sibling);
1076 #ifdef CONFIG_PREEMPT_RCU
1077         p->rcu_read_lock_nesting = 0;
1078         p->rcu_flipctr_idx = 0;
1079 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1080         p->vfork_done = NULL;
1081         spin_lock_init(&p->alloc_lock);
1082
1083         clear_tsk_thread_flag(p, TIF_SIGPENDING);
1084         init_sigpending(&p->pending);
1085
1086         p->utime = cputime_zero;
1087         p->stime = cputime_zero;
1088         p->gtime = cputime_zero;
1089         p->utimescaled = cputime_zero;
1090         p->stimescaled = cputime_zero;
1091         p->prev_utime = cputime_zero;
1092         p->prev_stime = cputime_zero;
1093
1094 #ifdef CONFIG_DETECT_SOFTLOCKUP
1095         p->last_switch_count = 0;
1096         p->last_switch_timestamp = 0;
1097 #endif
1098
1099 #ifdef CONFIG_TASK_XACCT
1100         p->rchar = 0;           /* I/O counter: bytes read */
1101         p->wchar = 0;           /* I/O counter: bytes written */
1102         p->syscr = 0;           /* I/O counter: read syscalls */
1103         p->syscw = 0;           /* I/O counter: write syscalls */
1104 #endif
1105         task_io_accounting_init(p);
1106         acct_clear_integrals(p);
1107
1108         p->it_virt_expires = cputime_zero;
1109         p->it_prof_expires = cputime_zero;
1110         p->it_sched_expires = 0;
1111         INIT_LIST_HEAD(&p->cpu_timers[0]);
1112         INIT_LIST_HEAD(&p->cpu_timers[1]);
1113         INIT_LIST_HEAD(&p->cpu_timers[2]);
1114
1115         p->lock_depth = -1;             /* -1 = no lock */
1116         do_posix_clock_monotonic_gettime(&p->start_time);
1117         p->real_start_time = p->start_time;
1118         monotonic_to_bootbased(&p->real_start_time);
1119 #ifdef CONFIG_SECURITY
1120         p->security = NULL;
1121 #endif
1122         p->cap_bset = current->cap_bset;
1123         p->io_context = NULL;
1124         p->audit_context = NULL;
1125         cgroup_fork(p);
1126 #ifdef CONFIG_NUMA
1127         p->mempolicy = mpol_dup(p->mempolicy);
1128         if (IS_ERR(p->mempolicy)) {
1129                 retval = PTR_ERR(p->mempolicy);
1130                 p->mempolicy = NULL;
1131                 goto bad_fork_cleanup_cgroup;
1132         }
1133         mpol_fix_fork_child_flag(p);
1134 #endif
1135 #ifdef CONFIG_TRACE_IRQFLAGS
1136         p->irq_events = 0;
1137 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1138         p->hardirqs_enabled = 1;
1139 #else
1140         p->hardirqs_enabled = 0;
1141 #endif
1142         p->hardirq_enable_ip = 0;
1143         p->hardirq_enable_event = 0;
1144         p->hardirq_disable_ip = _THIS_IP_;
1145         p->hardirq_disable_event = 0;
1146         p->softirqs_enabled = 1;
1147         p->softirq_enable_ip = _THIS_IP_;
1148         p->softirq_enable_event = 0;
1149         p->softirq_disable_ip = 0;
1150         p->softirq_disable_event = 0;
1151         p->hardirq_context = 0;
1152         p->softirq_context = 0;
1153 #endif
1154 #ifdef CONFIG_LOCKDEP
1155         p->lockdep_depth = 0; /* no locks held yet */
1156         p->curr_chain_key = 0;
1157         p->lockdep_recursion = 0;
1158 #endif
1159
1160 #ifdef CONFIG_DEBUG_MUTEXES
1161         p->blocked_on = NULL; /* not blocked yet */
1162 #endif
1163
1164         /* Perform scheduler related setup. Assign this task to a CPU. */
1165         sched_fork(p, clone_flags);
1166
1167         if ((retval = security_task_alloc(p)))
1168                 goto bad_fork_cleanup_policy;
1169         if ((retval = audit_alloc(p)))
1170                 goto bad_fork_cleanup_security;
1171         /* copy all the process information */
1172         if ((retval = copy_semundo(clone_flags, p)))
1173                 goto bad_fork_cleanup_audit;
1174         if ((retval = copy_files(clone_flags, p)))
1175                 goto bad_fork_cleanup_semundo;
1176         if ((retval = copy_fs(clone_flags, p)))
1177                 goto bad_fork_cleanup_files;
1178         if ((retval = copy_sighand(clone_flags, p)))
1179                 goto bad_fork_cleanup_fs;
1180         if ((retval = copy_signal(clone_flags, p)))
1181                 goto bad_fork_cleanup_sighand;
1182         if ((retval = copy_mm(clone_flags, p)))
1183                 goto bad_fork_cleanup_signal;
1184         if ((retval = copy_keys(clone_flags, p)))
1185                 goto bad_fork_cleanup_mm;
1186         if ((retval = copy_namespaces(clone_flags, p)))
1187                 goto bad_fork_cleanup_keys;
1188         if ((retval = copy_io(clone_flags, p)))
1189                 goto bad_fork_cleanup_namespaces;
1190         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1191         if (retval)
1192                 goto bad_fork_cleanup_io;
1193
1194         if (pid != &init_struct_pid) {
1195                 retval = -ENOMEM;
1196                 pid = alloc_pid(task_active_pid_ns(p));
1197                 if (!pid)
1198                         goto bad_fork_cleanup_io;
1199
1200                 if (clone_flags & CLONE_NEWPID) {
1201                         retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1202                         if (retval < 0)
1203                                 goto bad_fork_free_pid;
1204                 }
1205         }
1206
1207         p->pid = pid_nr(pid);
1208         p->tgid = p->pid;
1209         if (clone_flags & CLONE_THREAD)
1210                 p->tgid = current->tgid;
1211
1212         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1213         /*
1214          * Clear TID on mm_release()?
1215          */
1216         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1217 #ifdef CONFIG_FUTEX
1218         p->robust_list = NULL;
1219 #ifdef CONFIG_COMPAT
1220         p->compat_robust_list = NULL;
1221 #endif
1222         INIT_LIST_HEAD(&p->pi_state_list);
1223         p->pi_state_cache = NULL;
1224 #endif
1225         /*
1226          * sigaltstack should be cleared when sharing the same VM
1227          */
1228         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1229                 p->sas_ss_sp = p->sas_ss_size = 0;
1230
1231         /*
1232          * Syscall tracing should be turned off in the child regardless
1233          * of CLONE_PTRACE.
1234          */
1235         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1236 #ifdef TIF_SYSCALL_EMU
1237         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1238 #endif
1239         clear_all_latency_tracing(p);
1240
1241         /* Our parent execution domain becomes current domain
1242            These must match for thread signalling to apply */
1243         p->parent_exec_id = p->self_exec_id;
1244
1245         /* ok, now we should be set up.. */
1246         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1247         p->pdeath_signal = 0;
1248         p->exit_state = 0;
1249
1250         /*
1251          * Ok, make it visible to the rest of the system.
1252          * We dont wake it up yet.
1253          */
1254         p->group_leader = p;
1255         INIT_LIST_HEAD(&p->thread_group);
1256         INIT_LIST_HEAD(&p->ptrace_children);
1257         INIT_LIST_HEAD(&p->ptrace_list);
1258
1259         /* Now that the task is set up, run cgroup callbacks if
1260          * necessary. We need to run them before the task is visible
1261          * on the tasklist. */
1262         cgroup_fork_callbacks(p);
1263         cgroup_callbacks_done = 1;
1264
1265         /* Need tasklist lock for parent etc handling! */
1266         write_lock_irq(&tasklist_lock);
1267
1268         /*
1269          * The task hasn't been attached yet, so its cpus_allowed mask will
1270          * not be changed, nor will its assigned CPU.
1271          *
1272          * The cpus_allowed mask of the parent may have changed after it was
1273          * copied first time - so re-copy it here, then check the child's CPU
1274          * to ensure it is on a valid CPU (and if not, just force it back to
1275          * parent's CPU). This avoids alot of nasty races.
1276          */
1277         p->cpus_allowed = current->cpus_allowed;
1278         p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1279         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1280                         !cpu_online(task_cpu(p))))
1281                 set_task_cpu(p, smp_processor_id());
1282
1283         /* CLONE_PARENT re-uses the old parent */
1284         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1285                 p->real_parent = current->real_parent;
1286         else
1287                 p->real_parent = current;
1288         p->parent = p->real_parent;
1289
1290         spin_lock(&current->sighand->siglock);
1291
1292         /*
1293          * Process group and session signals need to be delivered to just the
1294          * parent before the fork or both the parent and the child after the
1295          * fork. Restart if a signal comes in before we add the new process to
1296          * it's process group.
1297          * A fatal signal pending means that current will exit, so the new
1298          * thread can't slip out of an OOM kill (or normal SIGKILL).
1299          */
1300         recalc_sigpending();
1301         if (signal_pending(current)) {
1302                 spin_unlock(&current->sighand->siglock);
1303                 write_unlock_irq(&tasklist_lock);
1304                 retval = -ERESTARTNOINTR;
1305                 goto bad_fork_free_pid;
1306         }
1307
1308         if (clone_flags & CLONE_THREAD) {
1309                 p->group_leader = current->group_leader;
1310                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1311
1312                 if (!cputime_eq(current->signal->it_virt_expires,
1313                                 cputime_zero) ||
1314                     !cputime_eq(current->signal->it_prof_expires,
1315                                 cputime_zero) ||
1316                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1317                     !list_empty(&current->signal->cpu_timers[0]) ||
1318                     !list_empty(&current->signal->cpu_timers[1]) ||
1319                     !list_empty(&current->signal->cpu_timers[2])) {
1320                         /*
1321                          * Have child wake up on its first tick to check
1322                          * for process CPU timers.
1323                          */
1324                         p->it_prof_expires = jiffies_to_cputime(1);
1325                 }
1326         }
1327
1328         if (likely(p->pid)) {
1329                 add_parent(p);
1330                 if (unlikely(p->ptrace & PT_PTRACED))
1331                         __ptrace_link(p, current->parent);
1332
1333                 if (thread_group_leader(p)) {
1334                         if (clone_flags & CLONE_NEWPID)
1335                                 p->nsproxy->pid_ns->child_reaper = p;
1336
1337                         p->signal->leader_pid = pid;
1338                         p->signal->tty = current->signal->tty;
1339                         set_task_pgrp(p, task_pgrp_nr(current));
1340                         set_task_session(p, task_session_nr(current));
1341                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1342                         attach_pid(p, PIDTYPE_SID, task_session(current));
1343                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1344                         __get_cpu_var(process_counts)++;
1345                 }
1346                 attach_pid(p, PIDTYPE_PID, pid);
1347                 nr_threads++;
1348         }
1349
1350         total_forks++;
1351         spin_unlock(&current->sighand->siglock);
1352         write_unlock_irq(&tasklist_lock);
1353         proc_fork_connector(p);
1354         cgroup_post_fork(p);
1355         return p;
1356
1357 bad_fork_free_pid:
1358         if (pid != &init_struct_pid)
1359                 free_pid(pid);
1360 bad_fork_cleanup_io:
1361         put_io_context(p->io_context);
1362 bad_fork_cleanup_namespaces:
1363         exit_task_namespaces(p);
1364 bad_fork_cleanup_keys:
1365         exit_keys(p);
1366 bad_fork_cleanup_mm:
1367         if (p->mm)
1368                 mmput(p->mm);
1369 bad_fork_cleanup_signal:
1370         cleanup_signal(p);
1371 bad_fork_cleanup_sighand:
1372         __cleanup_sighand(p->sighand);
1373 bad_fork_cleanup_fs:
1374         exit_fs(p); /* blocking */
1375 bad_fork_cleanup_files:
1376         exit_files(p); /* blocking */
1377 bad_fork_cleanup_semundo:
1378         exit_sem(p);
1379 bad_fork_cleanup_audit:
1380         audit_free(p);
1381 bad_fork_cleanup_security:
1382         security_task_free(p);
1383 bad_fork_cleanup_policy:
1384 #ifdef CONFIG_NUMA
1385         mpol_put(p->mempolicy);
1386 bad_fork_cleanup_cgroup:
1387 #endif
1388         cgroup_exit(p, cgroup_callbacks_done);
1389         delayacct_tsk_free(p);
1390         if (p->binfmt)
1391                 module_put(p->binfmt->module);
1392 bad_fork_cleanup_put_domain:
1393         module_put(task_thread_info(p)->exec_domain->module);
1394 bad_fork_cleanup_count:
1395         put_group_info(p->group_info);
1396         atomic_dec(&p->user->processes);
1397         free_uid(p->user);
1398 bad_fork_free:
1399         free_task(p);
1400 fork_out:
1401         return ERR_PTR(retval);
1402 }
1403
1404 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1405 {
1406         memset(regs, 0, sizeof(struct pt_regs));
1407         return regs;
1408 }
1409
1410 struct task_struct * __cpuinit fork_idle(int cpu)
1411 {
1412         struct task_struct *task;
1413         struct pt_regs regs;
1414
1415         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1416                                 &init_struct_pid);
1417         if (!IS_ERR(task))
1418                 init_idle(task, cpu);
1419
1420         return task;
1421 }
1422
1423 static int fork_traceflag(unsigned clone_flags)
1424 {
1425         if (clone_flags & CLONE_UNTRACED)
1426                 return 0;
1427         else if (clone_flags & CLONE_VFORK) {
1428                 if (current->ptrace & PT_TRACE_VFORK)
1429                         return PTRACE_EVENT_VFORK;
1430         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1431                 if (current->ptrace & PT_TRACE_CLONE)
1432                         return PTRACE_EVENT_CLONE;
1433         } else if (current->ptrace & PT_TRACE_FORK)
1434                 return PTRACE_EVENT_FORK;
1435
1436         return 0;
1437 }
1438
1439 /*
1440  *  Ok, this is the main fork-routine.
1441  *
1442  * It copies the process, and if successful kick-starts
1443  * it and waits for it to finish using the VM if required.
1444  */
1445 long do_fork(unsigned long clone_flags,
1446               unsigned long stack_start,
1447               struct pt_regs *regs,
1448               unsigned long stack_size,
1449               int __user *parent_tidptr,
1450               int __user *child_tidptr)
1451 {
1452         struct task_struct *p;
1453         int trace = 0;
1454         long nr;
1455
1456         /*
1457          * We hope to recycle these flags after 2.6.26
1458          */
1459         if (unlikely(clone_flags & CLONE_STOPPED)) {
1460                 static int __read_mostly count = 100;
1461
1462                 if (count > 0 && printk_ratelimit()) {
1463                         char comm[TASK_COMM_LEN];
1464
1465                         count--;
1466                         printk(KERN_INFO "fork(): process `%s' used deprecated "
1467                                         "clone flags 0x%lx\n",
1468                                 get_task_comm(comm, current),
1469                                 clone_flags & CLONE_STOPPED);
1470                 }
1471         }
1472
1473         if (unlikely(current->ptrace)) {
1474                 trace = fork_traceflag (clone_flags);
1475                 if (trace)
1476                         clone_flags |= CLONE_PTRACE;
1477         }
1478
1479         p = copy_process(clone_flags, stack_start, regs, stack_size,
1480                         child_tidptr, NULL);
1481         /*
1482          * Do this prior waking up the new thread - the thread pointer
1483          * might get invalid after that point, if the thread exits quickly.
1484          */
1485         if (!IS_ERR(p)) {
1486                 struct completion vfork;
1487
1488                 nr = task_pid_vnr(p);
1489
1490                 if (clone_flags & CLONE_PARENT_SETTID)
1491                         put_user(nr, parent_tidptr);
1492
1493                 if (clone_flags & CLONE_VFORK) {
1494                         p->vfork_done = &vfork;
1495                         init_completion(&vfork);
1496                 }
1497
1498                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1499                         /*
1500                          * We'll start up with an immediate SIGSTOP.
1501                          */
1502                         sigaddset(&p->pending.signal, SIGSTOP);
1503                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1504                 }
1505
1506                 if (!(clone_flags & CLONE_STOPPED))
1507                         wake_up_new_task(p, clone_flags);
1508                 else
1509                         __set_task_state(p, TASK_STOPPED);
1510
1511                 if (unlikely (trace)) {
1512                         current->ptrace_message = nr;
1513                         ptrace_notify ((trace << 8) | SIGTRAP);
1514                 }
1515
1516                 if (clone_flags & CLONE_VFORK) {
1517                         freezer_do_not_count();
1518                         wait_for_completion(&vfork);
1519                         freezer_count();
1520                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1521                                 current->ptrace_message = nr;
1522                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1523                         }
1524                 }
1525         } else {
1526                 nr = PTR_ERR(p);
1527         }
1528         return nr;
1529 }
1530
1531 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1532 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1533 #endif
1534
1535 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1536 {
1537         struct sighand_struct *sighand = data;
1538
1539         spin_lock_init(&sighand->siglock);
1540         init_waitqueue_head(&sighand->signalfd_wqh);
1541 }
1542
1543 void __init proc_caches_init(void)
1544 {
1545         sighand_cachep = kmem_cache_create("sighand_cache",
1546                         sizeof(struct sighand_struct), 0,
1547                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1548                         sighand_ctor);
1549         signal_cachep = kmem_cache_create("signal_cache",
1550                         sizeof(struct signal_struct), 0,
1551                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1552         files_cachep = kmem_cache_create("files_cache",
1553                         sizeof(struct files_struct), 0,
1554                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1555         fs_cachep = kmem_cache_create("fs_cache",
1556                         sizeof(struct fs_struct), 0,
1557                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1558         vm_area_cachep = kmem_cache_create("vm_area_struct",
1559                         sizeof(struct vm_area_struct), 0,
1560                         SLAB_PANIC, NULL);
1561         mm_cachep = kmem_cache_create("mm_struct",
1562                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1563                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1564 }
1565
1566 /*
1567  * Check constraints on flags passed to the unshare system call and
1568  * force unsharing of additional process context as appropriate.
1569  */
1570 static void check_unshare_flags(unsigned long *flags_ptr)
1571 {
1572         /*
1573          * If unsharing a thread from a thread group, must also
1574          * unshare vm.
1575          */
1576         if (*flags_ptr & CLONE_THREAD)
1577                 *flags_ptr |= CLONE_VM;
1578
1579         /*
1580          * If unsharing vm, must also unshare signal handlers.
1581          */
1582         if (*flags_ptr & CLONE_VM)
1583                 *flags_ptr |= CLONE_SIGHAND;
1584
1585         /*
1586          * If unsharing signal handlers and the task was created
1587          * using CLONE_THREAD, then must unshare the thread
1588          */
1589         if ((*flags_ptr & CLONE_SIGHAND) &&
1590             (atomic_read(&current->signal->count) > 1))
1591                 *flags_ptr |= CLONE_THREAD;
1592
1593         /*
1594          * If unsharing namespace, must also unshare filesystem information.
1595          */
1596         if (*flags_ptr & CLONE_NEWNS)
1597                 *flags_ptr |= CLONE_FS;
1598 }
1599
1600 /*
1601  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1602  */
1603 static int unshare_thread(unsigned long unshare_flags)
1604 {
1605         if (unshare_flags & CLONE_THREAD)
1606                 return -EINVAL;
1607
1608         return 0;
1609 }
1610
1611 /*
1612  * Unshare the filesystem structure if it is being shared
1613  */
1614 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1615 {
1616         struct fs_struct *fs = current->fs;
1617
1618         if ((unshare_flags & CLONE_FS) &&
1619             (fs && atomic_read(&fs->count) > 1)) {
1620                 *new_fsp = __copy_fs_struct(current->fs);
1621                 if (!*new_fsp)
1622                         return -ENOMEM;
1623         }
1624
1625         return 0;
1626 }
1627
1628 /*
1629  * Unsharing of sighand is not supported yet
1630  */
1631 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1632 {
1633         struct sighand_struct *sigh = current->sighand;
1634
1635         if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1636                 return -EINVAL;
1637         else
1638                 return 0;
1639 }
1640
1641 /*
1642  * Unshare vm if it is being shared
1643  */
1644 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1645 {
1646         struct mm_struct *mm = current->mm;
1647
1648         if ((unshare_flags & CLONE_VM) &&
1649             (mm && atomic_read(&mm->mm_users) > 1)) {
1650                 return -EINVAL;
1651         }
1652
1653         return 0;
1654 }
1655
1656 /*
1657  * Unshare file descriptor table if it is being shared
1658  */
1659 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1660 {
1661         struct files_struct *fd = current->files;
1662         int error = 0;
1663
1664         if ((unshare_flags & CLONE_FILES) &&
1665             (fd && atomic_read(&fd->count) > 1)) {
1666                 *new_fdp = dup_fd(fd, &error);
1667                 if (!*new_fdp)
1668                         return error;
1669         }
1670
1671         return 0;
1672 }
1673
1674 /*
1675  * unshare allows a process to 'unshare' part of the process
1676  * context which was originally shared using clone.  copy_*
1677  * functions used by do_fork() cannot be used here directly
1678  * because they modify an inactive task_struct that is being
1679  * constructed. Here we are modifying the current, active,
1680  * task_struct.
1681  */
1682 asmlinkage long sys_unshare(unsigned long unshare_flags)
1683 {
1684         int err = 0;
1685         struct fs_struct *fs, *new_fs = NULL;
1686         struct sighand_struct *new_sigh = NULL;
1687         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1688         struct files_struct *fd, *new_fd = NULL;
1689         struct nsproxy *new_nsproxy = NULL;
1690         int do_sysvsem = 0;
1691
1692         check_unshare_flags(&unshare_flags);
1693
1694         /* Return -EINVAL for all unsupported flags */
1695         err = -EINVAL;
1696         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1697                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1698                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1699                                 CLONE_NEWNET))
1700                 goto bad_unshare_out;
1701
1702         /*
1703          * CLONE_NEWIPC must also detach from the undolist: after switching
1704          * to a new ipc namespace, the semaphore arrays from the old
1705          * namespace are unreachable.
1706          */
1707         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1708                 do_sysvsem = 1;
1709         if ((err = unshare_thread(unshare_flags)))
1710                 goto bad_unshare_out;
1711         if ((err = unshare_fs(unshare_flags, &new_fs)))
1712                 goto bad_unshare_cleanup_thread;
1713         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1714                 goto bad_unshare_cleanup_fs;
1715         if ((err = unshare_vm(unshare_flags, &new_mm)))
1716                 goto bad_unshare_cleanup_sigh;
1717         if ((err = unshare_fd(unshare_flags, &new_fd)))
1718                 goto bad_unshare_cleanup_vm;
1719         if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1720                         new_fs)))
1721                 goto bad_unshare_cleanup_fd;
1722
1723         if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1724                 if (do_sysvsem) {
1725                         /*
1726                          * CLONE_SYSVSEM is equivalent to sys_exit().
1727                          */
1728                         exit_sem(current);
1729                 }
1730
1731                 if (new_nsproxy) {
1732                         switch_task_namespaces(current, new_nsproxy);
1733                         new_nsproxy = NULL;
1734                 }
1735
1736                 task_lock(current);
1737
1738                 if (new_fs) {
1739                         fs = current->fs;
1740                         current->fs = new_fs;
1741                         new_fs = fs;
1742                 }
1743
1744                 if (new_mm) {
1745                         mm = current->mm;
1746                         active_mm = current->active_mm;
1747                         current->mm = new_mm;
1748                         current->active_mm = new_mm;
1749                         activate_mm(active_mm, new_mm);
1750                         new_mm = mm;
1751                 }
1752
1753                 if (new_fd) {
1754                         fd = current->files;
1755                         current->files = new_fd;
1756                         new_fd = fd;
1757                 }
1758
1759                 task_unlock(current);
1760         }
1761
1762         if (new_nsproxy)
1763                 put_nsproxy(new_nsproxy);
1764
1765 bad_unshare_cleanup_fd:
1766         if (new_fd)
1767                 put_files_struct(new_fd);
1768
1769 bad_unshare_cleanup_vm:
1770         if (new_mm)
1771                 mmput(new_mm);
1772
1773 bad_unshare_cleanup_sigh:
1774         if (new_sigh)
1775                 if (atomic_dec_and_test(&new_sigh->count))
1776                         kmem_cache_free(sighand_cachep, new_sigh);
1777
1778 bad_unshare_cleanup_fs:
1779         if (new_fs)
1780                 put_fs_struct(new_fs);
1781
1782 bad_unshare_cleanup_thread:
1783 bad_unshare_out:
1784         return err;
1785 }
1786
1787 /*
1788  *      Helper to unshare the files of the current task.
1789  *      We don't want to expose copy_files internals to
1790  *      the exec layer of the kernel.
1791  */
1792
1793 int unshare_files(struct files_struct **displaced)
1794 {
1795         struct task_struct *task = current;
1796         struct files_struct *copy = NULL;
1797         int error;
1798
1799         error = unshare_fd(CLONE_FILES, &copy);
1800         if (error || !copy) {
1801                 *displaced = NULL;
1802                 return error;
1803         }
1804         *displaced = task->files;
1805         task_lock(task);
1806         task->files = copy;
1807         task_unlock(task);
1808         return 0;
1809 }