Staging: Pohmelfs: Disable read lock in pohmelfs_getattr().
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/page.h>
35 #include <asm/system.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43
44 #define DESCRIPTOR_OUTPUT_MORE          0
45 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
48 #define DESCRIPTOR_STATUS               (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
50 #define DESCRIPTOR_PING                 (1 << 7)
51 #define DESCRIPTOR_YY                   (1 << 6)
52 #define DESCRIPTOR_NO_IRQ               (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
56 #define DESCRIPTOR_WAIT                 (3 << 0)
57
58 struct descriptor {
59         __le16 req_count;
60         __le16 control;
61         __le32 data_address;
62         __le32 branch_address;
63         __le16 res_count;
64         __le16 transfer_status;
65 } __attribute__((aligned(16)));
66
67 struct db_descriptor {
68         __le16 first_size;
69         __le16 control;
70         __le16 second_req_count;
71         __le16 first_req_count;
72         __le32 branch_address;
73         __le16 second_res_count;
74         __le16 first_res_count;
75         __le32 reserved0;
76         __le32 first_buffer;
77         __le32 second_buffer;
78         __le32 reserved1;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 struct ar_buffer {
87         struct descriptor descriptor;
88         struct ar_buffer *next;
89         __le32 data[0];
90 };
91
92 struct ar_context {
93         struct fw_ohci *ohci;
94         struct ar_buffer *current_buffer;
95         struct ar_buffer *last_buffer;
96         void *pointer;
97         u32 regs;
98         struct tasklet_struct tasklet;
99 };
100
101 struct context;
102
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104                                      struct descriptor *d,
105                                      struct descriptor *last);
106
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112         struct list_head list;
113         dma_addr_t buffer_bus;
114         size_t buffer_size;
115         size_t used;
116         struct descriptor buffer[0];
117 };
118
119 struct context {
120         struct fw_ohci *ohci;
121         u32 regs;
122         int total_allocation;
123
124         /*
125          * List of page-sized buffers for storing DMA descriptors.
126          * Head of list contains buffers in use and tail of list contains
127          * free buffers.
128          */
129         struct list_head buffer_list;
130
131         /*
132          * Pointer to a buffer inside buffer_list that contains the tail
133          * end of the current DMA program.
134          */
135         struct descriptor_buffer *buffer_tail;
136
137         /*
138          * The descriptor containing the branch address of the first
139          * descriptor that has not yet been filled by the device.
140          */
141         struct descriptor *last;
142
143         /*
144          * The last descriptor in the DMA program.  It contains the branch
145          * address that must be updated upon appending a new descriptor.
146          */
147         struct descriptor *prev;
148
149         descriptor_callback_t callback;
150
151         struct tasklet_struct tasklet;
152 };
153
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160
161 struct iso_context {
162         struct fw_iso_context base;
163         struct context context;
164         int excess_bytes;
165         void *header;
166         size_t header_length;
167 };
168
169 #define CONFIG_ROM_SIZE 1024
170
171 struct fw_ohci {
172         struct fw_card card;
173
174         __iomem char *registers;
175         dma_addr_t self_id_bus;
176         __le32 *self_id_cpu;
177         struct tasklet_struct bus_reset_tasklet;
178         int node_id;
179         int generation;
180         int request_generation; /* for timestamping incoming requests */
181         u32 bus_seconds;
182
183         bool use_dualbuffer;
184         bool old_uninorth;
185         bool bus_reset_packet_quirk;
186
187         /*
188          * Spinlock for accessing fw_ohci data.  Never call out of
189          * this driver with this lock held.
190          */
191         spinlock_t lock;
192         u32 self_id_buffer[512];
193
194         /* Config rom buffers */
195         __be32 *config_rom;
196         dma_addr_t config_rom_bus;
197         __be32 *next_config_rom;
198         dma_addr_t next_config_rom_bus;
199         u32 next_header;
200
201         struct ar_context ar_request_ctx;
202         struct ar_context ar_response_ctx;
203         struct context at_request_ctx;
204         struct context at_response_ctx;
205
206         u32 it_context_mask;
207         struct iso_context *it_context_list;
208         u64 ir_context_channels;
209         u32 ir_context_mask;
210         struct iso_context *ir_context_list;
211 };
212
213 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
214 {
215         return container_of(card, struct fw_ohci, card);
216 }
217
218 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
219 #define IR_CONTEXT_BUFFER_FILL          0x80000000
220 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
221 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
222 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
223 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
224
225 #define CONTEXT_RUN     0x8000
226 #define CONTEXT_WAKE    0x1000
227 #define CONTEXT_DEAD    0x0800
228 #define CONTEXT_ACTIVE  0x0400
229
230 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
231 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
232 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
233
234 #define FW_OHCI_MAJOR                   240
235 #define OHCI1394_REGISTER_SIZE          0x800
236 #define OHCI_LOOP_COUNT                 500
237 #define OHCI1394_PCI_HCI_Control        0x40
238 #define SELF_ID_BUF_SIZE                0x800
239 #define OHCI_TCODE_PHY_PACKET           0x0e
240 #define OHCI_VERSION_1_1                0x010010
241
242 static char ohci_driver_name[] = KBUILD_MODNAME;
243
244 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
245
246 #define OHCI_PARAM_DEBUG_AT_AR          1
247 #define OHCI_PARAM_DEBUG_SELFIDS        2
248 #define OHCI_PARAM_DEBUG_IRQS           4
249 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
250
251 static int param_debug;
252 module_param_named(debug, param_debug, int, 0644);
253 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
254         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
255         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
256         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
257         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
258         ", or a combination, or all = -1)");
259
260 static void log_irqs(u32 evt)
261 {
262         if (likely(!(param_debug &
263                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
264                 return;
265
266         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
267             !(evt & OHCI1394_busReset))
268                 return;
269
270         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
271             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
272             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
273             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
274             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
275             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
276             evt & OHCI1394_isochRx              ? " IR"                 : "",
277             evt & OHCI1394_isochTx              ? " IT"                 : "",
278             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
279             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
280             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
281             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
282             evt & OHCI1394_busReset             ? " busReset"           : "",
283             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
284                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
285                     OHCI1394_respTxComplete | OHCI1394_isochRx |
286                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
287                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
288                     OHCI1394_regAccessFail | OHCI1394_busReset)
289                                                 ? " ?"                  : "");
290 }
291
292 static const char *speed[] = {
293         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
294 };
295 static const char *power[] = {
296         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
297         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
298 };
299 static const char port[] = { '.', '-', 'p', 'c', };
300
301 static char _p(u32 *s, int shift)
302 {
303         return port[*s >> shift & 3];
304 }
305
306 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
307 {
308         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
309                 return;
310
311         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
312                   self_id_count, generation, node_id);
313
314         for (; self_id_count--; ++s)
315                 if ((*s & 1 << 23) == 0)
316                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
317                             "%s gc=%d %s %s%s%s\n",
318                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
319                             speed[*s >> 14 & 3], *s >> 16 & 63,
320                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
321                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
322                 else
323                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
324                             *s, *s >> 24 & 63,
325                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
326                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
327 }
328
329 static const char *evts[] = {
330         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
331         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
332         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
333         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
334         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
335         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
336         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
337         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
338         [0x10] = "-reserved-",          [0x11] = "ack_complete",
339         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
340         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
341         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
342         [0x18] = "-reserved-",          [0x19] = "-reserved-",
343         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
344         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
345         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
346         [0x20] = "pending/cancelled",
347 };
348 static const char *tcodes[] = {
349         [0x0] = "QW req",               [0x1] = "BW req",
350         [0x2] = "W resp",               [0x3] = "-reserved-",
351         [0x4] = "QR req",               [0x5] = "BR req",
352         [0x6] = "QR resp",              [0x7] = "BR resp",
353         [0x8] = "cycle start",          [0x9] = "Lk req",
354         [0xa] = "async stream packet",  [0xb] = "Lk resp",
355         [0xc] = "-reserved-",           [0xd] = "-reserved-",
356         [0xe] = "link internal",        [0xf] = "-reserved-",
357 };
358 static const char *phys[] = {
359         [0x0] = "phy config packet",    [0x1] = "link-on packet",
360         [0x2] = "self-id packet",       [0x3] = "-reserved-",
361 };
362
363 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
364 {
365         int tcode = header[0] >> 4 & 0xf;
366         char specific[12];
367
368         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
369                 return;
370
371         if (unlikely(evt >= ARRAY_SIZE(evts)))
372                         evt = 0x1f;
373
374         if (evt == OHCI1394_evt_bus_reset) {
375                 fw_notify("A%c evt_bus_reset, generation %d\n",
376                     dir, (header[2] >> 16) & 0xff);
377                 return;
378         }
379
380         if (header[0] == ~header[1]) {
381                 fw_notify("A%c %s, %s, %08x\n",
382                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
383                 return;
384         }
385
386         switch (tcode) {
387         case 0x0: case 0x6: case 0x8:
388                 snprintf(specific, sizeof(specific), " = %08x",
389                          be32_to_cpu((__force __be32)header[3]));
390                 break;
391         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
392                 snprintf(specific, sizeof(specific), " %x,%x",
393                          header[3] >> 16, header[3] & 0xffff);
394                 break;
395         default:
396                 specific[0] = '\0';
397         }
398
399         switch (tcode) {
400         case 0xe: case 0xa:
401                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
402                 break;
403         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
404                 fw_notify("A%c spd %x tl %02x, "
405                     "%04x -> %04x, %s, "
406                     "%s, %04x%08x%s\n",
407                     dir, speed, header[0] >> 10 & 0x3f,
408                     header[1] >> 16, header[0] >> 16, evts[evt],
409                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
410                 break;
411         default:
412                 fw_notify("A%c spd %x tl %02x, "
413                     "%04x -> %04x, %s, "
414                     "%s%s\n",
415                     dir, speed, header[0] >> 10 & 0x3f,
416                     header[1] >> 16, header[0] >> 16, evts[evt],
417                     tcodes[tcode], specific);
418         }
419 }
420
421 #else
422
423 #define log_irqs(evt)
424 #define log_selfids(node_id, generation, self_id_count, sid)
425 #define log_ar_at_event(dir, speed, header, evt)
426
427 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
428
429 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
430 {
431         writel(data, ohci->registers + offset);
432 }
433
434 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
435 {
436         return readl(ohci->registers + offset);
437 }
438
439 static inline void flush_writes(const struct fw_ohci *ohci)
440 {
441         /* Do a dummy read to flush writes. */
442         reg_read(ohci, OHCI1394_Version);
443 }
444
445 static int ohci_update_phy_reg(struct fw_card *card, int addr,
446                                int clear_bits, int set_bits)
447 {
448         struct fw_ohci *ohci = fw_ohci(card);
449         u32 val, old;
450
451         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
452         flush_writes(ohci);
453         msleep(2);
454         val = reg_read(ohci, OHCI1394_PhyControl);
455         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
456                 fw_error("failed to set phy reg bits.\n");
457                 return -EBUSY;
458         }
459
460         old = OHCI1394_PhyControl_ReadData(val);
461         old = (old & ~clear_bits) | set_bits;
462         reg_write(ohci, OHCI1394_PhyControl,
463                   OHCI1394_PhyControl_Write(addr, old));
464
465         return 0;
466 }
467
468 static int ar_context_add_page(struct ar_context *ctx)
469 {
470         struct device *dev = ctx->ohci->card.device;
471         struct ar_buffer *ab;
472         dma_addr_t uninitialized_var(ab_bus);
473         size_t offset;
474
475         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
476         if (ab == NULL)
477                 return -ENOMEM;
478
479         ab->next = NULL;
480         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
481         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
482                                                     DESCRIPTOR_STATUS |
483                                                     DESCRIPTOR_BRANCH_ALWAYS);
484         offset = offsetof(struct ar_buffer, data);
485         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
486         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
487         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
488         ab->descriptor.branch_address = 0;
489
490         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
491         ctx->last_buffer->next = ab;
492         ctx->last_buffer = ab;
493
494         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
495         flush_writes(ctx->ohci);
496
497         return 0;
498 }
499
500 static void ar_context_release(struct ar_context *ctx)
501 {
502         struct ar_buffer *ab, *ab_next;
503         size_t offset;
504         dma_addr_t ab_bus;
505
506         for (ab = ctx->current_buffer; ab; ab = ab_next) {
507                 ab_next = ab->next;
508                 offset = offsetof(struct ar_buffer, data);
509                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
510                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
511                                   ab, ab_bus);
512         }
513 }
514
515 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
516 #define cond_le32_to_cpu(v) \
517         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
518 #else
519 #define cond_le32_to_cpu(v) le32_to_cpu(v)
520 #endif
521
522 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
523 {
524         struct fw_ohci *ohci = ctx->ohci;
525         struct fw_packet p;
526         u32 status, length, tcode;
527         int evt;
528
529         p.header[0] = cond_le32_to_cpu(buffer[0]);
530         p.header[1] = cond_le32_to_cpu(buffer[1]);
531         p.header[2] = cond_le32_to_cpu(buffer[2]);
532
533         tcode = (p.header[0] >> 4) & 0x0f;
534         switch (tcode) {
535         case TCODE_WRITE_QUADLET_REQUEST:
536         case TCODE_READ_QUADLET_RESPONSE:
537                 p.header[3] = (__force __u32) buffer[3];
538                 p.header_length = 16;
539                 p.payload_length = 0;
540                 break;
541
542         case TCODE_READ_BLOCK_REQUEST :
543                 p.header[3] = cond_le32_to_cpu(buffer[3]);
544                 p.header_length = 16;
545                 p.payload_length = 0;
546                 break;
547
548         case TCODE_WRITE_BLOCK_REQUEST:
549         case TCODE_READ_BLOCK_RESPONSE:
550         case TCODE_LOCK_REQUEST:
551         case TCODE_LOCK_RESPONSE:
552                 p.header[3] = cond_le32_to_cpu(buffer[3]);
553                 p.header_length = 16;
554                 p.payload_length = p.header[3] >> 16;
555                 break;
556
557         case TCODE_WRITE_RESPONSE:
558         case TCODE_READ_QUADLET_REQUEST:
559         case OHCI_TCODE_PHY_PACKET:
560                 p.header_length = 12;
561                 p.payload_length = 0;
562                 break;
563
564         default:
565                 /* FIXME: Stop context, discard everything, and restart? */
566                 p.header_length = 0;
567                 p.payload_length = 0;
568         }
569
570         p.payload = (void *) buffer + p.header_length;
571
572         /* FIXME: What to do about evt_* errors? */
573         length = (p.header_length + p.payload_length + 3) / 4;
574         status = cond_le32_to_cpu(buffer[length]);
575         evt    = (status >> 16) & 0x1f;
576
577         p.ack        = evt - 16;
578         p.speed      = (status >> 21) & 0x7;
579         p.timestamp  = status & 0xffff;
580         p.generation = ohci->request_generation;
581
582         log_ar_at_event('R', p.speed, p.header, evt);
583
584         /*
585          * The OHCI bus reset handler synthesizes a phy packet with
586          * the new generation number when a bus reset happens (see
587          * section 8.4.2.3).  This helps us determine when a request
588          * was received and make sure we send the response in the same
589          * generation.  We only need this for requests; for responses
590          * we use the unique tlabel for finding the matching
591          * request.
592          *
593          * Alas some chips sometimes emit bus reset packets with a
594          * wrong generation.  We set the correct generation for these
595          * at a slightly incorrect time (in bus_reset_tasklet).
596          */
597         if (evt == OHCI1394_evt_bus_reset) {
598                 if (!ohci->bus_reset_packet_quirk)
599                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
600         } else if (ctx == &ohci->ar_request_ctx) {
601                 fw_core_handle_request(&ohci->card, &p);
602         } else {
603                 fw_core_handle_response(&ohci->card, &p);
604         }
605
606         return buffer + length + 1;
607 }
608
609 static void ar_context_tasklet(unsigned long data)
610 {
611         struct ar_context *ctx = (struct ar_context *)data;
612         struct fw_ohci *ohci = ctx->ohci;
613         struct ar_buffer *ab;
614         struct descriptor *d;
615         void *buffer, *end;
616
617         ab = ctx->current_buffer;
618         d = &ab->descriptor;
619
620         if (d->res_count == 0) {
621                 size_t size, rest, offset;
622                 dma_addr_t start_bus;
623                 void *start;
624
625                 /*
626                  * This descriptor is finished and we may have a
627                  * packet split across this and the next buffer. We
628                  * reuse the page for reassembling the split packet.
629                  */
630
631                 offset = offsetof(struct ar_buffer, data);
632                 start = buffer = ab;
633                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
634
635                 ab = ab->next;
636                 d = &ab->descriptor;
637                 size = buffer + PAGE_SIZE - ctx->pointer;
638                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
639                 memmove(buffer, ctx->pointer, size);
640                 memcpy(buffer + size, ab->data, rest);
641                 ctx->current_buffer = ab;
642                 ctx->pointer = (void *) ab->data + rest;
643                 end = buffer + size + rest;
644
645                 while (buffer < end)
646                         buffer = handle_ar_packet(ctx, buffer);
647
648                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
649                                   start, start_bus);
650                 ar_context_add_page(ctx);
651         } else {
652                 buffer = ctx->pointer;
653                 ctx->pointer = end =
654                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
655
656                 while (buffer < end)
657                         buffer = handle_ar_packet(ctx, buffer);
658         }
659 }
660
661 static int ar_context_init(struct ar_context *ctx,
662                            struct fw_ohci *ohci, u32 regs)
663 {
664         struct ar_buffer ab;
665
666         ctx->regs        = regs;
667         ctx->ohci        = ohci;
668         ctx->last_buffer = &ab;
669         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
670
671         ar_context_add_page(ctx);
672         ar_context_add_page(ctx);
673         ctx->current_buffer = ab.next;
674         ctx->pointer = ctx->current_buffer->data;
675
676         return 0;
677 }
678
679 static void ar_context_run(struct ar_context *ctx)
680 {
681         struct ar_buffer *ab = ctx->current_buffer;
682         dma_addr_t ab_bus;
683         size_t offset;
684
685         offset = offsetof(struct ar_buffer, data);
686         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
687
688         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
689         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
690         flush_writes(ctx->ohci);
691 }
692
693 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
694 {
695         int b, key;
696
697         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
698         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
699
700         /* figure out which descriptor the branch address goes in */
701         if (z == 2 && (b == 3 || key == 2))
702                 return d;
703         else
704                 return d + z - 1;
705 }
706
707 static void context_tasklet(unsigned long data)
708 {
709         struct context *ctx = (struct context *) data;
710         struct descriptor *d, *last;
711         u32 address;
712         int z;
713         struct descriptor_buffer *desc;
714
715         desc = list_entry(ctx->buffer_list.next,
716                         struct descriptor_buffer, list);
717         last = ctx->last;
718         while (last->branch_address != 0) {
719                 struct descriptor_buffer *old_desc = desc;
720                 address = le32_to_cpu(last->branch_address);
721                 z = address & 0xf;
722                 address &= ~0xf;
723
724                 /* If the branch address points to a buffer outside of the
725                  * current buffer, advance to the next buffer. */
726                 if (address < desc->buffer_bus ||
727                                 address >= desc->buffer_bus + desc->used)
728                         desc = list_entry(desc->list.next,
729                                         struct descriptor_buffer, list);
730                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
731                 last = find_branch_descriptor(d, z);
732
733                 if (!ctx->callback(ctx, d, last))
734                         break;
735
736                 if (old_desc != desc) {
737                         /* If we've advanced to the next buffer, move the
738                          * previous buffer to the free list. */
739                         unsigned long flags;
740                         old_desc->used = 0;
741                         spin_lock_irqsave(&ctx->ohci->lock, flags);
742                         list_move_tail(&old_desc->list, &ctx->buffer_list);
743                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
744                 }
745                 ctx->last = last;
746         }
747 }
748
749 /*
750  * Allocate a new buffer and add it to the list of free buffers for this
751  * context.  Must be called with ohci->lock held.
752  */
753 static int context_add_buffer(struct context *ctx)
754 {
755         struct descriptor_buffer *desc;
756         dma_addr_t uninitialized_var(bus_addr);
757         int offset;
758
759         /*
760          * 16MB of descriptors should be far more than enough for any DMA
761          * program.  This will catch run-away userspace or DoS attacks.
762          */
763         if (ctx->total_allocation >= 16*1024*1024)
764                 return -ENOMEM;
765
766         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
767                         &bus_addr, GFP_ATOMIC);
768         if (!desc)
769                 return -ENOMEM;
770
771         offset = (void *)&desc->buffer - (void *)desc;
772         desc->buffer_size = PAGE_SIZE - offset;
773         desc->buffer_bus = bus_addr + offset;
774         desc->used = 0;
775
776         list_add_tail(&desc->list, &ctx->buffer_list);
777         ctx->total_allocation += PAGE_SIZE;
778
779         return 0;
780 }
781
782 static int context_init(struct context *ctx, struct fw_ohci *ohci,
783                         u32 regs, descriptor_callback_t callback)
784 {
785         ctx->ohci = ohci;
786         ctx->regs = regs;
787         ctx->total_allocation = 0;
788
789         INIT_LIST_HEAD(&ctx->buffer_list);
790         if (context_add_buffer(ctx) < 0)
791                 return -ENOMEM;
792
793         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
794                         struct descriptor_buffer, list);
795
796         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
797         ctx->callback = callback;
798
799         /*
800          * We put a dummy descriptor in the buffer that has a NULL
801          * branch address and looks like it's been sent.  That way we
802          * have a descriptor to append DMA programs to.
803          */
804         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
805         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
806         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
807         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
808         ctx->last = ctx->buffer_tail->buffer;
809         ctx->prev = ctx->buffer_tail->buffer;
810
811         return 0;
812 }
813
814 static void context_release(struct context *ctx)
815 {
816         struct fw_card *card = &ctx->ohci->card;
817         struct descriptor_buffer *desc, *tmp;
818
819         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
820                 dma_free_coherent(card->device, PAGE_SIZE, desc,
821                         desc->buffer_bus -
822                         ((void *)&desc->buffer - (void *)desc));
823 }
824
825 /* Must be called with ohci->lock held */
826 static struct descriptor *context_get_descriptors(struct context *ctx,
827                                                   int z, dma_addr_t *d_bus)
828 {
829         struct descriptor *d = NULL;
830         struct descriptor_buffer *desc = ctx->buffer_tail;
831
832         if (z * sizeof(*d) > desc->buffer_size)
833                 return NULL;
834
835         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
836                 /* No room for the descriptor in this buffer, so advance to the
837                  * next one. */
838
839                 if (desc->list.next == &ctx->buffer_list) {
840                         /* If there is no free buffer next in the list,
841                          * allocate one. */
842                         if (context_add_buffer(ctx) < 0)
843                                 return NULL;
844                 }
845                 desc = list_entry(desc->list.next,
846                                 struct descriptor_buffer, list);
847                 ctx->buffer_tail = desc;
848         }
849
850         d = desc->buffer + desc->used / sizeof(*d);
851         memset(d, 0, z * sizeof(*d));
852         *d_bus = desc->buffer_bus + desc->used;
853
854         return d;
855 }
856
857 static void context_run(struct context *ctx, u32 extra)
858 {
859         struct fw_ohci *ohci = ctx->ohci;
860
861         reg_write(ohci, COMMAND_PTR(ctx->regs),
862                   le32_to_cpu(ctx->last->branch_address));
863         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
864         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
865         flush_writes(ohci);
866 }
867
868 static void context_append(struct context *ctx,
869                            struct descriptor *d, int z, int extra)
870 {
871         dma_addr_t d_bus;
872         struct descriptor_buffer *desc = ctx->buffer_tail;
873
874         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
875
876         desc->used += (z + extra) * sizeof(*d);
877         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
878         ctx->prev = find_branch_descriptor(d, z);
879
880         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
881         flush_writes(ctx->ohci);
882 }
883
884 static void context_stop(struct context *ctx)
885 {
886         u32 reg;
887         int i;
888
889         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
890         flush_writes(ctx->ohci);
891
892         for (i = 0; i < 10; i++) {
893                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
894                 if ((reg & CONTEXT_ACTIVE) == 0)
895                         return;
896
897                 mdelay(1);
898         }
899         fw_error("Error: DMA context still active (0x%08x)\n", reg);
900 }
901
902 struct driver_data {
903         struct fw_packet *packet;
904 };
905
906 /*
907  * This function apppends a packet to the DMA queue for transmission.
908  * Must always be called with the ochi->lock held to ensure proper
909  * generation handling and locking around packet queue manipulation.
910  */
911 static int at_context_queue_packet(struct context *ctx,
912                                    struct fw_packet *packet)
913 {
914         struct fw_ohci *ohci = ctx->ohci;
915         dma_addr_t d_bus, uninitialized_var(payload_bus);
916         struct driver_data *driver_data;
917         struct descriptor *d, *last;
918         __le32 *header;
919         int z, tcode;
920         u32 reg;
921
922         d = context_get_descriptors(ctx, 4, &d_bus);
923         if (d == NULL) {
924                 packet->ack = RCODE_SEND_ERROR;
925                 return -1;
926         }
927
928         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
929         d[0].res_count = cpu_to_le16(packet->timestamp);
930
931         /*
932          * The DMA format for asyncronous link packets is different
933          * from the IEEE1394 layout, so shift the fields around
934          * accordingly.  If header_length is 8, it's a PHY packet, to
935          * which we need to prepend an extra quadlet.
936          */
937
938         header = (__le32 *) &d[1];
939         switch (packet->header_length) {
940         case 16:
941         case 12:
942                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
943                                         (packet->speed << 16));
944                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
945                                         (packet->header[0] & 0xffff0000));
946                 header[2] = cpu_to_le32(packet->header[2]);
947
948                 tcode = (packet->header[0] >> 4) & 0x0f;
949                 if (TCODE_IS_BLOCK_PACKET(tcode))
950                         header[3] = cpu_to_le32(packet->header[3]);
951                 else
952                         header[3] = (__force __le32) packet->header[3];
953
954                 d[0].req_count = cpu_to_le16(packet->header_length);
955                 break;
956
957         case 8:
958                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
959                                         (packet->speed << 16));
960                 header[1] = cpu_to_le32(packet->header[0]);
961                 header[2] = cpu_to_le32(packet->header[1]);
962                 d[0].req_count = cpu_to_le16(12);
963                 break;
964
965         case 4:
966                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
967                                         (packet->speed << 16));
968                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
969                 d[0].req_count = cpu_to_le16(8);
970                 break;
971
972         default:
973                 /* BUG(); */
974                 packet->ack = RCODE_SEND_ERROR;
975                 return -1;
976         }
977
978         driver_data = (struct driver_data *) &d[3];
979         driver_data->packet = packet;
980         packet->driver_data = driver_data;
981
982         if (packet->payload_length > 0) {
983                 payload_bus =
984                         dma_map_single(ohci->card.device, packet->payload,
985                                        packet->payload_length, DMA_TO_DEVICE);
986                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
987                         packet->ack = RCODE_SEND_ERROR;
988                         return -1;
989                 }
990                 packet->payload_bus = payload_bus;
991
992                 d[2].req_count    = cpu_to_le16(packet->payload_length);
993                 d[2].data_address = cpu_to_le32(payload_bus);
994                 last = &d[2];
995                 z = 3;
996         } else {
997                 last = &d[0];
998                 z = 2;
999         }
1000
1001         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1002                                      DESCRIPTOR_IRQ_ALWAYS |
1003                                      DESCRIPTOR_BRANCH_ALWAYS);
1004
1005         /*
1006          * If the controller and packet generations don't match, we need to
1007          * bail out and try again.  If IntEvent.busReset is set, the AT context
1008          * is halted, so appending to the context and trying to run it is
1009          * futile.  Most controllers do the right thing and just flush the AT
1010          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1011          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1012          * up stalling out.  So we just bail out in software and try again
1013          * later, and everyone is happy.
1014          * FIXME: Document how the locking works.
1015          */
1016         if (ohci->generation != packet->generation ||
1017             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1018                 if (packet->payload_length > 0)
1019                         dma_unmap_single(ohci->card.device, payload_bus,
1020                                          packet->payload_length, DMA_TO_DEVICE);
1021                 packet->ack = RCODE_GENERATION;
1022                 return -1;
1023         }
1024
1025         context_append(ctx, d, z, 4 - z);
1026
1027         /* If the context isn't already running, start it up. */
1028         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1029         if ((reg & CONTEXT_RUN) == 0)
1030                 context_run(ctx, 0);
1031
1032         return 0;
1033 }
1034
1035 static int handle_at_packet(struct context *context,
1036                             struct descriptor *d,
1037                             struct descriptor *last)
1038 {
1039         struct driver_data *driver_data;
1040         struct fw_packet *packet;
1041         struct fw_ohci *ohci = context->ohci;
1042         int evt;
1043
1044         if (last->transfer_status == 0)
1045                 /* This descriptor isn't done yet, stop iteration. */
1046                 return 0;
1047
1048         driver_data = (struct driver_data *) &d[3];
1049         packet = driver_data->packet;
1050         if (packet == NULL)
1051                 /* This packet was cancelled, just continue. */
1052                 return 1;
1053
1054         if (packet->payload_bus)
1055                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1056                                  packet->payload_length, DMA_TO_DEVICE);
1057
1058         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1059         packet->timestamp = le16_to_cpu(last->res_count);
1060
1061         log_ar_at_event('T', packet->speed, packet->header, evt);
1062
1063         switch (evt) {
1064         case OHCI1394_evt_timeout:
1065                 /* Async response transmit timed out. */
1066                 packet->ack = RCODE_CANCELLED;
1067                 break;
1068
1069         case OHCI1394_evt_flushed:
1070                 /*
1071                  * The packet was flushed should give same error as
1072                  * when we try to use a stale generation count.
1073                  */
1074                 packet->ack = RCODE_GENERATION;
1075                 break;
1076
1077         case OHCI1394_evt_missing_ack:
1078                 /*
1079                  * Using a valid (current) generation count, but the
1080                  * node is not on the bus or not sending acks.
1081                  */
1082                 packet->ack = RCODE_NO_ACK;
1083                 break;
1084
1085         case ACK_COMPLETE + 0x10:
1086         case ACK_PENDING + 0x10:
1087         case ACK_BUSY_X + 0x10:
1088         case ACK_BUSY_A + 0x10:
1089         case ACK_BUSY_B + 0x10:
1090         case ACK_DATA_ERROR + 0x10:
1091         case ACK_TYPE_ERROR + 0x10:
1092                 packet->ack = evt - 0x10;
1093                 break;
1094
1095         default:
1096                 packet->ack = RCODE_SEND_ERROR;
1097                 break;
1098         }
1099
1100         packet->callback(packet, &ohci->card, packet->ack);
1101
1102         return 1;
1103 }
1104
1105 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1106 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1107 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1108 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1109 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1110
1111 static void handle_local_rom(struct fw_ohci *ohci,
1112                              struct fw_packet *packet, u32 csr)
1113 {
1114         struct fw_packet response;
1115         int tcode, length, i;
1116
1117         tcode = HEADER_GET_TCODE(packet->header[0]);
1118         if (TCODE_IS_BLOCK_PACKET(tcode))
1119                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1120         else
1121                 length = 4;
1122
1123         i = csr - CSR_CONFIG_ROM;
1124         if (i + length > CONFIG_ROM_SIZE) {
1125                 fw_fill_response(&response, packet->header,
1126                                  RCODE_ADDRESS_ERROR, NULL, 0);
1127         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1128                 fw_fill_response(&response, packet->header,
1129                                  RCODE_TYPE_ERROR, NULL, 0);
1130         } else {
1131                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1132                                  (void *) ohci->config_rom + i, length);
1133         }
1134
1135         fw_core_handle_response(&ohci->card, &response);
1136 }
1137
1138 static void handle_local_lock(struct fw_ohci *ohci,
1139                               struct fw_packet *packet, u32 csr)
1140 {
1141         struct fw_packet response;
1142         int tcode, length, ext_tcode, sel;
1143         __be32 *payload, lock_old;
1144         u32 lock_arg, lock_data;
1145
1146         tcode = HEADER_GET_TCODE(packet->header[0]);
1147         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1148         payload = packet->payload;
1149         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1150
1151         if (tcode == TCODE_LOCK_REQUEST &&
1152             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1153                 lock_arg = be32_to_cpu(payload[0]);
1154                 lock_data = be32_to_cpu(payload[1]);
1155         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1156                 lock_arg = 0;
1157                 lock_data = 0;
1158         } else {
1159                 fw_fill_response(&response, packet->header,
1160                                  RCODE_TYPE_ERROR, NULL, 0);
1161                 goto out;
1162         }
1163
1164         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1165         reg_write(ohci, OHCI1394_CSRData, lock_data);
1166         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1167         reg_write(ohci, OHCI1394_CSRControl, sel);
1168
1169         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1170                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1171         else
1172                 fw_notify("swap not done yet\n");
1173
1174         fw_fill_response(&response, packet->header,
1175                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1176  out:
1177         fw_core_handle_response(&ohci->card, &response);
1178 }
1179
1180 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1181 {
1182         u64 offset;
1183         u32 csr;
1184
1185         if (ctx == &ctx->ohci->at_request_ctx) {
1186                 packet->ack = ACK_PENDING;
1187                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1188         }
1189
1190         offset =
1191                 ((unsigned long long)
1192                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1193                 packet->header[2];
1194         csr = offset - CSR_REGISTER_BASE;
1195
1196         /* Handle config rom reads. */
1197         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1198                 handle_local_rom(ctx->ohci, packet, csr);
1199         else switch (csr) {
1200         case CSR_BUS_MANAGER_ID:
1201         case CSR_BANDWIDTH_AVAILABLE:
1202         case CSR_CHANNELS_AVAILABLE_HI:
1203         case CSR_CHANNELS_AVAILABLE_LO:
1204                 handle_local_lock(ctx->ohci, packet, csr);
1205                 break;
1206         default:
1207                 if (ctx == &ctx->ohci->at_request_ctx)
1208                         fw_core_handle_request(&ctx->ohci->card, packet);
1209                 else
1210                         fw_core_handle_response(&ctx->ohci->card, packet);
1211                 break;
1212         }
1213
1214         if (ctx == &ctx->ohci->at_response_ctx) {
1215                 packet->ack = ACK_COMPLETE;
1216                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1217         }
1218 }
1219
1220 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1221 {
1222         unsigned long flags;
1223         int ret;
1224
1225         spin_lock_irqsave(&ctx->ohci->lock, flags);
1226
1227         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1228             ctx->ohci->generation == packet->generation) {
1229                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1230                 handle_local_request(ctx, packet);
1231                 return;
1232         }
1233
1234         ret = at_context_queue_packet(ctx, packet);
1235         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1236
1237         if (ret < 0)
1238                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1239
1240 }
1241
1242 static void bus_reset_tasklet(unsigned long data)
1243 {
1244         struct fw_ohci *ohci = (struct fw_ohci *)data;
1245         int self_id_count, i, j, reg;
1246         int generation, new_generation;
1247         unsigned long flags;
1248         void *free_rom = NULL;
1249         dma_addr_t free_rom_bus = 0;
1250
1251         reg = reg_read(ohci, OHCI1394_NodeID);
1252         if (!(reg & OHCI1394_NodeID_idValid)) {
1253                 fw_notify("node ID not valid, new bus reset in progress\n");
1254                 return;
1255         }
1256         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1257                 fw_notify("malconfigured bus\n");
1258                 return;
1259         }
1260         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1261                                OHCI1394_NodeID_nodeNumber);
1262
1263         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1264         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1265                 fw_notify("inconsistent self IDs\n");
1266                 return;
1267         }
1268         /*
1269          * The count in the SelfIDCount register is the number of
1270          * bytes in the self ID receive buffer.  Since we also receive
1271          * the inverted quadlets and a header quadlet, we shift one
1272          * bit extra to get the actual number of self IDs.
1273          */
1274         self_id_count = (reg >> 3) & 0x3ff;
1275         if (self_id_count == 0) {
1276                 fw_notify("inconsistent self IDs\n");
1277                 return;
1278         }
1279         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1280         rmb();
1281
1282         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1283                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1284                         fw_notify("inconsistent self IDs\n");
1285                         return;
1286                 }
1287                 ohci->self_id_buffer[j] =
1288                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1289         }
1290         rmb();
1291
1292         /*
1293          * Check the consistency of the self IDs we just read.  The
1294          * problem we face is that a new bus reset can start while we
1295          * read out the self IDs from the DMA buffer. If this happens,
1296          * the DMA buffer will be overwritten with new self IDs and we
1297          * will read out inconsistent data.  The OHCI specification
1298          * (section 11.2) recommends a technique similar to
1299          * linux/seqlock.h, where we remember the generation of the
1300          * self IDs in the buffer before reading them out and compare
1301          * it to the current generation after reading them out.  If
1302          * the two generations match we know we have a consistent set
1303          * of self IDs.
1304          */
1305
1306         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1307         if (new_generation != generation) {
1308                 fw_notify("recursive bus reset detected, "
1309                           "discarding self ids\n");
1310                 return;
1311         }
1312
1313         /* FIXME: Document how the locking works. */
1314         spin_lock_irqsave(&ohci->lock, flags);
1315
1316         ohci->generation = generation;
1317         context_stop(&ohci->at_request_ctx);
1318         context_stop(&ohci->at_response_ctx);
1319         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1320
1321         if (ohci->bus_reset_packet_quirk)
1322                 ohci->request_generation = generation;
1323
1324         /*
1325          * This next bit is unrelated to the AT context stuff but we
1326          * have to do it under the spinlock also.  If a new config rom
1327          * was set up before this reset, the old one is now no longer
1328          * in use and we can free it. Update the config rom pointers
1329          * to point to the current config rom and clear the
1330          * next_config_rom pointer so a new udpate can take place.
1331          */
1332
1333         if (ohci->next_config_rom != NULL) {
1334                 if (ohci->next_config_rom != ohci->config_rom) {
1335                         free_rom      = ohci->config_rom;
1336                         free_rom_bus  = ohci->config_rom_bus;
1337                 }
1338                 ohci->config_rom      = ohci->next_config_rom;
1339                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1340                 ohci->next_config_rom = NULL;
1341
1342                 /*
1343                  * Restore config_rom image and manually update
1344                  * config_rom registers.  Writing the header quadlet
1345                  * will indicate that the config rom is ready, so we
1346                  * do that last.
1347                  */
1348                 reg_write(ohci, OHCI1394_BusOptions,
1349                           be32_to_cpu(ohci->config_rom[2]));
1350                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1351                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1352         }
1353
1354 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1355         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1356         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1357 #endif
1358
1359         spin_unlock_irqrestore(&ohci->lock, flags);
1360
1361         if (free_rom)
1362                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1363                                   free_rom, free_rom_bus);
1364
1365         log_selfids(ohci->node_id, generation,
1366                     self_id_count, ohci->self_id_buffer);
1367
1368         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1369                                  self_id_count, ohci->self_id_buffer);
1370 }
1371
1372 static irqreturn_t irq_handler(int irq, void *data)
1373 {
1374         struct fw_ohci *ohci = data;
1375         u32 event, iso_event, cycle_time;
1376         int i;
1377
1378         event = reg_read(ohci, OHCI1394_IntEventClear);
1379
1380         if (!event || !~event)
1381                 return IRQ_NONE;
1382
1383         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1384         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1385         log_irqs(event);
1386
1387         if (event & OHCI1394_selfIDComplete)
1388                 tasklet_schedule(&ohci->bus_reset_tasklet);
1389
1390         if (event & OHCI1394_RQPkt)
1391                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1392
1393         if (event & OHCI1394_RSPkt)
1394                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1395
1396         if (event & OHCI1394_reqTxComplete)
1397                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1398
1399         if (event & OHCI1394_respTxComplete)
1400                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1401
1402         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1403         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1404
1405         while (iso_event) {
1406                 i = ffs(iso_event) - 1;
1407                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1408                 iso_event &= ~(1 << i);
1409         }
1410
1411         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1412         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1413
1414         while (iso_event) {
1415                 i = ffs(iso_event) - 1;
1416                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1417                 iso_event &= ~(1 << i);
1418         }
1419
1420         if (unlikely(event & OHCI1394_regAccessFail))
1421                 fw_error("Register access failure - "
1422                          "please notify linux1394-devel@lists.sf.net\n");
1423
1424         if (unlikely(event & OHCI1394_postedWriteErr))
1425                 fw_error("PCI posted write error\n");
1426
1427         if (unlikely(event & OHCI1394_cycleTooLong)) {
1428                 if (printk_ratelimit())
1429                         fw_notify("isochronous cycle too long\n");
1430                 reg_write(ohci, OHCI1394_LinkControlSet,
1431                           OHCI1394_LinkControl_cycleMaster);
1432         }
1433
1434         if (event & OHCI1394_cycle64Seconds) {
1435                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1436                 if ((cycle_time & 0x80000000) == 0)
1437                         ohci->bus_seconds++;
1438         }
1439
1440         return IRQ_HANDLED;
1441 }
1442
1443 static int software_reset(struct fw_ohci *ohci)
1444 {
1445         int i;
1446
1447         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1448
1449         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1450                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1451                      OHCI1394_HCControl_softReset) == 0)
1452                         return 0;
1453                 msleep(1);
1454         }
1455
1456         return -EBUSY;
1457 }
1458
1459 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1460 {
1461         struct fw_ohci *ohci = fw_ohci(card);
1462         struct pci_dev *dev = to_pci_dev(card->device);
1463         u32 lps;
1464         int i;
1465
1466         if (software_reset(ohci)) {
1467                 fw_error("Failed to reset ohci card.\n");
1468                 return -EBUSY;
1469         }
1470
1471         /*
1472          * Now enable LPS, which we need in order to start accessing
1473          * most of the registers.  In fact, on some cards (ALI M5251),
1474          * accessing registers in the SClk domain without LPS enabled
1475          * will lock up the machine.  Wait 50msec to make sure we have
1476          * full link enabled.  However, with some cards (well, at least
1477          * a JMicron PCIe card), we have to try again sometimes.
1478          */
1479         reg_write(ohci, OHCI1394_HCControlSet,
1480                   OHCI1394_HCControl_LPS |
1481                   OHCI1394_HCControl_postedWriteEnable);
1482         flush_writes(ohci);
1483
1484         for (lps = 0, i = 0; !lps && i < 3; i++) {
1485                 msleep(50);
1486                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1487                       OHCI1394_HCControl_LPS;
1488         }
1489
1490         if (!lps) {
1491                 fw_error("Failed to set Link Power Status\n");
1492                 return -EIO;
1493         }
1494
1495         reg_write(ohci, OHCI1394_HCControlClear,
1496                   OHCI1394_HCControl_noByteSwapData);
1497
1498         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1499         reg_write(ohci, OHCI1394_LinkControlClear,
1500                   OHCI1394_LinkControl_rcvPhyPkt);
1501         reg_write(ohci, OHCI1394_LinkControlSet,
1502                   OHCI1394_LinkControl_rcvSelfID |
1503                   OHCI1394_LinkControl_cycleTimerEnable |
1504                   OHCI1394_LinkControl_cycleMaster);
1505
1506         reg_write(ohci, OHCI1394_ATRetries,
1507                   OHCI1394_MAX_AT_REQ_RETRIES |
1508                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1509                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1510
1511         ar_context_run(&ohci->ar_request_ctx);
1512         ar_context_run(&ohci->ar_response_ctx);
1513
1514         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1515         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1516         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1517         reg_write(ohci, OHCI1394_IntMaskSet,
1518                   OHCI1394_selfIDComplete |
1519                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1520                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1521                   OHCI1394_isochRx | OHCI1394_isochTx |
1522                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1523                   OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1524                   OHCI1394_masterIntEnable);
1525         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1526                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1527
1528         /* Activate link_on bit and contender bit in our self ID packets.*/
1529         if (ohci_update_phy_reg(card, 4, 0,
1530                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1531                 return -EIO;
1532
1533         /*
1534          * When the link is not yet enabled, the atomic config rom
1535          * update mechanism described below in ohci_set_config_rom()
1536          * is not active.  We have to update ConfigRomHeader and
1537          * BusOptions manually, and the write to ConfigROMmap takes
1538          * effect immediately.  We tie this to the enabling of the
1539          * link, so we have a valid config rom before enabling - the
1540          * OHCI requires that ConfigROMhdr and BusOptions have valid
1541          * values before enabling.
1542          *
1543          * However, when the ConfigROMmap is written, some controllers
1544          * always read back quadlets 0 and 2 from the config rom to
1545          * the ConfigRomHeader and BusOptions registers on bus reset.
1546          * They shouldn't do that in this initial case where the link
1547          * isn't enabled.  This means we have to use the same
1548          * workaround here, setting the bus header to 0 and then write
1549          * the right values in the bus reset tasklet.
1550          */
1551
1552         if (config_rom) {
1553                 ohci->next_config_rom =
1554                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1555                                            &ohci->next_config_rom_bus,
1556                                            GFP_KERNEL);
1557                 if (ohci->next_config_rom == NULL)
1558                         return -ENOMEM;
1559
1560                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1561                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1562         } else {
1563                 /*
1564                  * In the suspend case, config_rom is NULL, which
1565                  * means that we just reuse the old config rom.
1566                  */
1567                 ohci->next_config_rom = ohci->config_rom;
1568                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1569         }
1570
1571         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1572         ohci->next_config_rom[0] = 0;
1573         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1574         reg_write(ohci, OHCI1394_BusOptions,
1575                   be32_to_cpu(ohci->next_config_rom[2]));
1576         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1577
1578         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1579
1580         if (request_irq(dev->irq, irq_handler,
1581                         IRQF_SHARED, ohci_driver_name, ohci)) {
1582                 fw_error("Failed to allocate shared interrupt %d.\n",
1583                          dev->irq);
1584                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1585                                   ohci->config_rom, ohci->config_rom_bus);
1586                 return -EIO;
1587         }
1588
1589         reg_write(ohci, OHCI1394_HCControlSet,
1590                   OHCI1394_HCControl_linkEnable |
1591                   OHCI1394_HCControl_BIBimageValid);
1592         flush_writes(ohci);
1593
1594         /*
1595          * We are ready to go, initiate bus reset to finish the
1596          * initialization.
1597          */
1598
1599         fw_core_initiate_bus_reset(&ohci->card, 1);
1600
1601         return 0;
1602 }
1603
1604 static int ohci_set_config_rom(struct fw_card *card,
1605                                u32 *config_rom, size_t length)
1606 {
1607         struct fw_ohci *ohci;
1608         unsigned long flags;
1609         int ret = -EBUSY;
1610         __be32 *next_config_rom;
1611         dma_addr_t uninitialized_var(next_config_rom_bus);
1612
1613         ohci = fw_ohci(card);
1614
1615         /*
1616          * When the OHCI controller is enabled, the config rom update
1617          * mechanism is a bit tricky, but easy enough to use.  See
1618          * section 5.5.6 in the OHCI specification.
1619          *
1620          * The OHCI controller caches the new config rom address in a
1621          * shadow register (ConfigROMmapNext) and needs a bus reset
1622          * for the changes to take place.  When the bus reset is
1623          * detected, the controller loads the new values for the
1624          * ConfigRomHeader and BusOptions registers from the specified
1625          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1626          * shadow register. All automatically and atomically.
1627          *
1628          * Now, there's a twist to this story.  The automatic load of
1629          * ConfigRomHeader and BusOptions doesn't honor the
1630          * noByteSwapData bit, so with a be32 config rom, the
1631          * controller will load be32 values in to these registers
1632          * during the atomic update, even on litte endian
1633          * architectures.  The workaround we use is to put a 0 in the
1634          * header quadlet; 0 is endian agnostic and means that the
1635          * config rom isn't ready yet.  In the bus reset tasklet we
1636          * then set up the real values for the two registers.
1637          *
1638          * We use ohci->lock to avoid racing with the code that sets
1639          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1640          */
1641
1642         next_config_rom =
1643                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1644                                    &next_config_rom_bus, GFP_KERNEL);
1645         if (next_config_rom == NULL)
1646                 return -ENOMEM;
1647
1648         spin_lock_irqsave(&ohci->lock, flags);
1649
1650         if (ohci->next_config_rom == NULL) {
1651                 ohci->next_config_rom = next_config_rom;
1652                 ohci->next_config_rom_bus = next_config_rom_bus;
1653
1654                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1655                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1656                                   length * 4);
1657
1658                 ohci->next_header = config_rom[0];
1659                 ohci->next_config_rom[0] = 0;
1660
1661                 reg_write(ohci, OHCI1394_ConfigROMmap,
1662                           ohci->next_config_rom_bus);
1663                 ret = 0;
1664         }
1665
1666         spin_unlock_irqrestore(&ohci->lock, flags);
1667
1668         /*
1669          * Now initiate a bus reset to have the changes take
1670          * effect. We clean up the old config rom memory and DMA
1671          * mappings in the bus reset tasklet, since the OHCI
1672          * controller could need to access it before the bus reset
1673          * takes effect.
1674          */
1675         if (ret == 0)
1676                 fw_core_initiate_bus_reset(&ohci->card, 1);
1677         else
1678                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1679                                   next_config_rom, next_config_rom_bus);
1680
1681         return ret;
1682 }
1683
1684 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1685 {
1686         struct fw_ohci *ohci = fw_ohci(card);
1687
1688         at_context_transmit(&ohci->at_request_ctx, packet);
1689 }
1690
1691 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1692 {
1693         struct fw_ohci *ohci = fw_ohci(card);
1694
1695         at_context_transmit(&ohci->at_response_ctx, packet);
1696 }
1697
1698 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1699 {
1700         struct fw_ohci *ohci = fw_ohci(card);
1701         struct context *ctx = &ohci->at_request_ctx;
1702         struct driver_data *driver_data = packet->driver_data;
1703         int ret = -ENOENT;
1704
1705         tasklet_disable(&ctx->tasklet);
1706
1707         if (packet->ack != 0)
1708                 goto out;
1709
1710         if (packet->payload_bus)
1711                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1712                                  packet->payload_length, DMA_TO_DEVICE);
1713
1714         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1715         driver_data->packet = NULL;
1716         packet->ack = RCODE_CANCELLED;
1717         packet->callback(packet, &ohci->card, packet->ack);
1718         ret = 0;
1719  out:
1720         tasklet_enable(&ctx->tasklet);
1721
1722         return ret;
1723 }
1724
1725 static int ohci_enable_phys_dma(struct fw_card *card,
1726                                 int node_id, int generation)
1727 {
1728 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1729         return 0;
1730 #else
1731         struct fw_ohci *ohci = fw_ohci(card);
1732         unsigned long flags;
1733         int n, ret = 0;
1734
1735         /*
1736          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1737          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1738          */
1739
1740         spin_lock_irqsave(&ohci->lock, flags);
1741
1742         if (ohci->generation != generation) {
1743                 ret = -ESTALE;
1744                 goto out;
1745         }
1746
1747         /*
1748          * Note, if the node ID contains a non-local bus ID, physical DMA is
1749          * enabled for _all_ nodes on remote buses.
1750          */
1751
1752         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1753         if (n < 32)
1754                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1755         else
1756                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1757
1758         flush_writes(ohci);
1759  out:
1760         spin_unlock_irqrestore(&ohci->lock, flags);
1761
1762         return ret;
1763 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1764 }
1765
1766 static u64 ohci_get_bus_time(struct fw_card *card)
1767 {
1768         struct fw_ohci *ohci = fw_ohci(card);
1769         u32 cycle_time;
1770         u64 bus_time;
1771
1772         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1773         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1774
1775         return bus_time;
1776 }
1777
1778 static void copy_iso_headers(struct iso_context *ctx, void *p)
1779 {
1780         int i = ctx->header_length;
1781
1782         if (i + ctx->base.header_size > PAGE_SIZE)
1783                 return;
1784
1785         /*
1786          * The iso header is byteswapped to little endian by
1787          * the controller, but the remaining header quadlets
1788          * are big endian.  We want to present all the headers
1789          * as big endian, so we have to swap the first quadlet.
1790          */
1791         if (ctx->base.header_size > 0)
1792                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1793         if (ctx->base.header_size > 4)
1794                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1795         if (ctx->base.header_size > 8)
1796                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1797         ctx->header_length += ctx->base.header_size;
1798 }
1799
1800 static int handle_ir_dualbuffer_packet(struct context *context,
1801                                        struct descriptor *d,
1802                                        struct descriptor *last)
1803 {
1804         struct iso_context *ctx =
1805                 container_of(context, struct iso_context, context);
1806         struct db_descriptor *db = (struct db_descriptor *) d;
1807         __le32 *ir_header;
1808         size_t header_length;
1809         void *p, *end;
1810
1811         if (db->first_res_count != 0 && db->second_res_count != 0) {
1812                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1813                         /* This descriptor isn't done yet, stop iteration. */
1814                         return 0;
1815                 }
1816                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1817         }
1818
1819         header_length = le16_to_cpu(db->first_req_count) -
1820                 le16_to_cpu(db->first_res_count);
1821
1822         p = db + 1;
1823         end = p + header_length;
1824         while (p < end) {
1825                 copy_iso_headers(ctx, p);
1826                 ctx->excess_bytes +=
1827                         (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1828                 p += max(ctx->base.header_size, (size_t)8);
1829         }
1830
1831         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1832                 le16_to_cpu(db->second_res_count);
1833
1834         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1835                 ir_header = (__le32 *) (db + 1);
1836                 ctx->base.callback(&ctx->base,
1837                                    le32_to_cpu(ir_header[0]) & 0xffff,
1838                                    ctx->header_length, ctx->header,
1839                                    ctx->base.callback_data);
1840                 ctx->header_length = 0;
1841         }
1842
1843         return 1;
1844 }
1845
1846 static int handle_ir_packet_per_buffer(struct context *context,
1847                                        struct descriptor *d,
1848                                        struct descriptor *last)
1849 {
1850         struct iso_context *ctx =
1851                 container_of(context, struct iso_context, context);
1852         struct descriptor *pd;
1853         __le32 *ir_header;
1854         void *p;
1855
1856         for (pd = d; pd <= last; pd++) {
1857                 if (pd->transfer_status)
1858                         break;
1859         }
1860         if (pd > last)
1861                 /* Descriptor(s) not done yet, stop iteration */
1862                 return 0;
1863
1864         p = last + 1;
1865         copy_iso_headers(ctx, p);
1866
1867         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1868                 ir_header = (__le32 *) p;
1869                 ctx->base.callback(&ctx->base,
1870                                    le32_to_cpu(ir_header[0]) & 0xffff,
1871                                    ctx->header_length, ctx->header,
1872                                    ctx->base.callback_data);
1873                 ctx->header_length = 0;
1874         }
1875
1876         return 1;
1877 }
1878
1879 static int handle_it_packet(struct context *context,
1880                             struct descriptor *d,
1881                             struct descriptor *last)
1882 {
1883         struct iso_context *ctx =
1884                 container_of(context, struct iso_context, context);
1885
1886         if (last->transfer_status == 0)
1887                 /* This descriptor isn't done yet, stop iteration. */
1888                 return 0;
1889
1890         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1891                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1892                                    0, NULL, ctx->base.callback_data);
1893
1894         return 1;
1895 }
1896
1897 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1898                                 int type, int channel, size_t header_size)
1899 {
1900         struct fw_ohci *ohci = fw_ohci(card);
1901         struct iso_context *ctx, *list;
1902         descriptor_callback_t callback;
1903         u64 *channels, dont_care = ~0ULL;
1904         u32 *mask, regs;
1905         unsigned long flags;
1906         int index, ret = -ENOMEM;
1907
1908         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1909                 channels = &dont_care;
1910                 mask = &ohci->it_context_mask;
1911                 list = ohci->it_context_list;
1912                 callback = handle_it_packet;
1913         } else {
1914                 channels = &ohci->ir_context_channels;
1915                 mask = &ohci->ir_context_mask;
1916                 list = ohci->ir_context_list;
1917                 if (ohci->use_dualbuffer)
1918                         callback = handle_ir_dualbuffer_packet;
1919                 else
1920                         callback = handle_ir_packet_per_buffer;
1921         }
1922
1923         spin_lock_irqsave(&ohci->lock, flags);
1924         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1925         if (index >= 0) {
1926                 *channels &= ~(1ULL << channel);
1927                 *mask &= ~(1 << index);
1928         }
1929         spin_unlock_irqrestore(&ohci->lock, flags);
1930
1931         if (index < 0)
1932                 return ERR_PTR(-EBUSY);
1933
1934         if (type == FW_ISO_CONTEXT_TRANSMIT)
1935                 regs = OHCI1394_IsoXmitContextBase(index);
1936         else
1937                 regs = OHCI1394_IsoRcvContextBase(index);
1938
1939         ctx = &list[index];
1940         memset(ctx, 0, sizeof(*ctx));
1941         ctx->header_length = 0;
1942         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1943         if (ctx->header == NULL)
1944                 goto out;
1945
1946         ret = context_init(&ctx->context, ohci, regs, callback);
1947         if (ret < 0)
1948                 goto out_with_header;
1949
1950         return &ctx->base;
1951
1952  out_with_header:
1953         free_page((unsigned long)ctx->header);
1954  out:
1955         spin_lock_irqsave(&ohci->lock, flags);
1956         *mask |= 1 << index;
1957         spin_unlock_irqrestore(&ohci->lock, flags);
1958
1959         return ERR_PTR(ret);
1960 }
1961
1962 static int ohci_start_iso(struct fw_iso_context *base,
1963                           s32 cycle, u32 sync, u32 tags)
1964 {
1965         struct iso_context *ctx = container_of(base, struct iso_context, base);
1966         struct fw_ohci *ohci = ctx->context.ohci;
1967         u32 control, match;
1968         int index;
1969
1970         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1971                 index = ctx - ohci->it_context_list;
1972                 match = 0;
1973                 if (cycle >= 0)
1974                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1975                                 (cycle & 0x7fff) << 16;
1976
1977                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1978                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1979                 context_run(&ctx->context, match);
1980         } else {
1981                 index = ctx - ohci->ir_context_list;
1982                 control = IR_CONTEXT_ISOCH_HEADER;
1983                 if (ohci->use_dualbuffer)
1984                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1985                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1986                 if (cycle >= 0) {
1987                         match |= (cycle & 0x07fff) << 12;
1988                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1989                 }
1990
1991                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1992                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1993                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1994                 context_run(&ctx->context, control);
1995         }
1996
1997         return 0;
1998 }
1999
2000 static int ohci_stop_iso(struct fw_iso_context *base)
2001 {
2002         struct fw_ohci *ohci = fw_ohci(base->card);
2003         struct iso_context *ctx = container_of(base, struct iso_context, base);
2004         int index;
2005
2006         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2007                 index = ctx - ohci->it_context_list;
2008                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2009         } else {
2010                 index = ctx - ohci->ir_context_list;
2011                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2012         }
2013         flush_writes(ohci);
2014         context_stop(&ctx->context);
2015
2016         return 0;
2017 }
2018
2019 static void ohci_free_iso_context(struct fw_iso_context *base)
2020 {
2021         struct fw_ohci *ohci = fw_ohci(base->card);
2022         struct iso_context *ctx = container_of(base, struct iso_context, base);
2023         unsigned long flags;
2024         int index;
2025
2026         ohci_stop_iso(base);
2027         context_release(&ctx->context);
2028         free_page((unsigned long)ctx->header);
2029
2030         spin_lock_irqsave(&ohci->lock, flags);
2031
2032         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2033                 index = ctx - ohci->it_context_list;
2034                 ohci->it_context_mask |= 1 << index;
2035         } else {
2036                 index = ctx - ohci->ir_context_list;
2037                 ohci->ir_context_mask |= 1 << index;
2038                 ohci->ir_context_channels |= 1ULL << base->channel;
2039         }
2040
2041         spin_unlock_irqrestore(&ohci->lock, flags);
2042 }
2043
2044 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2045                                    struct fw_iso_packet *packet,
2046                                    struct fw_iso_buffer *buffer,
2047                                    unsigned long payload)
2048 {
2049         struct iso_context *ctx = container_of(base, struct iso_context, base);
2050         struct descriptor *d, *last, *pd;
2051         struct fw_iso_packet *p;
2052         __le32 *header;
2053         dma_addr_t d_bus, page_bus;
2054         u32 z, header_z, payload_z, irq;
2055         u32 payload_index, payload_end_index, next_page_index;
2056         int page, end_page, i, length, offset;
2057
2058         /*
2059          * FIXME: Cycle lost behavior should be configurable: lose
2060          * packet, retransmit or terminate..
2061          */
2062
2063         p = packet;
2064         payload_index = payload;
2065
2066         if (p->skip)
2067                 z = 1;
2068         else
2069                 z = 2;
2070         if (p->header_length > 0)
2071                 z++;
2072
2073         /* Determine the first page the payload isn't contained in. */
2074         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2075         if (p->payload_length > 0)
2076                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2077         else
2078                 payload_z = 0;
2079
2080         z += payload_z;
2081
2082         /* Get header size in number of descriptors. */
2083         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2084
2085         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2086         if (d == NULL)
2087                 return -ENOMEM;
2088
2089         if (!p->skip) {
2090                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2091                 d[0].req_count = cpu_to_le16(8);
2092
2093                 header = (__le32 *) &d[1];
2094                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2095                                         IT_HEADER_TAG(p->tag) |
2096                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2097                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2098                                         IT_HEADER_SPEED(ctx->base.speed));
2099                 header[1] =
2100                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2101                                                           p->payload_length));
2102         }
2103
2104         if (p->header_length > 0) {
2105                 d[2].req_count    = cpu_to_le16(p->header_length);
2106                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2107                 memcpy(&d[z], p->header, p->header_length);
2108         }
2109
2110         pd = d + z - payload_z;
2111         payload_end_index = payload_index + p->payload_length;
2112         for (i = 0; i < payload_z; i++) {
2113                 page               = payload_index >> PAGE_SHIFT;
2114                 offset             = payload_index & ~PAGE_MASK;
2115                 next_page_index    = (page + 1) << PAGE_SHIFT;
2116                 length             =
2117                         min(next_page_index, payload_end_index) - payload_index;
2118                 pd[i].req_count    = cpu_to_le16(length);
2119
2120                 page_bus = page_private(buffer->pages[page]);
2121                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2122
2123                 payload_index += length;
2124         }
2125
2126         if (p->interrupt)
2127                 irq = DESCRIPTOR_IRQ_ALWAYS;
2128         else
2129                 irq = DESCRIPTOR_NO_IRQ;
2130
2131         last = z == 2 ? d : d + z - 1;
2132         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2133                                      DESCRIPTOR_STATUS |
2134                                      DESCRIPTOR_BRANCH_ALWAYS |
2135                                      irq);
2136
2137         context_append(&ctx->context, d, z, header_z);
2138
2139         return 0;
2140 }
2141
2142 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2143                                              struct fw_iso_packet *packet,
2144                                              struct fw_iso_buffer *buffer,
2145                                              unsigned long payload)
2146 {
2147         struct iso_context *ctx = container_of(base, struct iso_context, base);
2148         struct db_descriptor *db = NULL;
2149         struct descriptor *d;
2150         struct fw_iso_packet *p;
2151         dma_addr_t d_bus, page_bus;
2152         u32 z, header_z, length, rest;
2153         int page, offset, packet_count, header_size;
2154
2155         /*
2156          * FIXME: Cycle lost behavior should be configurable: lose
2157          * packet, retransmit or terminate..
2158          */
2159
2160         p = packet;
2161         z = 2;
2162
2163         /*
2164          * The OHCI controller puts the isochronous header and trailer in the
2165          * buffer, so we need at least 8 bytes.
2166          */
2167         packet_count = p->header_length / ctx->base.header_size;
2168         header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2169
2170         /* Get header size in number of descriptors. */
2171         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2172         page     = payload >> PAGE_SHIFT;
2173         offset   = payload & ~PAGE_MASK;
2174         rest     = p->payload_length;
2175
2176         /* FIXME: make packet-per-buffer/dual-buffer a context option */
2177         while (rest > 0) {
2178                 d = context_get_descriptors(&ctx->context,
2179                                             z + header_z, &d_bus);
2180                 if (d == NULL)
2181                         return -ENOMEM;
2182
2183                 db = (struct db_descriptor *) d;
2184                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2185                                           DESCRIPTOR_BRANCH_ALWAYS);
2186                 db->first_size =
2187                     cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2188                 if (p->skip && rest == p->payload_length) {
2189                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2190                         db->first_req_count = db->first_size;
2191                 } else {
2192                         db->first_req_count = cpu_to_le16(header_size);
2193                 }
2194                 db->first_res_count = db->first_req_count;
2195                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2196
2197                 if (p->skip && rest == p->payload_length)
2198                         length = 4;
2199                 else if (offset + rest < PAGE_SIZE)
2200                         length = rest;
2201                 else
2202                         length = PAGE_SIZE - offset;
2203
2204                 db->second_req_count = cpu_to_le16(length);
2205                 db->second_res_count = db->second_req_count;
2206                 page_bus = page_private(buffer->pages[page]);
2207                 db->second_buffer = cpu_to_le32(page_bus + offset);
2208
2209                 if (p->interrupt && length == rest)
2210                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2211
2212                 context_append(&ctx->context, d, z, header_z);
2213                 offset = (offset + length) & ~PAGE_MASK;
2214                 rest -= length;
2215                 if (offset == 0)
2216                         page++;
2217         }
2218
2219         return 0;
2220 }
2221
2222 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2223                                         struct fw_iso_packet *packet,
2224                                         struct fw_iso_buffer *buffer,
2225                                         unsigned long payload)
2226 {
2227         struct iso_context *ctx = container_of(base, struct iso_context, base);
2228         struct descriptor *d = NULL, *pd = NULL;
2229         struct fw_iso_packet *p = packet;
2230         dma_addr_t d_bus, page_bus;
2231         u32 z, header_z, rest;
2232         int i, j, length;
2233         int page, offset, packet_count, header_size, payload_per_buffer;
2234
2235         /*
2236          * The OHCI controller puts the isochronous header and trailer in the
2237          * buffer, so we need at least 8 bytes.
2238          */
2239         packet_count = p->header_length / ctx->base.header_size;
2240         header_size  = max(ctx->base.header_size, (size_t)8);
2241
2242         /* Get header size in number of descriptors. */
2243         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2244         page     = payload >> PAGE_SHIFT;
2245         offset   = payload & ~PAGE_MASK;
2246         payload_per_buffer = p->payload_length / packet_count;
2247
2248         for (i = 0; i < packet_count; i++) {
2249                 /* d points to the header descriptor */
2250                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2251                 d = context_get_descriptors(&ctx->context,
2252                                 z + header_z, &d_bus);
2253                 if (d == NULL)
2254                         return -ENOMEM;
2255
2256                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2257                                               DESCRIPTOR_INPUT_MORE);
2258                 if (p->skip && i == 0)
2259                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2260                 d->req_count    = cpu_to_le16(header_size);
2261                 d->res_count    = d->req_count;
2262                 d->transfer_status = 0;
2263                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2264
2265                 rest = payload_per_buffer;
2266                 for (j = 1; j < z; j++) {
2267                         pd = d + j;
2268                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2269                                                   DESCRIPTOR_INPUT_MORE);
2270
2271                         if (offset + rest < PAGE_SIZE)
2272                                 length = rest;
2273                         else
2274                                 length = PAGE_SIZE - offset;
2275                         pd->req_count = cpu_to_le16(length);
2276                         pd->res_count = pd->req_count;
2277                         pd->transfer_status = 0;
2278
2279                         page_bus = page_private(buffer->pages[page]);
2280                         pd->data_address = cpu_to_le32(page_bus + offset);
2281
2282                         offset = (offset + length) & ~PAGE_MASK;
2283                         rest -= length;
2284                         if (offset == 0)
2285                                 page++;
2286                 }
2287                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2288                                           DESCRIPTOR_INPUT_LAST |
2289                                           DESCRIPTOR_BRANCH_ALWAYS);
2290                 if (p->interrupt && i == packet_count - 1)
2291                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2292
2293                 context_append(&ctx->context, d, z, header_z);
2294         }
2295
2296         return 0;
2297 }
2298
2299 static int ohci_queue_iso(struct fw_iso_context *base,
2300                           struct fw_iso_packet *packet,
2301                           struct fw_iso_buffer *buffer,
2302                           unsigned long payload)
2303 {
2304         struct iso_context *ctx = container_of(base, struct iso_context, base);
2305         unsigned long flags;
2306         int ret;
2307
2308         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2309         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2310                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2311         else if (ctx->context.ohci->use_dualbuffer)
2312                 ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2313                                                         buffer, payload);
2314         else
2315                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2316                                                         buffer, payload);
2317         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2318
2319         return ret;
2320 }
2321
2322 static const struct fw_card_driver ohci_driver = {
2323         .enable                 = ohci_enable,
2324         .update_phy_reg         = ohci_update_phy_reg,
2325         .set_config_rom         = ohci_set_config_rom,
2326         .send_request           = ohci_send_request,
2327         .send_response          = ohci_send_response,
2328         .cancel_packet          = ohci_cancel_packet,
2329         .enable_phys_dma        = ohci_enable_phys_dma,
2330         .get_bus_time           = ohci_get_bus_time,
2331
2332         .allocate_iso_context   = ohci_allocate_iso_context,
2333         .free_iso_context       = ohci_free_iso_context,
2334         .queue_iso              = ohci_queue_iso,
2335         .start_iso              = ohci_start_iso,
2336         .stop_iso               = ohci_stop_iso,
2337 };
2338
2339 #ifdef CONFIG_PPC_PMAC
2340 static void ohci_pmac_on(struct pci_dev *dev)
2341 {
2342         if (machine_is(powermac)) {
2343                 struct device_node *ofn = pci_device_to_OF_node(dev);
2344
2345                 if (ofn) {
2346                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2347                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2348                 }
2349         }
2350 }
2351
2352 static void ohci_pmac_off(struct pci_dev *dev)
2353 {
2354         if (machine_is(powermac)) {
2355                 struct device_node *ofn = pci_device_to_OF_node(dev);
2356
2357                 if (ofn) {
2358                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2359                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2360                 }
2361         }
2362 }
2363 #else
2364 #define ohci_pmac_on(dev)
2365 #define ohci_pmac_off(dev)
2366 #endif /* CONFIG_PPC_PMAC */
2367
2368 static int __devinit pci_probe(struct pci_dev *dev,
2369                                const struct pci_device_id *ent)
2370 {
2371         struct fw_ohci *ohci;
2372         u32 bus_options, max_receive, link_speed, version;
2373         u64 guid;
2374         int err;
2375         size_t size;
2376
2377         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2378         if (ohci == NULL) {
2379                 err = -ENOMEM;
2380                 goto fail;
2381         }
2382
2383         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2384
2385         ohci_pmac_on(dev);
2386
2387         err = pci_enable_device(dev);
2388         if (err) {
2389                 fw_error("Failed to enable OHCI hardware\n");
2390                 goto fail_free;
2391         }
2392
2393         pci_set_master(dev);
2394         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2395         pci_set_drvdata(dev, ohci);
2396
2397         spin_lock_init(&ohci->lock);
2398
2399         tasklet_init(&ohci->bus_reset_tasklet,
2400                      bus_reset_tasklet, (unsigned long)ohci);
2401
2402         err = pci_request_region(dev, 0, ohci_driver_name);
2403         if (err) {
2404                 fw_error("MMIO resource unavailable\n");
2405                 goto fail_disable;
2406         }
2407
2408         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2409         if (ohci->registers == NULL) {
2410                 fw_error("Failed to remap registers\n");
2411                 err = -ENXIO;
2412                 goto fail_iomem;
2413         }
2414
2415         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2416         ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2417
2418 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2419 #if !defined(CONFIG_X86_32)
2420         /* dual-buffer mode is broken with descriptor addresses above 2G */
2421         if (dev->vendor == PCI_VENDOR_ID_TI &&
2422             dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2423                 ohci->use_dualbuffer = false;
2424 #endif
2425
2426 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2427         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2428                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2429 #endif
2430         ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2431
2432         ar_context_init(&ohci->ar_request_ctx, ohci,
2433                         OHCI1394_AsReqRcvContextControlSet);
2434
2435         ar_context_init(&ohci->ar_response_ctx, ohci,
2436                         OHCI1394_AsRspRcvContextControlSet);
2437
2438         context_init(&ohci->at_request_ctx, ohci,
2439                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2440
2441         context_init(&ohci->at_response_ctx, ohci,
2442                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2443
2444         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2445         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2446         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2447         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2448         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2449
2450         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2451         ohci->ir_context_channels = ~0ULL;
2452         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2453         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2454         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2455         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2456
2457         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2458                 err = -ENOMEM;
2459                 goto fail_contexts;
2460         }
2461
2462         /* self-id dma buffer allocation */
2463         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2464                                                SELF_ID_BUF_SIZE,
2465                                                &ohci->self_id_bus,
2466                                                GFP_KERNEL);
2467         if (ohci->self_id_cpu == NULL) {
2468                 err = -ENOMEM;
2469                 goto fail_contexts;
2470         }
2471
2472         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2473         max_receive = (bus_options >> 12) & 0xf;
2474         link_speed = bus_options & 0x7;
2475         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2476                 reg_read(ohci, OHCI1394_GUIDLo);
2477
2478         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2479         if (err)
2480                 goto fail_self_id;
2481
2482         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2483                   dev_name(&dev->dev), version >> 16, version & 0xff);
2484
2485         return 0;
2486
2487  fail_self_id:
2488         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2489                           ohci->self_id_cpu, ohci->self_id_bus);
2490  fail_contexts:
2491         kfree(ohci->ir_context_list);
2492         kfree(ohci->it_context_list);
2493         context_release(&ohci->at_response_ctx);
2494         context_release(&ohci->at_request_ctx);
2495         ar_context_release(&ohci->ar_response_ctx);
2496         ar_context_release(&ohci->ar_request_ctx);
2497         pci_iounmap(dev, ohci->registers);
2498  fail_iomem:
2499         pci_release_region(dev, 0);
2500  fail_disable:
2501         pci_disable_device(dev);
2502  fail_free:
2503         kfree(&ohci->card);
2504         ohci_pmac_off(dev);
2505  fail:
2506         if (err == -ENOMEM)
2507                 fw_error("Out of memory\n");
2508
2509         return err;
2510 }
2511
2512 static void pci_remove(struct pci_dev *dev)
2513 {
2514         struct fw_ohci *ohci;
2515
2516         ohci = pci_get_drvdata(dev);
2517         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2518         flush_writes(ohci);
2519         fw_core_remove_card(&ohci->card);
2520
2521         /*
2522          * FIXME: Fail all pending packets here, now that the upper
2523          * layers can't queue any more.
2524          */
2525
2526         software_reset(ohci);
2527         free_irq(dev->irq, ohci);
2528
2529         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2530                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2531                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2532         if (ohci->config_rom)
2533                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2534                                   ohci->config_rom, ohci->config_rom_bus);
2535         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2536                           ohci->self_id_cpu, ohci->self_id_bus);
2537         ar_context_release(&ohci->ar_request_ctx);
2538         ar_context_release(&ohci->ar_response_ctx);
2539         context_release(&ohci->at_request_ctx);
2540         context_release(&ohci->at_response_ctx);
2541         kfree(ohci->it_context_list);
2542         kfree(ohci->ir_context_list);
2543         pci_iounmap(dev, ohci->registers);
2544         pci_release_region(dev, 0);
2545         pci_disable_device(dev);
2546         kfree(&ohci->card);
2547         ohci_pmac_off(dev);
2548
2549         fw_notify("Removed fw-ohci device.\n");
2550 }
2551
2552 #ifdef CONFIG_PM
2553 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2554 {
2555         struct fw_ohci *ohci = pci_get_drvdata(dev);
2556         int err;
2557
2558         software_reset(ohci);
2559         free_irq(dev->irq, ohci);
2560         err = pci_save_state(dev);
2561         if (err) {
2562                 fw_error("pci_save_state failed\n");
2563                 return err;
2564         }
2565         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2566         if (err)
2567                 fw_error("pci_set_power_state failed with %d\n", err);
2568         ohci_pmac_off(dev);
2569
2570         return 0;
2571 }
2572
2573 static int pci_resume(struct pci_dev *dev)
2574 {
2575         struct fw_ohci *ohci = pci_get_drvdata(dev);
2576         int err;
2577
2578         ohci_pmac_on(dev);
2579         pci_set_power_state(dev, PCI_D0);
2580         pci_restore_state(dev);
2581         err = pci_enable_device(dev);
2582         if (err) {
2583                 fw_error("pci_enable_device failed\n");
2584                 return err;
2585         }
2586
2587         return ohci_enable(&ohci->card, NULL, 0);
2588 }
2589 #endif
2590
2591 static struct pci_device_id pci_table[] = {
2592         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2593         { }
2594 };
2595
2596 MODULE_DEVICE_TABLE(pci, pci_table);
2597
2598 static struct pci_driver fw_ohci_pci_driver = {
2599         .name           = ohci_driver_name,
2600         .id_table       = pci_table,
2601         .probe          = pci_probe,
2602         .remove         = pci_remove,
2603 #ifdef CONFIG_PM
2604         .resume         = pci_resume,
2605         .suspend        = pci_suspend,
2606 #endif
2607 };
2608
2609 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2610 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2611 MODULE_LICENSE("GPL");
2612
2613 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2614 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2615 MODULE_ALIAS("ohci1394");
2616 #endif
2617
2618 static int __init fw_ohci_init(void)
2619 {
2620         return pci_register_driver(&fw_ohci_pci_driver);
2621 }
2622
2623 static void __exit fw_ohci_cleanup(void)
2624 {
2625         pci_unregister_driver(&fw_ohci_pci_driver);
2626 }
2627
2628 module_init(fw_ohci_init);
2629 module_exit(fw_ohci_cleanup);