Merge branch 'master' into next
[linux-2.6] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static void ide_outb (u8 val, unsigned long port)
41 {
42         outb(val, port);
43 }
44
45 /*
46  *      MMIO operations, typically used for SATA controllers
47  */
48
49 static u8 ide_mm_inb (unsigned long port)
50 {
51         return (u8) readb((void __iomem *) port);
52 }
53
54 static void ide_mm_outb (u8 value, unsigned long port)
55 {
56         writeb(value, (void __iomem *) port);
57 }
58
59 void SELECT_DRIVE (ide_drive_t *drive)
60 {
61         ide_hwif_t *hwif = drive->hwif;
62         const struct ide_port_ops *port_ops = hwif->port_ops;
63         ide_task_t task;
64
65         if (port_ops && port_ops->selectproc)
66                 port_ops->selectproc(drive);
67
68         memset(&task, 0, sizeof(task));
69         task.tf_flags = IDE_TFLAG_OUT_DEVICE;
70
71         drive->hwif->tp_ops->tf_load(drive, &task);
72 }
73
74 void SELECT_MASK(ide_drive_t *drive, int mask)
75 {
76         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
77
78         if (port_ops && port_ops->maskproc)
79                 port_ops->maskproc(drive, mask);
80 }
81
82 void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
83 {
84         if (hwif->host_flags & IDE_HFLAG_MMIO)
85                 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
86         else
87                 outb(cmd, hwif->io_ports.command_addr);
88 }
89 EXPORT_SYMBOL_GPL(ide_exec_command);
90
91 u8 ide_read_status(ide_hwif_t *hwif)
92 {
93         if (hwif->host_flags & IDE_HFLAG_MMIO)
94                 return readb((void __iomem *)hwif->io_ports.status_addr);
95         else
96                 return inb(hwif->io_ports.status_addr);
97 }
98 EXPORT_SYMBOL_GPL(ide_read_status);
99
100 u8 ide_read_altstatus(ide_hwif_t *hwif)
101 {
102         if (hwif->host_flags & IDE_HFLAG_MMIO)
103                 return readb((void __iomem *)hwif->io_ports.ctl_addr);
104         else
105                 return inb(hwif->io_ports.ctl_addr);
106 }
107 EXPORT_SYMBOL_GPL(ide_read_altstatus);
108
109 u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
110 {
111         if (hwif->host_flags & IDE_HFLAG_MMIO)
112                 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
113         else
114                 return inb(hwif->dma_base + ATA_DMA_STATUS);
115 }
116 EXPORT_SYMBOL_GPL(ide_read_sff_dma_status);
117
118 void ide_set_irq(ide_hwif_t *hwif, int on)
119 {
120         u8 ctl = ATA_DEVCTL_OBS;
121
122         if (on == 4) { /* hack for SRST */
123                 ctl |= 4;
124                 on &= ~4;
125         }
126
127         ctl |= on ? 0 : 2;
128
129         if (hwif->host_flags & IDE_HFLAG_MMIO)
130                 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
131         else
132                 outb(ctl, hwif->io_ports.ctl_addr);
133 }
134 EXPORT_SYMBOL_GPL(ide_set_irq);
135
136 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
137 {
138         ide_hwif_t *hwif = drive->hwif;
139         struct ide_io_ports *io_ports = &hwif->io_ports;
140         struct ide_taskfile *tf = &task->tf;
141         void (*tf_outb)(u8 addr, unsigned long port);
142         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
143         u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
144
145         if (mmio)
146                 tf_outb = ide_mm_outb;
147         else
148                 tf_outb = ide_outb;
149
150         if (task->tf_flags & IDE_TFLAG_FLAGGED)
151                 HIHI = 0xFF;
152
153         if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
154                 u16 data = (tf->hob_data << 8) | tf->data;
155
156                 if (mmio)
157                         writew(data, (void __iomem *)io_ports->data_addr);
158                 else
159                         outw(data, io_ports->data_addr);
160         }
161
162         if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
163                 tf_outb(tf->hob_feature, io_ports->feature_addr);
164         if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
165                 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
166         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
167                 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
168         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
169                 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
170         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
171                 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
172
173         if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
174                 tf_outb(tf->feature, io_ports->feature_addr);
175         if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
176                 tf_outb(tf->nsect, io_ports->nsect_addr);
177         if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
178                 tf_outb(tf->lbal, io_ports->lbal_addr);
179         if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
180                 tf_outb(tf->lbam, io_ports->lbam_addr);
181         if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
182                 tf_outb(tf->lbah, io_ports->lbah_addr);
183
184         if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
185                 tf_outb((tf->device & HIHI) | drive->select.all,
186                          io_ports->device_addr);
187 }
188 EXPORT_SYMBOL_GPL(ide_tf_load);
189
190 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
191 {
192         ide_hwif_t *hwif = drive->hwif;
193         struct ide_io_ports *io_ports = &hwif->io_ports;
194         struct ide_taskfile *tf = &task->tf;
195         void (*tf_outb)(u8 addr, unsigned long port);
196         u8 (*tf_inb)(unsigned long port);
197         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
198
199         if (mmio) {
200                 tf_outb = ide_mm_outb;
201                 tf_inb  = ide_mm_inb;
202         } else {
203                 tf_outb = ide_outb;
204                 tf_inb  = ide_inb;
205         }
206
207         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
208                 u16 data;
209
210                 if (mmio)
211                         data = readw((void __iomem *)io_ports->data_addr);
212                 else
213                         data = inw(io_ports->data_addr);
214
215                 tf->data = data & 0xff;
216                 tf->hob_data = (data >> 8) & 0xff;
217         }
218
219         /* be sure we're looking at the low order bits */
220         tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
221
222         if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
223                 tf->feature = tf_inb(io_ports->feature_addr);
224         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
225                 tf->nsect  = tf_inb(io_ports->nsect_addr);
226         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
227                 tf->lbal   = tf_inb(io_ports->lbal_addr);
228         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
229                 tf->lbam   = tf_inb(io_ports->lbam_addr);
230         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
231                 tf->lbah   = tf_inb(io_ports->lbah_addr);
232         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
233                 tf->device = tf_inb(io_ports->device_addr);
234
235         if (task->tf_flags & IDE_TFLAG_LBA48) {
236                 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
237
238                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
239                         tf->hob_feature = tf_inb(io_ports->feature_addr);
240                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
241                         tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
242                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
243                         tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
244                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
245                         tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
246                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
247                         tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
248         }
249 }
250 EXPORT_SYMBOL_GPL(ide_tf_read);
251
252 /*
253  * Some localbus EIDE interfaces require a special access sequence
254  * when using 32-bit I/O instructions to transfer data.  We call this
255  * the "vlb_sync" sequence, which consists of three successive reads
256  * of the sector count register location, with interrupts disabled
257  * to ensure that the reads all happen together.
258  */
259 static void ata_vlb_sync(unsigned long port)
260 {
261         (void)inb(port);
262         (void)inb(port);
263         (void)inb(port);
264 }
265
266 /*
267  * This is used for most PIO data transfers *from* the IDE interface
268  *
269  * These routines will round up any request for an odd number of bytes,
270  * so if an odd len is specified, be sure that there's at least one
271  * extra byte allocated for the buffer.
272  */
273 void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
274                     unsigned int len)
275 {
276         ide_hwif_t *hwif = drive->hwif;
277         struct ide_io_ports *io_ports = &hwif->io_ports;
278         unsigned long data_addr = io_ports->data_addr;
279         u8 io_32bit = drive->io_32bit;
280         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
281
282         len++;
283
284         if (io_32bit) {
285                 unsigned long uninitialized_var(flags);
286
287                 if ((io_32bit & 2) && !mmio) {
288                         local_irq_save(flags);
289                         ata_vlb_sync(io_ports->nsect_addr);
290                 }
291
292                 if (mmio)
293                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
294                 else
295                         insl(data_addr, buf, len / 4);
296
297                 if ((io_32bit & 2) && !mmio)
298                         local_irq_restore(flags);
299
300                 if ((len & 3) >= 2) {
301                         if (mmio)
302                                 __ide_mm_insw((void __iomem *)data_addr,
303                                                 (u8 *)buf + (len & ~3), 1);
304                         else
305                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
306                 }
307         } else {
308                 if (mmio)
309                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
310                 else
311                         insw(data_addr, buf, len / 2);
312         }
313 }
314 EXPORT_SYMBOL_GPL(ide_input_data);
315
316 /*
317  * This is used for most PIO data transfers *to* the IDE interface
318  */
319 void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
320                      unsigned int len)
321 {
322         ide_hwif_t *hwif = drive->hwif;
323         struct ide_io_ports *io_ports = &hwif->io_ports;
324         unsigned long data_addr = io_ports->data_addr;
325         u8 io_32bit = drive->io_32bit;
326         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
327
328         if (io_32bit) {
329                 unsigned long uninitialized_var(flags);
330
331                 if ((io_32bit & 2) && !mmio) {
332                         local_irq_save(flags);
333                         ata_vlb_sync(io_ports->nsect_addr);
334                 }
335
336                 if (mmio)
337                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
338                 else
339                         outsl(data_addr, buf, len / 4);
340
341                 if ((io_32bit & 2) && !mmio)
342                         local_irq_restore(flags);
343
344                 if ((len & 3) >= 2) {
345                         if (mmio)
346                                 __ide_mm_outsw((void __iomem *)data_addr,
347                                                  (u8 *)buf + (len & ~3), 1);
348                         else
349                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
350                 }
351         } else {
352                 if (mmio)
353                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
354                 else
355                         outsw(data_addr, buf, len / 2);
356         }
357 }
358 EXPORT_SYMBOL_GPL(ide_output_data);
359
360 u8 ide_read_error(ide_drive_t *drive)
361 {
362         ide_task_t task;
363
364         memset(&task, 0, sizeof(task));
365         task.tf_flags = IDE_TFLAG_IN_FEATURE;
366
367         drive->hwif->tp_ops->tf_read(drive, &task);
368
369         return task.tf.error;
370 }
371 EXPORT_SYMBOL_GPL(ide_read_error);
372
373 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
374 {
375         ide_task_t task;
376
377         memset(&task, 0, sizeof(task));
378         task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
379                         IDE_TFLAG_IN_NSECT;
380
381         drive->hwif->tp_ops->tf_read(drive, &task);
382
383         *bcount = (task.tf.lbah << 8) | task.tf.lbam;
384         *ireason = task.tf.nsect & 3;
385 }
386 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
387
388 const struct ide_tp_ops default_tp_ops = {
389         .exec_command           = ide_exec_command,
390         .read_status            = ide_read_status,
391         .read_altstatus         = ide_read_altstatus,
392         .read_sff_dma_status    = ide_read_sff_dma_status,
393
394         .set_irq                = ide_set_irq,
395
396         .tf_load                = ide_tf_load,
397         .tf_read                = ide_tf_read,
398
399         .input_data             = ide_input_data,
400         .output_data            = ide_output_data,
401 };
402
403 void ide_fix_driveid (struct hd_driveid *id)
404 {
405 #ifndef __LITTLE_ENDIAN
406 # ifdef __BIG_ENDIAN
407         int i;
408         u16 *stringcast;
409
410         id->config         = __le16_to_cpu(id->config);
411         id->cyls           = __le16_to_cpu(id->cyls);
412         id->reserved2      = __le16_to_cpu(id->reserved2);
413         id->heads          = __le16_to_cpu(id->heads);
414         id->track_bytes    = __le16_to_cpu(id->track_bytes);
415         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
416         id->sectors        = __le16_to_cpu(id->sectors);
417         id->vendor0        = __le16_to_cpu(id->vendor0);
418         id->vendor1        = __le16_to_cpu(id->vendor1);
419         id->vendor2        = __le16_to_cpu(id->vendor2);
420         stringcast = (u16 *)&id->serial_no[0];
421         for (i = 0; i < (20/2); i++)
422                 stringcast[i] = __le16_to_cpu(stringcast[i]);
423         id->buf_type       = __le16_to_cpu(id->buf_type);
424         id->buf_size       = __le16_to_cpu(id->buf_size);
425         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
426         stringcast = (u16 *)&id->fw_rev[0];
427         for (i = 0; i < (8/2); i++)
428                 stringcast[i] = __le16_to_cpu(stringcast[i]);
429         stringcast = (u16 *)&id->model[0];
430         for (i = 0; i < (40/2); i++)
431                 stringcast[i] = __le16_to_cpu(stringcast[i]);
432         id->dword_io       = __le16_to_cpu(id->dword_io);
433         id->reserved50     = __le16_to_cpu(id->reserved50);
434         id->field_valid    = __le16_to_cpu(id->field_valid);
435         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
436         id->cur_heads      = __le16_to_cpu(id->cur_heads);
437         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
438         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
439         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
440         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
441         id->dma_1word      = __le16_to_cpu(id->dma_1word);
442         id->dma_mword      = __le16_to_cpu(id->dma_mword);
443         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
444         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
445         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
446         id->eide_pio       = __le16_to_cpu(id->eide_pio);
447         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
448         for (i = 0; i < 2; ++i)
449                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
450         for (i = 0; i < 4; ++i)
451                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
452         id->queue_depth    = __le16_to_cpu(id->queue_depth);
453         for (i = 0; i < 4; ++i)
454                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
455         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
456         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
457         id->command_set_1  = __le16_to_cpu(id->command_set_1);
458         id->command_set_2  = __le16_to_cpu(id->command_set_2);
459         id->cfsse          = __le16_to_cpu(id->cfsse);
460         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
461         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
462         id->csf_default    = __le16_to_cpu(id->csf_default);
463         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
464         id->trseuc         = __le16_to_cpu(id->trseuc);
465         id->trsEuc         = __le16_to_cpu(id->trsEuc);
466         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
467         id->mprc           = __le16_to_cpu(id->mprc);
468         id->hw_config      = __le16_to_cpu(id->hw_config);
469         id->acoustic       = __le16_to_cpu(id->acoustic);
470         id->msrqs          = __le16_to_cpu(id->msrqs);
471         id->sxfert         = __le16_to_cpu(id->sxfert);
472         id->sal            = __le16_to_cpu(id->sal);
473         id->spg            = __le32_to_cpu(id->spg);
474         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
475         for (i = 0; i < 22; i++)
476                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
477         id->last_lun       = __le16_to_cpu(id->last_lun);
478         id->word127        = __le16_to_cpu(id->word127);
479         id->dlf            = __le16_to_cpu(id->dlf);
480         id->csfo           = __le16_to_cpu(id->csfo);
481         for (i = 0; i < 26; i++)
482                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
483         id->word156        = __le16_to_cpu(id->word156);
484         for (i = 0; i < 3; i++)
485                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
486         id->cfa_power      = __le16_to_cpu(id->cfa_power);
487         for (i = 0; i < 15; i++)
488                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
489         for (i = 0; i < 30; i++)
490                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
491         for (i = 0; i < 49; i++)
492                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
493         id->integrity_word  = __le16_to_cpu(id->integrity_word);
494 # else
495 #  error "Please fix <asm/byteorder.h>"
496 # endif
497 #endif
498 }
499
500 /*
501  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
502  * removing leading/trailing blanks and compressing internal blanks.
503  * It is primarily used to tidy up the model name/number fields as
504  * returned by the WIN_[P]IDENTIFY commands.
505  */
506
507 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
508 {
509         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
510
511         if (byteswap) {
512                 /* convert from big-endian to host byte order */
513                 for (p = end ; p != s;)
514                         be16_to_cpus((u16 *)(p -= 2));
515         }
516         /* strip leading blanks */
517         while (s != end && *s == ' ')
518                 ++s;
519         /* compress internal blanks and strip trailing blanks */
520         while (s != end && *s) {
521                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
522                         *p++ = *(s-1);
523         }
524         /* wipe out trailing garbage */
525         while (p != end)
526                 *p++ = '\0';
527 }
528
529 EXPORT_SYMBOL(ide_fixstring);
530
531 /*
532  * Needed for PCI irq sharing
533  */
534 int drive_is_ready (ide_drive_t *drive)
535 {
536         ide_hwif_t *hwif        = HWIF(drive);
537         u8 stat                 = 0;
538
539         if (drive->waiting_for_dma)
540                 return hwif->dma_ops->dma_test_irq(drive);
541
542 #if 0
543         /* need to guarantee 400ns since last command was issued */
544         udelay(1);
545 #endif
546
547         /*
548          * We do a passive status test under shared PCI interrupts on
549          * cards that truly share the ATA side interrupt, but may also share
550          * an interrupt with another pci card/device.  We make no assumptions
551          * about possible isa-pnp and pci-pnp issues yet.
552          */
553         if (hwif->io_ports.ctl_addr)
554                 stat = hwif->tp_ops->read_altstatus(hwif);
555         else
556                 /* Note: this may clear a pending IRQ!! */
557                 stat = hwif->tp_ops->read_status(hwif);
558
559         if (stat & BUSY_STAT)
560                 /* drive busy:  definitely not interrupting */
561                 return 0;
562
563         /* drive ready: *might* be interrupting */
564         return 1;
565 }
566
567 EXPORT_SYMBOL(drive_is_ready);
568
569 /*
570  * This routine busy-waits for the drive status to be not "busy".
571  * It then checks the status for all of the "good" bits and none
572  * of the "bad" bits, and if all is okay it returns 0.  All other
573  * cases return error -- caller may then invoke ide_error().
574  *
575  * This routine should get fixed to not hog the cpu during extra long waits..
576  * That could be done by busy-waiting for the first jiffy or two, and then
577  * setting a timer to wake up at half second intervals thereafter,
578  * until timeout is achieved, before timing out.
579  */
580 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
581 {
582         ide_hwif_t *hwif = drive->hwif;
583         const struct ide_tp_ops *tp_ops = hwif->tp_ops;
584         unsigned long flags;
585         int i;
586         u8 stat;
587
588         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
589         stat = tp_ops->read_status(hwif);
590
591         if (stat & BUSY_STAT) {
592                 local_irq_set(flags);
593                 timeout += jiffies;
594                 while ((stat = tp_ops->read_status(hwif)) & BUSY_STAT) {
595                         if (time_after(jiffies, timeout)) {
596                                 /*
597                                  * One last read after the timeout in case
598                                  * heavy interrupt load made us not make any
599                                  * progress during the timeout..
600                                  */
601                                 stat = tp_ops->read_status(hwif);
602                                 if (!(stat & BUSY_STAT))
603                                         break;
604
605                                 local_irq_restore(flags);
606                                 *rstat = stat;
607                                 return -EBUSY;
608                         }
609                 }
610                 local_irq_restore(flags);
611         }
612         /*
613          * Allow status to settle, then read it again.
614          * A few rare drives vastly violate the 400ns spec here,
615          * so we'll wait up to 10usec for a "good" status
616          * rather than expensively fail things immediately.
617          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
618          */
619         for (i = 0; i < 10; i++) {
620                 udelay(1);
621                 stat = tp_ops->read_status(hwif);
622
623                 if (OK_STAT(stat, good, bad)) {
624                         *rstat = stat;
625                         return 0;
626                 }
627         }
628         *rstat = stat;
629         return -EFAULT;
630 }
631
632 /*
633  * In case of error returns error value after doing "*startstop = ide_error()".
634  * The caller should return the updated value of "startstop" in this case,
635  * "startstop" is unchanged when the function returns 0.
636  */
637 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
638 {
639         int err;
640         u8 stat;
641
642         /* bail early if we've exceeded max_failures */
643         if (drive->max_failures && (drive->failures > drive->max_failures)) {
644                 *startstop = ide_stopped;
645                 return 1;
646         }
647
648         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
649
650         if (err) {
651                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
652                 *startstop = ide_error(drive, s, stat);
653         }
654
655         return err;
656 }
657
658 EXPORT_SYMBOL(ide_wait_stat);
659
660 /**
661  *      ide_in_drive_list       -       look for drive in black/white list
662  *      @id: drive identifier
663  *      @drive_table: list to inspect
664  *
665  *      Look for a drive in the blacklist and the whitelist tables
666  *      Returns 1 if the drive is found in the table.
667  */
668
669 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
670 {
671         for ( ; drive_table->id_model; drive_table++)
672                 if ((!strcmp(drive_table->id_model, id->model)) &&
673                     (!drive_table->id_firmware ||
674                      strstr(id->fw_rev, drive_table->id_firmware)))
675                         return 1;
676         return 0;
677 }
678
679 EXPORT_SYMBOL_GPL(ide_in_drive_list);
680
681 /*
682  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
683  * We list them here and depend on the device side cable detection for them.
684  *
685  * Some optical devices with the buggy firmwares have the same problem.
686  */
687 static const struct drive_list_entry ivb_list[] = {
688         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
689         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
690         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
691         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
692         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
693         { "TSSTcorp CDDVDW SH-S202H"    , "SB00"        },
694         { "TSSTcorp CDDVDW SH-S202H"    , "SB01"        },
695         { NULL                          , NULL          }
696 };
697
698 /*
699  *  All hosts that use the 80c ribbon must use!
700  *  The name is derived from upper byte of word 93 and the 80c ribbon.
701  */
702 u8 eighty_ninty_three (ide_drive_t *drive)
703 {
704         ide_hwif_t *hwif = drive->hwif;
705         struct hd_driveid *id = drive->id;
706         int ivb = ide_in_drive_list(id, ivb_list);
707
708         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
709                 return 1;
710
711         if (ivb)
712                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
713                                   drive->name);
714
715         if (ide_dev_is_sata(id) && !ivb)
716                 return 1;
717
718         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
719                 goto no_80w;
720
721         /*
722          * FIXME:
723          * - change master/slave IDENTIFY order
724          * - force bit13 (80c cable present) check also for !ivb devices
725          *   (unless the slave device is pre-ATA3)
726          */
727         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
728                 return 1;
729
730 no_80w:
731         if (drive->udma33_warned == 1)
732                 return 0;
733
734         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
735                             "limiting max speed to UDMA33\n",
736                             drive->name,
737                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
738
739         drive->udma33_warned = 1;
740
741         return 0;
742 }
743
744 int ide_driveid_update(ide_drive_t *drive)
745 {
746         ide_hwif_t *hwif = drive->hwif;
747         const struct ide_tp_ops *tp_ops = hwif->tp_ops;
748         struct hd_driveid *id;
749         unsigned long timeout, flags;
750         u8 stat;
751
752         /*
753          * Re-read drive->id for possible DMA mode
754          * change (copied from ide-probe.c)
755          */
756
757         SELECT_MASK(drive, 1);
758         tp_ops->set_irq(hwif, 0);
759         msleep(50);
760         tp_ops->exec_command(hwif, WIN_IDENTIFY);
761         timeout = jiffies + WAIT_WORSTCASE;
762         do {
763                 if (time_after(jiffies, timeout)) {
764                         SELECT_MASK(drive, 0);
765                         return 0;       /* drive timed-out */
766                 }
767
768                 msleep(50);     /* give drive a breather */
769                 stat = tp_ops->read_altstatus(hwif);
770         } while (stat & BUSY_STAT);
771
772         msleep(50);     /* wait for IRQ and DRQ_STAT */
773         stat = tp_ops->read_status(hwif);
774
775         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
776                 SELECT_MASK(drive, 0);
777                 printk("%s: CHECK for good STATUS\n", drive->name);
778                 return 0;
779         }
780         local_irq_save(flags);
781         SELECT_MASK(drive, 0);
782         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
783         if (!id) {
784                 local_irq_restore(flags);
785                 return 0;
786         }
787         tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
788         (void)tp_ops->read_status(hwif);        /* clear drive IRQ */
789         local_irq_enable();
790         local_irq_restore(flags);
791         ide_fix_driveid(id);
792         if (id) {
793                 drive->id->dma_ultra = id->dma_ultra;
794                 drive->id->dma_mword = id->dma_mword;
795                 drive->id->dma_1word = id->dma_1word;
796                 /* anything more ? */
797                 kfree(id);
798
799                 if (drive->using_dma && ide_id_dma_bug(drive))
800                         ide_dma_off(drive);
801         }
802
803         return 1;
804 }
805
806 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
807 {
808         ide_hwif_t *hwif = drive->hwif;
809         const struct ide_tp_ops *tp_ops = hwif->tp_ops;
810         int error = 0;
811         u8 stat;
812         ide_task_t task;
813
814 #ifdef CONFIG_BLK_DEV_IDEDMA
815         if (hwif->dma_ops)      /* check if host supports DMA */
816                 hwif->dma_ops->dma_host_set(drive, 0);
817 #endif
818
819         /* Skip setting PIO flow-control modes on pre-EIDE drives */
820         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
821                 goto skip;
822
823         /*
824          * Don't use ide_wait_cmd here - it will
825          * attempt to set_geometry and recalibrate,
826          * but for some reason these don't work at
827          * this point (lost interrupt).
828          */
829         /*
830          * Select the drive, and issue the SETFEATURES command
831          */
832         disable_irq_nosync(hwif->irq);
833         
834         /*
835          *      FIXME: we race against the running IRQ here if
836          *      this is called from non IRQ context. If we use
837          *      disable_irq() we hang on the error path. Work
838          *      is needed.
839          */
840          
841         udelay(1);
842         SELECT_DRIVE(drive);
843         SELECT_MASK(drive, 0);
844         udelay(1);
845         tp_ops->set_irq(hwif, 0);
846
847         memset(&task, 0, sizeof(task));
848         task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
849         task.tf.feature = SETFEATURES_XFER;
850         task.tf.nsect   = speed;
851
852         tp_ops->tf_load(drive, &task);
853
854         tp_ops->exec_command(hwif, WIN_SETFEATURES);
855
856         if (drive->quirk_list == 2)
857                 tp_ops->set_irq(hwif, 1);
858
859         error = __ide_wait_stat(drive, drive->ready_stat,
860                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
861                                 WAIT_CMD, &stat);
862
863         SELECT_MASK(drive, 0);
864
865         enable_irq(hwif->irq);
866
867         if (error) {
868                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
869                 return error;
870         }
871
872         drive->id->dma_ultra &= ~0xFF00;
873         drive->id->dma_mword &= ~0x0F00;
874         drive->id->dma_1word &= ~0x0F00;
875
876  skip:
877 #ifdef CONFIG_BLK_DEV_IDEDMA
878         if (speed >= XFER_SW_DMA_0 && drive->using_dma)
879                 hwif->dma_ops->dma_host_set(drive, 1);
880         else if (hwif->dma_ops) /* check if host supports DMA */
881                 ide_dma_off_quietly(drive);
882 #endif
883
884         switch(speed) {
885                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
886                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
887                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
888                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
889                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
890                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
891                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
892                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
893                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
894                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
895                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
896                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
897                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
898                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
899                 default: break;
900         }
901         if (!drive->init_speed)
902                 drive->init_speed = speed;
903         drive->current_speed = speed;
904         return error;
905 }
906
907 /*
908  * This should get invoked any time we exit the driver to
909  * wait for an interrupt response from a drive.  handler() points
910  * at the appropriate code to handle the next interrupt, and a
911  * timer is started to prevent us from waiting forever in case
912  * something goes wrong (see the ide_timer_expiry() handler later on).
913  *
914  * See also ide_execute_command
915  */
916 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
917                       unsigned int timeout, ide_expiry_t *expiry)
918 {
919         ide_hwgroup_t *hwgroup = HWGROUP(drive);
920
921         BUG_ON(hwgroup->handler);
922         hwgroup->handler        = handler;
923         hwgroup->expiry         = expiry;
924         hwgroup->timer.expires  = jiffies + timeout;
925         hwgroup->req_gen_timer  = hwgroup->req_gen;
926         add_timer(&hwgroup->timer);
927 }
928
929 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
930                       unsigned int timeout, ide_expiry_t *expiry)
931 {
932         unsigned long flags;
933         spin_lock_irqsave(&ide_lock, flags);
934         __ide_set_handler(drive, handler, timeout, expiry);
935         spin_unlock_irqrestore(&ide_lock, flags);
936 }
937
938 EXPORT_SYMBOL(ide_set_handler);
939  
940 /**
941  *      ide_execute_command     -       execute an IDE command
942  *      @drive: IDE drive to issue the command against
943  *      @command: command byte to write
944  *      @handler: handler for next phase
945  *      @timeout: timeout for command
946  *      @expiry:  handler to run on timeout
947  *
948  *      Helper function to issue an IDE command. This handles the
949  *      atomicity requirements, command timing and ensures that the 
950  *      handler and IRQ setup do not race. All IDE command kick off
951  *      should go via this function or do equivalent locking.
952  */
953
954 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
955                          unsigned timeout, ide_expiry_t *expiry)
956 {
957         unsigned long flags;
958         ide_hwif_t *hwif = HWIF(drive);
959
960         spin_lock_irqsave(&ide_lock, flags);
961         __ide_set_handler(drive, handler, timeout, expiry);
962         hwif->tp_ops->exec_command(hwif, cmd);
963         /*
964          * Drive takes 400nS to respond, we must avoid the IRQ being
965          * serviced before that.
966          *
967          * FIXME: we could skip this delay with care on non shared devices
968          */
969         ndelay(400);
970         spin_unlock_irqrestore(&ide_lock, flags);
971 }
972 EXPORT_SYMBOL(ide_execute_command);
973
974 void ide_execute_pkt_cmd(ide_drive_t *drive)
975 {
976         ide_hwif_t *hwif = drive->hwif;
977         unsigned long flags;
978
979         spin_lock_irqsave(&ide_lock, flags);
980         hwif->tp_ops->exec_command(hwif, WIN_PACKETCMD);
981         ndelay(400);
982         spin_unlock_irqrestore(&ide_lock, flags);
983 }
984 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
985
986 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
987 {
988         struct request *rq = drive->hwif->hwgroup->rq;
989
990         if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
991                 ide_end_request(drive, err ? err : 1, 0);
992 }
993
994 /* needed below */
995 static ide_startstop_t do_reset1 (ide_drive_t *, int);
996
997 /*
998  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
999  * during an atapi drive reset operation. If the drive has not yet responded,
1000  * and we have not yet hit our maximum waiting time, then the timer is restarted
1001  * for another 50ms.
1002  */
1003 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
1004 {
1005         ide_hwif_t *hwif = drive->hwif;
1006         ide_hwgroup_t *hwgroup = hwif->hwgroup;
1007         u8 stat;
1008
1009         SELECT_DRIVE(drive);
1010         udelay (10);
1011         stat = hwif->tp_ops->read_status(hwif);
1012
1013         if (OK_STAT(stat, 0, BUSY_STAT))
1014                 printk("%s: ATAPI reset complete\n", drive->name);
1015         else {
1016                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1017                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1018                         /* continue polling */
1019                         return ide_started;
1020                 }
1021                 /* end of polling */
1022                 hwgroup->polling = 0;
1023                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1024                                 drive->name, stat);
1025                 /* do it the old fashioned way */
1026                 return do_reset1(drive, 1);
1027         }
1028         /* done polling */
1029         hwgroup->polling = 0;
1030         ide_complete_drive_reset(drive, 0);
1031         return ide_stopped;
1032 }
1033
1034 /*
1035  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1036  * during an ide reset operation. If the drives have not yet responded,
1037  * and we have not yet hit our maximum waiting time, then the timer is restarted
1038  * for another 50ms.
1039  */
1040 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1041 {
1042         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
1043         ide_hwif_t *hwif        = HWIF(drive);
1044         const struct ide_port_ops *port_ops = hwif->port_ops;
1045         u8 tmp;
1046         int err = 0;
1047
1048         if (port_ops && port_ops->reset_poll) {
1049                 err = port_ops->reset_poll(drive);
1050                 if (err) {
1051                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1052                                 hwif->name, drive->name);
1053                         goto out;
1054                 }
1055         }
1056
1057         tmp = hwif->tp_ops->read_status(hwif);
1058
1059         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1060                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1061                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1062                         /* continue polling */
1063                         return ide_started;
1064                 }
1065                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1066                 drive->failures++;
1067                 err = -EIO;
1068         } else  {
1069                 printk("%s: reset: ", hwif->name);
1070                 tmp = ide_read_error(drive);
1071
1072                 if (tmp == 1) {
1073                         printk("success\n");
1074                         drive->failures = 0;
1075                 } else {
1076                         drive->failures++;
1077                         printk("master: ");
1078                         switch (tmp & 0x7f) {
1079                                 case 1: printk("passed");
1080                                         break;
1081                                 case 2: printk("formatter device error");
1082                                         break;
1083                                 case 3: printk("sector buffer error");
1084                                         break;
1085                                 case 4: printk("ECC circuitry error");
1086                                         break;
1087                                 case 5: printk("controlling MPU error");
1088                                         break;
1089                                 default:printk("error (0x%02x?)", tmp);
1090                         }
1091                         if (tmp & 0x80)
1092                                 printk("; slave: failed");
1093                         printk("\n");
1094                         err = -EIO;
1095                 }
1096         }
1097 out:
1098         hwgroup->polling = 0;   /* done polling */
1099         ide_complete_drive_reset(drive, err);
1100         return ide_stopped;
1101 }
1102
1103 static void ide_disk_pre_reset(ide_drive_t *drive)
1104 {
1105         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1106
1107         drive->special.all = 0;
1108         drive->special.b.set_geometry = legacy;
1109         drive->special.b.recalibrate  = legacy;
1110         drive->mult_count = 0;
1111         if (!drive->keep_settings && !drive->using_dma)
1112                 drive->mult_req = 0;
1113         if (drive->mult_req != drive->mult_count)
1114                 drive->special.b.set_multmode = 1;
1115 }
1116
1117 static void pre_reset(ide_drive_t *drive)
1118 {
1119         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1120
1121         if (drive->media == ide_disk)
1122                 ide_disk_pre_reset(drive);
1123         else
1124                 drive->post_reset = 1;
1125
1126         if (drive->using_dma) {
1127                 if (drive->crc_count)
1128                         ide_check_dma_crc(drive);
1129                 else
1130                         ide_dma_off(drive);
1131         }
1132
1133         if (!drive->keep_settings) {
1134                 if (!drive->using_dma) {
1135                         drive->unmask = 0;
1136                         drive->io_32bit = 0;
1137                 }
1138                 return;
1139         }
1140
1141         if (port_ops && port_ops->pre_reset)
1142                 port_ops->pre_reset(drive);
1143
1144         if (drive->current_speed != 0xff)
1145                 drive->desired_speed = drive->current_speed;
1146         drive->current_speed = 0xff;
1147 }
1148
1149 /*
1150  * do_reset1() attempts to recover a confused drive by resetting it.
1151  * Unfortunately, resetting a disk drive actually resets all devices on
1152  * the same interface, so it can really be thought of as resetting the
1153  * interface rather than resetting the drive.
1154  *
1155  * ATAPI devices have their own reset mechanism which allows them to be
1156  * individually reset without clobbering other devices on the same interface.
1157  *
1158  * Unfortunately, the IDE interface does not generate an interrupt to let
1159  * us know when the reset operation has finished, so we must poll for this.
1160  * Equally poor, though, is the fact that this may a very long time to complete,
1161  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1162  * we set a timer to poll at 50ms intervals.
1163  */
1164 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1165 {
1166         unsigned int unit;
1167         unsigned long flags;
1168         ide_hwif_t *hwif;
1169         ide_hwgroup_t *hwgroup;
1170         struct ide_io_ports *io_ports;
1171         const struct ide_tp_ops *tp_ops;
1172         const struct ide_port_ops *port_ops;
1173
1174         spin_lock_irqsave(&ide_lock, flags);
1175         hwif = HWIF(drive);
1176         hwgroup = HWGROUP(drive);
1177
1178         io_ports = &hwif->io_ports;
1179
1180         tp_ops = hwif->tp_ops;
1181
1182         /* We must not reset with running handlers */
1183         BUG_ON(hwgroup->handler != NULL);
1184
1185         /* For an ATAPI device, first try an ATAPI SRST. */
1186         if (drive->media != ide_disk && !do_not_try_atapi) {
1187                 pre_reset(drive);
1188                 SELECT_DRIVE(drive);
1189                 udelay (20);
1190                 tp_ops->exec_command(hwif, WIN_SRST);
1191                 ndelay(400);
1192                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1193                 hwgroup->polling = 1;
1194                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1195                 spin_unlock_irqrestore(&ide_lock, flags);
1196                 return ide_started;
1197         }
1198
1199         /*
1200          * First, reset any device state data we were maintaining
1201          * for any of the drives on this interface.
1202          */
1203         for (unit = 0; unit < MAX_DRIVES; ++unit)
1204                 pre_reset(&hwif->drives[unit]);
1205
1206         if (io_ports->ctl_addr == 0) {
1207                 spin_unlock_irqrestore(&ide_lock, flags);
1208                 ide_complete_drive_reset(drive, -ENXIO);
1209                 return ide_stopped;
1210         }
1211
1212         /*
1213          * Note that we also set nIEN while resetting the device,
1214          * to mask unwanted interrupts from the interface during the reset.
1215          * However, due to the design of PC hardware, this will cause an
1216          * immediate interrupt due to the edge transition it produces.
1217          * This single interrupt gives us a "fast poll" for drives that
1218          * recover from reset very quickly, saving us the first 50ms wait time.
1219          *
1220          * TODO: add ->softreset method and stop abusing ->set_irq
1221          */
1222         /* set SRST and nIEN */
1223         tp_ops->set_irq(hwif, 4);
1224         /* more than enough time */
1225         udelay(10);
1226         /* clear SRST, leave nIEN (unless device is on the quirk list) */
1227         tp_ops->set_irq(hwif, drive->quirk_list == 2);
1228         /* more than enough time */
1229         udelay(10);
1230         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1231         hwgroup->polling = 1;
1232         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1233
1234         /*
1235          * Some weird controller like resetting themselves to a strange
1236          * state when the disks are reset this way. At least, the Winbond
1237          * 553 documentation says that
1238          */
1239         port_ops = hwif->port_ops;
1240         if (port_ops && port_ops->resetproc)
1241                 port_ops->resetproc(drive);
1242
1243         spin_unlock_irqrestore(&ide_lock, flags);
1244         return ide_started;
1245 }
1246
1247 /*
1248  * ide_do_reset() is the entry point to the drive/interface reset code.
1249  */
1250
1251 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1252 {
1253         return do_reset1(drive, 0);
1254 }
1255
1256 EXPORT_SYMBOL(ide_do_reset);
1257
1258 /*
1259  * ide_wait_not_busy() waits for the currently selected device on the hwif
1260  * to report a non-busy status, see comments in ide_probe_port().
1261  */
1262 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1263 {
1264         u8 stat = 0;
1265
1266         while(timeout--) {
1267                 /*
1268                  * Turn this into a schedule() sleep once I'm sure
1269                  * about locking issues (2.5 work ?).
1270                  */
1271                 mdelay(1);
1272                 stat = hwif->tp_ops->read_status(hwif);
1273                 if ((stat & BUSY_STAT) == 0)
1274                         return 0;
1275                 /*
1276                  * Assume a value of 0xff means nothing is connected to
1277                  * the interface and it doesn't implement the pull-down
1278                  * resistor on D7.
1279                  */
1280                 if (stat == 0xff)
1281                         return -ENODEV;
1282                 touch_softlockup_watchdog();
1283                 touch_nmi_watchdog();
1284         }
1285         return -EBUSY;
1286 }
1287
1288 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1289