mac80211: document TX aggregation (and small cleanup)
[linux-2.6] / sound / mips / hal2.c
1 /*
2  *  Driver for A2 audio system used in SGI machines
3  *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
4  *
5  *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
6  *  was based on code from Ulf Carlsson
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License version 2 as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/io.h>
28
29 #include <asm/sgi/hpc3.h>
30 #include <asm/sgi/ip22.h>
31
32 #include <sound/core.h>
33 #include <sound/control.h>
34 #include <sound/pcm.h>
35 #include <sound/pcm-indirect.h>
36 #include <sound/initval.h>
37
38 #include "hal2.h"
39
40 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
41 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
42
43 module_param(index, int, 0444);
44 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
45 module_param(id, charp, 0444);
46 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
47 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
48 MODULE_AUTHOR("Thomas Bogendoerfer");
49 MODULE_LICENSE("GPL");
50
51
52 #define H2_BLOCK_SIZE   1024
53 #define H2_BUF_SIZE     16384
54
55 struct hal2_pbus {
56         struct hpc3_pbus_dmacregs *pbus;
57         int pbusnr;
58         unsigned int ctrl;              /* Current state of pbus->pbdma_ctrl */
59 };
60
61 struct hal2_desc {
62         struct hpc_dma_desc desc;
63         u32 pad;                        /* padding */
64 };
65
66 struct hal2_codec {
67         struct snd_pcm_indirect pcm_indirect;
68         struct snd_pcm_substream *substream;
69
70         unsigned char *buffer;
71         dma_addr_t buffer_dma;
72         struct hal2_desc *desc;
73         dma_addr_t desc_dma;
74         int desc_count;
75         struct hal2_pbus pbus;
76         int voices;                     /* mono/stereo */
77         unsigned int sample_rate;
78         unsigned int master;            /* Master frequency */
79         unsigned short mod;             /* MOD value */
80         unsigned short inc;             /* INC value */
81 };
82
83 #define H2_MIX_OUTPUT_ATT       0
84 #define H2_MIX_INPUT_GAIN       1
85
86 struct snd_hal2 {
87         struct snd_card *card;
88
89         struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
90         struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
91         struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
92         struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
93
94         struct hal2_codec dac;
95         struct hal2_codec adc;
96 };
97
98 #define H2_INDIRECT_WAIT(regs)  while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
99
100 #define H2_READ_ADDR(addr)      (addr | (1<<7))
101 #define H2_WRITE_ADDR(addr)     (addr)
102
103 static inline u32 hal2_read(u32 *reg)
104 {
105         return __raw_readl(reg);
106 }
107
108 static inline void hal2_write(u32 val, u32 *reg)
109 {
110         __raw_writel(val, reg);
111 }
112
113
114 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
115 {
116         u32 ret;
117         struct hal2_ctl_regs *regs = hal2->ctl_regs;
118
119         hal2_write(H2_READ_ADDR(addr), &regs->iar);
120         H2_INDIRECT_WAIT(regs);
121         ret = hal2_read(&regs->idr0) & 0xffff;
122         hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
123         H2_INDIRECT_WAIT(regs);
124         ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
125         return ret;
126 }
127
128 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
129 {
130         struct hal2_ctl_regs *regs = hal2->ctl_regs;
131
132         hal2_write(val, &regs->idr0);
133         hal2_write(0, &regs->idr1);
134         hal2_write(0, &regs->idr2);
135         hal2_write(0, &regs->idr3);
136         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
137         H2_INDIRECT_WAIT(regs);
138 }
139
140 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
141 {
142         struct hal2_ctl_regs *regs = hal2->ctl_regs;
143
144         hal2_write(val & 0xffff, &regs->idr0);
145         hal2_write(val >> 16, &regs->idr1);
146         hal2_write(0, &regs->idr2);
147         hal2_write(0, &regs->idr3);
148         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
149         H2_INDIRECT_WAIT(regs);
150 }
151
152 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
153 {
154         struct hal2_ctl_regs *regs = hal2->ctl_regs;
155
156         hal2_write(H2_READ_ADDR(addr), &regs->iar);
157         H2_INDIRECT_WAIT(regs);
158         hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
159         hal2_write(0, &regs->idr1);
160         hal2_write(0, &regs->idr2);
161         hal2_write(0, &regs->idr3);
162         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
163         H2_INDIRECT_WAIT(regs);
164 }
165
166 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
167 {
168         struct hal2_ctl_regs *regs = hal2->ctl_regs;
169
170         hal2_write(H2_READ_ADDR(addr), &regs->iar);
171         H2_INDIRECT_WAIT(regs);
172         hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
173         hal2_write(0, &regs->idr1);
174         hal2_write(0, &regs->idr2);
175         hal2_write(0, &regs->idr3);
176         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
177         H2_INDIRECT_WAIT(regs);
178 }
179
180 static int hal2_gain_info(struct snd_kcontrol *kcontrol,
181                                struct snd_ctl_elem_info *uinfo)
182 {
183         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
184         uinfo->count = 2;
185         uinfo->value.integer.min = 0;
186         switch ((int)kcontrol->private_value) {
187         case H2_MIX_OUTPUT_ATT:
188                 uinfo->value.integer.max = 31;
189                 break;
190         case H2_MIX_INPUT_GAIN:
191                 uinfo->value.integer.max = 15;
192                 break;
193         }
194         return 0;
195 }
196
197 static int hal2_gain_get(struct snd_kcontrol *kcontrol,
198                                struct snd_ctl_elem_value *ucontrol)
199 {
200         struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
201         u32 tmp;
202         int l, r;
203
204         switch ((int)kcontrol->private_value) {
205         case H2_MIX_OUTPUT_ATT:
206                 tmp = hal2_i_read32(hal2, H2I_DAC_C2);
207                 if (tmp & H2I_C2_MUTE) {
208                         l = 0;
209                         r = 0;
210                 } else {
211                         l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
212                         r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
213                 }
214                 break;
215         case H2_MIX_INPUT_GAIN:
216                 tmp = hal2_i_read32(hal2, H2I_ADC_C2);
217                 l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
218                 r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
219                 break;
220         }
221         ucontrol->value.integer.value[0] = l;
222         ucontrol->value.integer.value[1] = r;
223
224         return 0;
225 }
226
227 static int hal2_gain_put(struct snd_kcontrol *kcontrol,
228                          struct snd_ctl_elem_value *ucontrol)
229 {
230         struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
231         u32 old, new;
232         int l, r;
233
234         l = ucontrol->value.integer.value[0];
235         r = ucontrol->value.integer.value[1];
236
237         switch ((int)kcontrol->private_value) {
238         case H2_MIX_OUTPUT_ATT:
239                 old = hal2_i_read32(hal2, H2I_DAC_C2);
240                 new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
241                 if (l | r) {
242                         l = 31 - l;
243                         r = 31 - r;
244                         new |= (l << H2I_C2_L_ATT_SHIFT);
245                         new |= (r << H2I_C2_R_ATT_SHIFT);
246                 } else
247                         new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
248                 hal2_i_write32(hal2, H2I_DAC_C2, new);
249                 break;
250         case H2_MIX_INPUT_GAIN:
251                 old = hal2_i_read32(hal2, H2I_ADC_C2);
252                 new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
253                 new |= (l << H2I_C2_L_GAIN_SHIFT);
254                 new |= (r << H2I_C2_R_GAIN_SHIFT);
255                 hal2_i_write32(hal2, H2I_ADC_C2, new);
256                 break;
257         }
258         return old != new;
259 }
260
261 static struct snd_kcontrol_new hal2_ctrl_headphone __devinitdata = {
262         .iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
263         .name           = "Headphone Playback Volume",
264         .access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
265         .private_value  = H2_MIX_OUTPUT_ATT,
266         .info           = hal2_gain_info,
267         .get            = hal2_gain_get,
268         .put            = hal2_gain_put,
269 };
270
271 static struct snd_kcontrol_new hal2_ctrl_mic __devinitdata = {
272         .iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
273         .name           = "Mic Capture Volume",
274         .access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
275         .private_value  = H2_MIX_INPUT_GAIN,
276         .info           = hal2_gain_info,
277         .get            = hal2_gain_get,
278         .put            = hal2_gain_put,
279 };
280
281 static int __devinit hal2_mixer_create(struct snd_hal2 *hal2)
282 {
283         int err;
284
285         /* mute DAC */
286         hal2_i_write32(hal2, H2I_DAC_C2,
287                        H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
288         /* mute ADC */
289         hal2_i_write32(hal2, H2I_ADC_C2, 0);
290
291         err = snd_ctl_add(hal2->card,
292                           snd_ctl_new1(&hal2_ctrl_headphone, hal2));
293         if (err < 0)
294                 return err;
295
296         err = snd_ctl_add(hal2->card,
297                           snd_ctl_new1(&hal2_ctrl_mic, hal2));
298         if (err < 0)
299                 return err;
300
301         return 0;
302 }
303
304 static irqreturn_t hal2_interrupt(int irq, void *dev_id)
305 {
306         struct snd_hal2 *hal2 = dev_id;
307         irqreturn_t ret = IRQ_NONE;
308
309         /* decide what caused this interrupt */
310         if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
311                 snd_pcm_period_elapsed(hal2->dac.substream);
312                 ret = IRQ_HANDLED;
313         }
314         if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
315                 snd_pcm_period_elapsed(hal2->adc.substream);
316                 ret = IRQ_HANDLED;
317         }
318         return ret;
319 }
320
321 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
322 {
323         unsigned short mod;
324
325         if (44100 % rate < 48000 % rate) {
326                 mod = 4 * 44100 / rate;
327                 codec->master = 44100;
328         } else {
329                 mod = 4 * 48000 / rate;
330                 codec->master = 48000;
331         }
332
333         codec->inc = 4;
334         codec->mod = mod;
335         rate = 4 * codec->master / mod;
336
337         return rate;
338 }
339
340 static void hal2_set_dac_rate(struct snd_hal2 *hal2)
341 {
342         unsigned int master = hal2->dac.master;
343         int inc = hal2->dac.inc;
344         int mod = hal2->dac.mod;
345
346         hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
347         hal2_i_write32(hal2, H2I_BRES1_C2,
348                        ((0xffff & (inc - mod - 1)) << 16) | inc);
349 }
350
351 static void hal2_set_adc_rate(struct snd_hal2 *hal2)
352 {
353         unsigned int master = hal2->adc.master;
354         int inc = hal2->adc.inc;
355         int mod = hal2->adc.mod;
356
357         hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
358         hal2_i_write32(hal2, H2I_BRES2_C2,
359                        ((0xffff & (inc - mod - 1)) << 16) | inc);
360 }
361
362 static void hal2_setup_dac(struct snd_hal2 *hal2)
363 {
364         unsigned int fifobeg, fifoend, highwater, sample_size;
365         struct hal2_pbus *pbus = &hal2->dac.pbus;
366
367         /* Now we set up some PBUS information. The PBUS needs information about
368          * what portion of the fifo it will use. If it's receiving or
369          * transmitting, and finally whether the stream is little endian or big
370          * endian. The information is written later, on the start call.
371          */
372         sample_size = 2 * hal2->dac.voices;
373         /* Fifo should be set to hold exactly four samples. Highwater mark
374          * should be set to two samples. */
375         highwater = (sample_size * 2) >> 1;     /* halfwords */
376         fifobeg = 0;                            /* playback is first */
377         fifoend = (sample_size * 4) >> 3;       /* doublewords */
378         pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
379                      (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
380         /* We disable everything before we do anything at all */
381         pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
382         hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
383         /* Setup the HAL2 for playback */
384         hal2_set_dac_rate(hal2);
385         /* Set endianess */
386         hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
387         /* Set DMA bus */
388         hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
389         /* We are using 1st Bresenham clock generator for playback */
390         hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
391                         | (1 << H2I_C1_CLKID_SHIFT)
392                         | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
393 }
394
395 static void hal2_setup_adc(struct snd_hal2 *hal2)
396 {
397         unsigned int fifobeg, fifoend, highwater, sample_size;
398         struct hal2_pbus *pbus = &hal2->adc.pbus;
399
400         sample_size = 2 * hal2->adc.voices;
401         highwater = (sample_size * 2) >> 1;             /* halfwords */
402         fifobeg = (4 * 4) >> 3;                         /* record is second */
403         fifoend = (4 * 4 + sample_size * 4) >> 3;       /* doublewords */
404         pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
405                      (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
406         pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
407         hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
408         /* Setup the HAL2 for record */
409         hal2_set_adc_rate(hal2);
410         /* Set endianess */
411         hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
412         /* Set DMA bus */
413         hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
414         /* We are using 2nd Bresenham clock generator for record */
415         hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
416                         | (2 << H2I_C1_CLKID_SHIFT)
417                         | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
418 }
419
420 static void hal2_start_dac(struct snd_hal2 *hal2)
421 {
422         struct hal2_pbus *pbus = &hal2->dac.pbus;
423
424         pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
425         pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
426         /* enable DAC */
427         hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
428 }
429
430 static void hal2_start_adc(struct snd_hal2 *hal2)
431 {
432         struct hal2_pbus *pbus = &hal2->adc.pbus;
433
434         pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
435         pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
436         /* enable ADC */
437         hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
438 }
439
440 static inline void hal2_stop_dac(struct snd_hal2 *hal2)
441 {
442         hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
443         /* The HAL2 itself may remain enabled safely */
444 }
445
446 static inline void hal2_stop_adc(struct snd_hal2 *hal2)
447 {
448         hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
449 }
450
451 static int hal2_alloc_dmabuf(struct hal2_codec *codec)
452 {
453         struct hal2_desc *desc;
454         dma_addr_t desc_dma, buffer_dma;
455         int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
456         int i;
457
458         codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
459                                               &buffer_dma, GFP_KERNEL);
460         if (!codec->buffer)
461                 return -ENOMEM;
462         desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
463                                      &desc_dma, GFP_KERNEL);
464         if (!desc) {
465                 dma_free_noncoherent(NULL, H2_BUF_SIZE,
466                                      codec->buffer, buffer_dma);
467                 return -ENOMEM;
468         }
469         codec->buffer_dma = buffer_dma;
470         codec->desc_dma = desc_dma;
471         codec->desc = desc;
472         for (i = 0; i < count; i++) {
473                 desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
474                 desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
475                 desc->desc.pnext = (i == count - 1) ?
476                       desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
477                 desc++;
478         }
479         dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
480                        DMA_TO_DEVICE);
481         codec->desc_count = count;
482         return 0;
483 }
484
485 static void hal2_free_dmabuf(struct hal2_codec *codec)
486 {
487         dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
488                              codec->desc, codec->desc_dma);
489         dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
490                              codec->buffer_dma);
491 }
492
493 static struct snd_pcm_hardware hal2_pcm_hw = {
494         .info = (SNDRV_PCM_INFO_MMAP |
495                  SNDRV_PCM_INFO_MMAP_VALID |
496                  SNDRV_PCM_INFO_INTERLEAVED |
497                  SNDRV_PCM_INFO_BLOCK_TRANSFER),
498         .formats =          SNDRV_PCM_FMTBIT_S16_BE,
499         .rates =            SNDRV_PCM_RATE_8000_48000,
500         .rate_min =         8000,
501         .rate_max =         48000,
502         .channels_min =     2,
503         .channels_max =     2,
504         .buffer_bytes_max = 65536,
505         .period_bytes_min = 1024,
506         .period_bytes_max = 65536,
507         .periods_min =      2,
508         .periods_max =      1024,
509 };
510
511 static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
512                               struct snd_pcm_hw_params *params)
513 {
514         int err;
515
516         err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
517         if (err < 0)
518                 return err;
519
520         return 0;
521 }
522
523 static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
524 {
525         return snd_pcm_lib_free_pages(substream);
526 }
527
528 static int hal2_playback_open(struct snd_pcm_substream *substream)
529 {
530         struct snd_pcm_runtime *runtime = substream->runtime;
531         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
532         int err;
533
534         runtime->hw = hal2_pcm_hw;
535
536         err = hal2_alloc_dmabuf(&hal2->dac);
537         if (err)
538                 return err;
539         return 0;
540 }
541
542 static int hal2_playback_close(struct snd_pcm_substream *substream)
543 {
544         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
545
546         hal2_free_dmabuf(&hal2->dac);
547         return 0;
548 }
549
550 static int hal2_playback_prepare(struct snd_pcm_substream *substream)
551 {
552         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
553         struct snd_pcm_runtime *runtime = substream->runtime;
554         struct hal2_codec *dac = &hal2->dac;
555
556         dac->voices = runtime->channels;
557         dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
558         memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
559         dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
560         dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
561         dac->substream = substream;
562         hal2_setup_dac(hal2);
563         return 0;
564 }
565
566 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
567 {
568         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
569
570         switch (cmd) {
571         case SNDRV_PCM_TRIGGER_START:
572                 hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
573                 hal2->dac.pcm_indirect.hw_data = 0;
574                 substream->ops->ack(substream);
575                 hal2_start_dac(hal2);
576                 break;
577         case SNDRV_PCM_TRIGGER_STOP:
578                 hal2_stop_dac(hal2);
579                 break;
580         default:
581                 return -EINVAL;
582         }
583         return 0;
584 }
585
586 static snd_pcm_uframes_t
587 hal2_playback_pointer(struct snd_pcm_substream *substream)
588 {
589         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
590         struct hal2_codec *dac = &hal2->dac;
591
592         return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
593                                                  dac->pbus.pbus->pbdma_bptr);
594 }
595
596 static void hal2_playback_transfer(struct snd_pcm_substream *substream,
597                                    struct snd_pcm_indirect *rec, size_t bytes)
598 {
599         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
600         unsigned char *buf = hal2->dac.buffer + rec->hw_data;
601
602         memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
603         dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
604
605 }
606
607 static int hal2_playback_ack(struct snd_pcm_substream *substream)
608 {
609         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
610         struct hal2_codec *dac = &hal2->dac;
611
612         dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
613         snd_pcm_indirect_playback_transfer(substream,
614                                            &dac->pcm_indirect,
615                                            hal2_playback_transfer);
616         return 0;
617 }
618
619 static int hal2_capture_open(struct snd_pcm_substream *substream)
620 {
621         struct snd_pcm_runtime *runtime = substream->runtime;
622         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
623         struct hal2_codec *adc = &hal2->adc;
624         int err;
625
626         runtime->hw = hal2_pcm_hw;
627
628         err = hal2_alloc_dmabuf(adc);
629         if (err)
630                 return err;
631         return 0;
632 }
633
634 static int hal2_capture_close(struct snd_pcm_substream *substream)
635 {
636         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
637
638         hal2_free_dmabuf(&hal2->adc);
639         return 0;
640 }
641
642 static int hal2_capture_prepare(struct snd_pcm_substream *substream)
643 {
644         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
645         struct snd_pcm_runtime *runtime = substream->runtime;
646         struct hal2_codec *adc = &hal2->adc;
647
648         adc->voices = runtime->channels;
649         adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
650         memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
651         adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
652         adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
653         adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
654         adc->substream = substream;
655         hal2_setup_adc(hal2);
656         return 0;
657 }
658
659 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
660 {
661         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
662
663         switch (cmd) {
664         case SNDRV_PCM_TRIGGER_START:
665                 hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
666                 hal2->adc.pcm_indirect.hw_data = 0;
667                 printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
668                 hal2_start_adc(hal2);
669                 break;
670         case SNDRV_PCM_TRIGGER_STOP:
671                 hal2_stop_adc(hal2);
672                 break;
673         default:
674                 return -EINVAL;
675         }
676         return 0;
677 }
678
679 static snd_pcm_uframes_t
680 hal2_capture_pointer(struct snd_pcm_substream *substream)
681 {
682         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
683         struct hal2_codec *adc = &hal2->adc;
684
685         return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
686                                                 adc->pbus.pbus->pbdma_bptr);
687 }
688
689 static void hal2_capture_transfer(struct snd_pcm_substream *substream,
690                                   struct snd_pcm_indirect *rec, size_t bytes)
691 {
692         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
693         unsigned char *buf = hal2->adc.buffer + rec->hw_data;
694
695         dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
696         memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
697 }
698
699 static int hal2_capture_ack(struct snd_pcm_substream *substream)
700 {
701         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
702         struct hal2_codec *adc = &hal2->adc;
703
704         snd_pcm_indirect_capture_transfer(substream,
705                                           &adc->pcm_indirect,
706                                           hal2_capture_transfer);
707         return 0;
708 }
709
710 static struct snd_pcm_ops hal2_playback_ops = {
711         .open =        hal2_playback_open,
712         .close =       hal2_playback_close,
713         .ioctl =       snd_pcm_lib_ioctl,
714         .hw_params =   hal2_pcm_hw_params,
715         .hw_free =     hal2_pcm_hw_free,
716         .prepare =     hal2_playback_prepare,
717         .trigger =     hal2_playback_trigger,
718         .pointer =     hal2_playback_pointer,
719         .ack =         hal2_playback_ack,
720 };
721
722 static struct snd_pcm_ops hal2_capture_ops = {
723         .open =        hal2_capture_open,
724         .close =       hal2_capture_close,
725         .ioctl =       snd_pcm_lib_ioctl,
726         .hw_params =   hal2_pcm_hw_params,
727         .hw_free =     hal2_pcm_hw_free,
728         .prepare =     hal2_capture_prepare,
729         .trigger =     hal2_capture_trigger,
730         .pointer =     hal2_capture_pointer,
731         .ack =         hal2_capture_ack,
732 };
733
734 static int __devinit hal2_pcm_create(struct snd_hal2 *hal2)
735 {
736         struct snd_pcm *pcm;
737         int err;
738
739         /* create first pcm device with one outputs and one input */
740         err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
741         if (err < 0)
742                 return err;
743
744         pcm->private_data = hal2;
745         strcpy(pcm->name, "SGI HAL2");
746
747         /* set operators */
748         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
749                         &hal2_playback_ops);
750         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
751                         &hal2_capture_ops);
752         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
753                                            snd_dma_continuous_data(GFP_KERNEL),
754                                            0, 1024 * 1024);
755
756         return 0;
757 }
758
759 static int hal2_dev_free(struct snd_device *device)
760 {
761         struct snd_hal2 *hal2 = device->device_data;
762
763         free_irq(SGI_HPCDMA_IRQ, hal2);
764         kfree(hal2);
765         return 0;
766 }
767
768 static struct snd_device_ops hal2_ops = {
769         .dev_free = hal2_dev_free,
770 };
771
772 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
773                             int index)
774 {
775         codec->pbus.pbusnr = index;
776         codec->pbus.pbus = &hpc3->pbdma[index];
777 }
778
779 static int hal2_detect(struct snd_hal2 *hal2)
780 {
781         unsigned short board, major, minor;
782         unsigned short rev;
783
784         /* reset HAL2 */
785         hal2_write(0, &hal2->ctl_regs->isr);
786
787         /* release reset */
788         hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
789                    &hal2->ctl_regs->isr);
790
791
792         hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
793         rev = hal2_read(&hal2->ctl_regs->rev);
794         if (rev & H2_REV_AUDIO_PRESENT)
795                 return -ENODEV;
796
797         board = (rev & H2_REV_BOARD_M) >> 12;
798         major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
799         minor = (rev & H2_REV_MINOR_CHIP_M);
800
801         printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
802                board, major, minor);
803
804         return 0;
805 }
806
807 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
808 {
809         struct snd_hal2 *hal2;
810         struct hpc3_regs *hpc3 = hpc3c0;
811         int err;
812
813         hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
814         if (!hal2)
815                 return -ENOMEM;
816
817         hal2->card = card;
818
819         if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
820                         "SGI HAL2", hal2)) {
821                 printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
822                 kfree(hal2);
823                 return -EAGAIN;
824         }
825
826         hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
827         hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
828         hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
829         hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
830
831         if (hal2_detect(hal2) < 0) {
832                 kfree(hal2);
833                 return -ENODEV;
834         }
835
836         hal2_init_codec(&hal2->dac, hpc3, 0);
837         hal2_init_codec(&hal2->adc, hpc3, 1);
838
839         /*
840          * All DMA channel interfaces in HAL2 are designed to operate with
841          * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
842          * in D5. HAL2 is a 16-bit device which can accept both big and little
843          * endian format. It assumes that even address bytes are on high
844          * portion of PBUS (15:8) and assumes that HPC3 is programmed to
845          * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
846          */
847 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
848                           (2 << HPC3_DMACFG_D4R_SHIFT) | \
849                           (2 << HPC3_DMACFG_D5R_SHIFT) | \
850                           (0 << HPC3_DMACFG_D3W_SHIFT) | \
851                           (2 << HPC3_DMACFG_D4W_SHIFT) | \
852                           (2 << HPC3_DMACFG_D5W_SHIFT) | \
853                                 HPC3_DMACFG_DS16 | \
854                                 HPC3_DMACFG_EVENHI | \
855                                 HPC3_DMACFG_RTIME | \
856                           (8 << HPC3_DMACFG_BURST_SHIFT) | \
857                                 HPC3_DMACFG_DRQLIVE)
858         /*
859          * Ignore what's mentioned in the specification and write value which
860          * works in The Real World (TM)
861          */
862         hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
863         hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
864
865         err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
866         if (err < 0) {
867                 free_irq(SGI_HPCDMA_IRQ, hal2);
868                 kfree(hal2);
869                 return err;
870         }
871         *rchip = hal2;
872         return 0;
873 }
874
875 static int __devinit hal2_probe(struct platform_device *pdev)
876 {
877         struct snd_card *card;
878         struct snd_hal2 *chip;
879         int err;
880
881         card = snd_card_new(index, id, THIS_MODULE, 0);
882         if (card == NULL)
883                 return -ENOMEM;
884
885         err = hal2_create(card, &chip);
886         if (err < 0) {
887                 snd_card_free(card);
888                 return err;
889         }
890         snd_card_set_dev(card, &pdev->dev);
891
892         err = hal2_pcm_create(chip);
893         if (err < 0) {
894                 snd_card_free(card);
895                 return err;
896         }
897         err = hal2_mixer_create(chip);
898         if (err < 0) {
899                 snd_card_free(card);
900                 return err;
901         }
902
903         strcpy(card->driver, "SGI HAL2 Audio");
904         strcpy(card->shortname, "SGI HAL2 Audio");
905         sprintf(card->longname, "%s irq %i",
906                 card->shortname,
907                 SGI_HPCDMA_IRQ);
908
909         err = snd_card_register(card);
910         if (err < 0) {
911                 snd_card_free(card);
912                 return err;
913         }
914         platform_set_drvdata(pdev, card);
915         return 0;
916 }
917
918 static int __exit hal2_remove(struct platform_device *pdev)
919 {
920         struct snd_card *card = platform_get_drvdata(pdev);
921
922         snd_card_free(card);
923         platform_set_drvdata(pdev, NULL);
924         return 0;
925 }
926
927 static struct platform_driver hal2_driver = {
928         .probe  = hal2_probe,
929         .remove = __devexit_p(hal2_remove),
930         .driver = {
931                 .name   = "sgihal2",
932                 .owner  = THIS_MODULE,
933         }
934 };
935
936 static int __init alsa_card_hal2_init(void)
937 {
938         return platform_driver_register(&hal2_driver);
939 }
940
941 static void __exit alsa_card_hal2_exit(void)
942 {
943         platform_driver_unregister(&hal2_driver);
944 }
945
946 module_init(alsa_card_hal2_init);
947 module_exit(alsa_card_hal2_exit);