2 /* ns83820.c by Benjamin LaHaise with contributions.
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 * $Revision: 1.34.2.23 $
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
11 * Mmmm, chocolate vanilla mocha...
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
63 * - fix missed txok introduced during performance
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
66 * 20040828 0.21 - add hardware vlan accleration
67 * by Neil Horman <nhorman@redhat.com>
68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
69 * - removal of dead code from Adrian Bunk
70 * - fix half duplex collision behaviour
74 * This driver was originally written for the National Semiconductor
75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76 * this code will turn out to be a) clean, b) correct, and c) fast.
77 * With that in mind, I'm aiming to split the code up as much as
78 * reasonably possible. At present there are X major sections that
79 * break down into a) packet receive, b) packet transmit, c) link
80 * management, d) initialization and configuration. Where possible,
81 * these code paths are designed to run in parallel.
83 * This driver has been tested and found to work with the following
84 * cards (in no particular order):
86 * Cameo SOHO-GA2000T SOHO-GA2500T
88 * PureData PDP8023Z-TG
89 * SMC SMC9452TX SMC9462TX
92 * Special thanks to SMC for providing hardware to test this driver on.
94 * Reports of success or failure would be greatly appreciated.
96 //#define dprintk printk
97 #define dprintk(x...) do { } while (0)
99 #include <linux/config.h>
100 #include <linux/module.h>
101 #include <linux/moduleparam.h>
102 #include <linux/types.h>
103 #include <linux/pci.h>
104 #include <linux/dma-mapping.h>
105 #include <linux/netdevice.h>
106 #include <linux/etherdevice.h>
107 #include <linux/delay.h>
108 #include <linux/smp_lock.h>
109 #include <linux/workqueue.h>
110 #include <linux/init.h>
111 #include <linux/ip.h> /* for iph */
112 #include <linux/in.h> /* for IPPROTO_... */
113 #include <linux/eeprom.h>
114 #include <linux/compiler.h>
115 #include <linux/prefetch.h>
116 #include <linux/ethtool.h>
117 #include <linux/timer.h>
118 #include <linux/if_vlan.h>
121 #include <asm/uaccess.h>
122 #include <asm/system.h>
124 #define DRV_NAME "ns83820"
126 /* Global parameters. See module_param near the bottom. */
128 static int reset_phy = 0;
129 static int lnksts = 0; /* CFG_LNKSTS bit polarity */
131 /* Dprintk is used for more interesting debug events */
133 #define Dprintk dprintk
136 #define RX_BUF_SIZE 1500 /* 8192 */
137 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
138 #define NS83820_VLAN_ACCEL_SUPPORT
141 /* Must not exceed ~65000. */
142 #define NR_RX_DESC 64
143 #define NR_TX_DESC 128
146 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
148 #define MIN_TX_DESC_FREE 8
150 /* register defines */
153 #define CR_TXE 0x00000001
154 #define CR_TXD 0x00000002
155 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
156 * The Receive engine skips one descriptor and moves
157 * onto the next one!! */
158 #define CR_RXE 0x00000004
159 #define CR_RXD 0x00000008
160 #define CR_TXR 0x00000010
161 #define CR_RXR 0x00000020
162 #define CR_SWI 0x00000080
163 #define CR_RST 0x00000100
165 #define PTSCR_EEBIST_FAIL 0x00000001
166 #define PTSCR_EEBIST_EN 0x00000002
167 #define PTSCR_EELOAD_EN 0x00000004
168 #define PTSCR_RBIST_FAIL 0x000001b8
169 #define PTSCR_RBIST_DONE 0x00000200
170 #define PTSCR_RBIST_EN 0x00000400
171 #define PTSCR_RBIST_RST 0x00002000
173 #define MEAR_EEDI 0x00000001
174 #define MEAR_EEDO 0x00000002
175 #define MEAR_EECLK 0x00000004
176 #define MEAR_EESEL 0x00000008
177 #define MEAR_MDIO 0x00000010
178 #define MEAR_MDDIR 0x00000020
179 #define MEAR_MDC 0x00000040
181 #define ISR_TXDESC3 0x40000000
182 #define ISR_TXDESC2 0x20000000
183 #define ISR_TXDESC1 0x10000000
184 #define ISR_TXDESC0 0x08000000
185 #define ISR_RXDESC3 0x04000000
186 #define ISR_RXDESC2 0x02000000
187 #define ISR_RXDESC1 0x01000000
188 #define ISR_RXDESC0 0x00800000
189 #define ISR_TXRCMP 0x00400000
190 #define ISR_RXRCMP 0x00200000
191 #define ISR_DPERR 0x00100000
192 #define ISR_SSERR 0x00080000
193 #define ISR_RMABT 0x00040000
194 #define ISR_RTABT 0x00020000
195 #define ISR_RXSOVR 0x00010000
196 #define ISR_HIBINT 0x00008000
197 #define ISR_PHY 0x00004000
198 #define ISR_PME 0x00002000
199 #define ISR_SWI 0x00001000
200 #define ISR_MIB 0x00000800
201 #define ISR_TXURN 0x00000400
202 #define ISR_TXIDLE 0x00000200
203 #define ISR_TXERR 0x00000100
204 #define ISR_TXDESC 0x00000080
205 #define ISR_TXOK 0x00000040
206 #define ISR_RXORN 0x00000020
207 #define ISR_RXIDLE 0x00000010
208 #define ISR_RXEARLY 0x00000008
209 #define ISR_RXERR 0x00000004
210 #define ISR_RXDESC 0x00000002
211 #define ISR_RXOK 0x00000001
213 #define TXCFG_CSI 0x80000000
214 #define TXCFG_HBI 0x40000000
215 #define TXCFG_MLB 0x20000000
216 #define TXCFG_ATP 0x10000000
217 #define TXCFG_ECRETRY 0x00800000
218 #define TXCFG_BRST_DIS 0x00080000
219 #define TXCFG_MXDMA1024 0x00000000
220 #define TXCFG_MXDMA512 0x00700000
221 #define TXCFG_MXDMA256 0x00600000
222 #define TXCFG_MXDMA128 0x00500000
223 #define TXCFG_MXDMA64 0x00400000
224 #define TXCFG_MXDMA32 0x00300000
225 #define TXCFG_MXDMA16 0x00200000
226 #define TXCFG_MXDMA8 0x00100000
228 #define CFG_LNKSTS 0x80000000
229 #define CFG_SPDSTS 0x60000000
230 #define CFG_SPDSTS1 0x40000000
231 #define CFG_SPDSTS0 0x20000000
232 #define CFG_DUPSTS 0x10000000
233 #define CFG_TBI_EN 0x01000000
234 #define CFG_MODE_1000 0x00400000
235 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
236 * Read the Phy response and then configure the MAC accordingly */
237 #define CFG_AUTO_1000 0x00200000
238 #define CFG_PINT_CTL 0x001c0000
239 #define CFG_PINT_DUPSTS 0x00100000
240 #define CFG_PINT_LNKSTS 0x00080000
241 #define CFG_PINT_SPDSTS 0x00040000
242 #define CFG_TMRTEST 0x00020000
243 #define CFG_MRM_DIS 0x00010000
244 #define CFG_MWI_DIS 0x00008000
245 #define CFG_T64ADDR 0x00004000
246 #define CFG_PCI64_DET 0x00002000
247 #define CFG_DATA64_EN 0x00001000
248 #define CFG_M64ADDR 0x00000800
249 #define CFG_PHY_RST 0x00000400
250 #define CFG_PHY_DIS 0x00000200
251 #define CFG_EXTSTS_EN 0x00000100
252 #define CFG_REQALG 0x00000080
253 #define CFG_SB 0x00000040
254 #define CFG_POW 0x00000020
255 #define CFG_EXD 0x00000010
256 #define CFG_PESEL 0x00000008
257 #define CFG_BROM_DIS 0x00000004
258 #define CFG_EXT_125 0x00000002
259 #define CFG_BEM 0x00000001
261 #define EXTSTS_UDPPKT 0x00200000
262 #define EXTSTS_TCPPKT 0x00080000
263 #define EXTSTS_IPPKT 0x00020000
264 #define EXTSTS_VPKT 0x00010000
265 #define EXTSTS_VTG_MASK 0x0000ffff
267 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
269 #define MIBC_MIBS 0x00000008
270 #define MIBC_ACLR 0x00000004
271 #define MIBC_FRZ 0x00000002
272 #define MIBC_WRN 0x00000001
274 #define PCR_PSEN (1 << 31)
275 #define PCR_PS_MCAST (1 << 30)
276 #define PCR_PS_DA (1 << 29)
277 #define PCR_STHI_8 (3 << 23)
278 #define PCR_STLO_4 (1 << 23)
279 #define PCR_FFHI_8K (3 << 21)
280 #define PCR_FFLO_4K (1 << 21)
281 #define PCR_PAUSE_CNT 0xFFFE
283 #define RXCFG_AEP 0x80000000
284 #define RXCFG_ARP 0x40000000
285 #define RXCFG_STRIPCRC 0x20000000
286 #define RXCFG_RX_FD 0x10000000
287 #define RXCFG_ALP 0x08000000
288 #define RXCFG_AIRL 0x04000000
289 #define RXCFG_MXDMA512 0x00700000
290 #define RXCFG_DRTH 0x0000003e
291 #define RXCFG_DRTH0 0x00000002
293 #define RFCR_RFEN 0x80000000
294 #define RFCR_AAB 0x40000000
295 #define RFCR_AAM 0x20000000
296 #define RFCR_AAU 0x10000000
297 #define RFCR_APM 0x08000000
298 #define RFCR_APAT 0x07800000
299 #define RFCR_APAT3 0x04000000
300 #define RFCR_APAT2 0x02000000
301 #define RFCR_APAT1 0x01000000
302 #define RFCR_APAT0 0x00800000
303 #define RFCR_AARP 0x00400000
304 #define RFCR_MHEN 0x00200000
305 #define RFCR_UHEN 0x00100000
306 #define RFCR_ULM 0x00080000
308 #define VRCR_RUDPE 0x00000080
309 #define VRCR_RTCPE 0x00000040
310 #define VRCR_RIPE 0x00000020
311 #define VRCR_IPEN 0x00000010
312 #define VRCR_DUTF 0x00000008
313 #define VRCR_DVTF 0x00000004
314 #define VRCR_VTREN 0x00000002
315 #define VRCR_VTDEN 0x00000001
317 #define VTCR_PPCHK 0x00000008
318 #define VTCR_GCHK 0x00000004
319 #define VTCR_VPPTI 0x00000002
320 #define VTCR_VGTI 0x00000001
357 #define TBICR_MR_AN_ENABLE 0x00001000
358 #define TBICR_MR_RESTART_AN 0x00000200
360 #define TBISR_MR_LINK_STATUS 0x00000020
361 #define TBISR_MR_AN_COMPLETE 0x00000004
363 #define TANAR_PS2 0x00000100
364 #define TANAR_PS1 0x00000080
365 #define TANAR_HALF_DUP 0x00000040
366 #define TANAR_FULL_DUP 0x00000020
368 #define GPIOR_GP5_OE 0x00000200
369 #define GPIOR_GP4_OE 0x00000100
370 #define GPIOR_GP3_OE 0x00000080
371 #define GPIOR_GP2_OE 0x00000040
372 #define GPIOR_GP1_OE 0x00000020
373 #define GPIOR_GP3_OUT 0x00000004
374 #define GPIOR_GP1_OUT 0x00000001
376 #define LINK_AUTONEGOTIATE 0x01
377 #define LINK_DOWN 0x02
380 #define HW_ADDR_LEN sizeof(dma_addr_t)
381 #define desc_addr_set(desc, addr) \
383 ((desc)[0] = cpu_to_le32(addr)); \
384 if (HW_ADDR_LEN == 8) \
385 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
387 #define desc_addr_get(desc) \
388 (le32_to_cpu((desc)[0]) | \
389 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
392 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
393 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
394 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
396 #define CMDSTS_OWN 0x80000000
397 #define CMDSTS_MORE 0x40000000
398 #define CMDSTS_INTR 0x20000000
399 #define CMDSTS_ERR 0x10000000
400 #define CMDSTS_OK 0x08000000
401 #define CMDSTS_RUNT 0x00200000
402 #define CMDSTS_LEN_MASK 0x0000ffff
404 #define CMDSTS_DEST_MASK 0x01800000
405 #define CMDSTS_DEST_SELF 0x00800000
406 #define CMDSTS_DEST_MULTI 0x01000000
408 #define DESC_SIZE 8 /* Should be cache line sized */
415 struct sk_buff *skbs[NR_RX_DESC];
418 u16 next_rx, next_empty;
421 dma_addr_t phy_descs;
426 struct net_device_stats stats;
429 struct pci_dev *pci_dev;
431 #ifdef NS83820_VLAN_ACCEL_SUPPORT
432 struct vlan_group *vlgrp;
435 struct rx_info rx_info;
436 struct tasklet_struct rx_tasklet;
439 struct work_struct tq_refill;
441 /* protects everything below. irqsave when using. */
442 spinlock_t misc_lock;
456 volatile u16 tx_free_idx; /* idx of free desc chain */
460 struct sk_buff *tx_skbs[NR_TX_DESC];
462 char pad[16] __attribute__((aligned(16)));
464 dma_addr_t tx_phy_descs;
466 struct timer_list tx_watchdog;
469 static inline struct ns83820 *PRIV(struct net_device *dev)
471 return netdev_priv(dev);
474 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
476 static inline void kick_rx(struct net_device *ndev)
478 struct ns83820 *dev = PRIV(ndev);
479 dprintk("kick_rx: maybe kicking\n");
480 if (test_and_clear_bit(0, &dev->rx_info.idle)) {
481 dprintk("actually kicking\n");
482 writel(dev->rx_info.phy_descs +
483 (4 * DESC_SIZE * dev->rx_info.next_rx),
485 if (dev->rx_info.next_rx == dev->rx_info.next_empty)
486 printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
492 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
493 #define start_tx_okay(dev) \
494 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
497 #ifdef NS83820_VLAN_ACCEL_SUPPORT
498 static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
500 struct ns83820 *dev = PRIV(ndev);
502 spin_lock_irq(&dev->misc_lock);
503 spin_lock(&dev->tx_lock);
507 spin_unlock(&dev->tx_lock);
508 spin_unlock_irq(&dev->misc_lock);
511 static void ns83820_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
513 struct ns83820 *dev = PRIV(ndev);
515 spin_lock_irq(&dev->misc_lock);
516 spin_lock(&dev->tx_lock);
518 dev->vlgrp->vlan_devices[vid] = NULL;
519 spin_unlock(&dev->tx_lock);
520 spin_unlock_irq(&dev->misc_lock);
526 * The hardware supports linked lists of receive descriptors for
527 * which ownership is transfered back and forth by means of an
528 * ownership bit. While the hardware does support the use of a
529 * ring for receive descriptors, we only make use of a chain in
530 * an attempt to reduce bus traffic under heavy load scenarios.
531 * This will also make bugs a bit more obvious. The current code
532 * only makes use of a single rx chain; I hope to implement
533 * priority based rx for version 1.0. Goal: even under overload
534 * conditions, still route realtime traffic with as low jitter as
537 static inline void build_rx_desc(struct ns83820 *dev, u32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
539 desc_addr_set(desc + DESC_LINK, link);
540 desc_addr_set(desc + DESC_BUFPTR, buf);
541 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
543 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
546 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
547 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
554 next_empty = dev->rx_info.next_empty;
556 /* don't overrun last rx marker */
557 if (unlikely(nr_rx_empty(dev) <= 2)) {
563 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
564 dev->rx_info.next_empty,
565 dev->rx_info.nr_used,
570 sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
571 if (unlikely(NULL != dev->rx_info.skbs[next_empty]))
573 dev->rx_info.skbs[next_empty] = skb;
575 dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
576 cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
577 buf = pci_map_single(dev->pci_dev, skb->data,
578 REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
579 build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
580 /* update link of previous rx */
581 if (likely(next_empty != dev->rx_info.next_rx))
582 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
587 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
589 struct ns83820 *dev = PRIV(ndev);
591 unsigned long flags = 0;
593 if (unlikely(nr_rx_empty(dev) <= 2))
596 dprintk("rx_refill(%p)\n", ndev);
597 if (gfp == GFP_ATOMIC)
598 spin_lock_irqsave(&dev->rx_info.lock, flags);
599 for (i=0; i<NR_RX_DESC; i++) {
602 /* extra 16 bytes for alignment */
603 skb = __dev_alloc_skb(REAL_RX_BUF_SIZE+16, gfp);
607 res = (long)skb->data & 0xf;
610 skb_reserve(skb, res);
613 if (gfp != GFP_ATOMIC)
614 spin_lock_irqsave(&dev->rx_info.lock, flags);
615 res = ns83820_add_rx_skb(dev, skb);
616 if (gfp != GFP_ATOMIC)
617 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
623 if (gfp == GFP_ATOMIC)
624 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
626 return i ? 0 : -ENOMEM;
629 static void FASTCALL(rx_refill_atomic(struct net_device *ndev));
630 static void fastcall rx_refill_atomic(struct net_device *ndev)
632 rx_refill(ndev, GFP_ATOMIC);
636 static inline void queue_refill(void *_dev)
638 struct net_device *ndev = _dev;
639 struct ns83820 *dev = PRIV(ndev);
641 rx_refill(ndev, GFP_KERNEL);
646 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
648 build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
651 static void FASTCALL(phy_intr(struct net_device *ndev));
652 static void fastcall phy_intr(struct net_device *ndev)
654 struct ns83820 *dev = PRIV(ndev);
655 static char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
657 u32 tbisr, tanar, tanlpar;
658 int speed, fullduplex, newlinkstate;
660 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
662 if (dev->CFG_cache & CFG_TBI_EN) {
663 /* we have an optical transceiver */
664 tbisr = readl(dev->base + TBISR);
665 tanar = readl(dev->base + TANAR);
666 tanlpar = readl(dev->base + TANLPAR);
667 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
668 tbisr, tanar, tanlpar);
670 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
671 && (tanar & TANAR_FULL_DUP)) ) {
673 /* both of us are full duplex */
674 writel(readl(dev->base + TXCFG)
675 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
677 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
679 /* Light up full duplex LED */
680 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
683 } else if(((tanlpar & TANAR_HALF_DUP)
684 && (tanar & TANAR_HALF_DUP))
685 || ((tanlpar & TANAR_FULL_DUP)
686 && (tanar & TANAR_HALF_DUP))
687 || ((tanlpar & TANAR_HALF_DUP)
688 && (tanar & TANAR_FULL_DUP))) {
690 /* one or both of us are half duplex */
691 writel((readl(dev->base + TXCFG)
692 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
694 writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
696 /* Turn off full duplex LED */
697 writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
701 speed = 4; /* 1000F */
704 /* we have a copper transceiver */
705 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
707 if (cfg & CFG_SPDSTS1)
708 new_cfg |= CFG_MODE_1000;
710 new_cfg &= ~CFG_MODE_1000;
712 speed = ((cfg / CFG_SPDSTS0) & 3);
713 fullduplex = (cfg & CFG_DUPSTS);
717 writel(readl(dev->base + TXCFG)
718 | TXCFG_CSI | TXCFG_HBI,
720 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
723 writel(readl(dev->base + TXCFG)
724 & ~(TXCFG_CSI | TXCFG_HBI),
726 writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
730 if ((cfg & CFG_LNKSTS) &&
731 ((new_cfg ^ dev->CFG_cache) != 0)) {
732 writel(new_cfg, dev->base + CFG);
733 dev->CFG_cache = new_cfg;
736 dev->CFG_cache &= ~CFG_SPDSTS;
737 dev->CFG_cache |= cfg & CFG_SPDSTS;
740 newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
742 if (newlinkstate & LINK_UP
743 && dev->linkstate != newlinkstate) {
744 netif_start_queue(ndev);
745 netif_wake_queue(ndev);
746 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
749 fullduplex ? "full" : "half");
750 } else if (newlinkstate & LINK_DOWN
751 && dev->linkstate != newlinkstate) {
752 netif_stop_queue(ndev);
753 printk(KERN_INFO "%s: link now down.\n", ndev->name);
756 dev->linkstate = newlinkstate;
759 static int ns83820_setup_rx(struct net_device *ndev)
761 struct ns83820 *dev = PRIV(ndev);
765 dprintk("ns83820_setup_rx(%p)\n", ndev);
767 dev->rx_info.idle = 1;
768 dev->rx_info.next_rx = 0;
769 dev->rx_info.next_rx_desc = dev->rx_info.descs;
770 dev->rx_info.next_empty = 0;
772 for (i=0; i<NR_RX_DESC; i++)
773 clear_rx_desc(dev, i);
775 writel(0, dev->base + RXDP_HI);
776 writel(dev->rx_info.phy_descs, dev->base + RXDP);
778 ret = rx_refill(ndev, GFP_KERNEL);
780 dprintk("starting receiver\n");
781 /* prevent the interrupt handler from stomping on us */
782 spin_lock_irq(&dev->rx_info.lock);
784 writel(0x0001, dev->base + CCSR);
785 writel(0, dev->base + RFCR);
786 writel(0x7fc00000, dev->base + RFCR);
787 writel(0xffc00000, dev->base + RFCR);
793 /* Okay, let it rip */
794 spin_lock_irq(&dev->misc_lock);
795 dev->IMR_cache |= ISR_PHY;
796 dev->IMR_cache |= ISR_RXRCMP;
797 //dev->IMR_cache |= ISR_RXERR;
798 //dev->IMR_cache |= ISR_RXOK;
799 dev->IMR_cache |= ISR_RXORN;
800 dev->IMR_cache |= ISR_RXSOVR;
801 dev->IMR_cache |= ISR_RXDESC;
802 dev->IMR_cache |= ISR_RXIDLE;
803 dev->IMR_cache |= ISR_TXDESC;
804 dev->IMR_cache |= ISR_TXIDLE;
806 writel(dev->IMR_cache, dev->base + IMR);
807 writel(1, dev->base + IER);
808 spin_unlock_irq(&dev->misc_lock);
812 spin_unlock_irq(&dev->rx_info.lock);
817 static void ns83820_cleanup_rx(struct ns83820 *dev)
822 dprintk("ns83820_cleanup_rx(%p)\n", dev);
824 /* disable receive interrupts */
825 spin_lock_irqsave(&dev->misc_lock, flags);
826 dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
827 writel(dev->IMR_cache, dev->base + IMR);
828 spin_unlock_irqrestore(&dev->misc_lock, flags);
830 /* synchronize with the interrupt handler and kill it */
832 synchronize_irq(dev->pci_dev->irq);
834 /* touch the pci bus... */
835 readl(dev->base + IMR);
837 /* assumes the transmitter is already disabled and reset */
838 writel(0, dev->base + RXDP_HI);
839 writel(0, dev->base + RXDP);
841 for (i=0; i<NR_RX_DESC; i++) {
842 struct sk_buff *skb = dev->rx_info.skbs[i];
843 dev->rx_info.skbs[i] = NULL;
844 clear_rx_desc(dev, i);
850 static void FASTCALL(ns83820_rx_kick(struct net_device *ndev));
851 static void fastcall ns83820_rx_kick(struct net_device *ndev)
853 struct ns83820 *dev = PRIV(ndev);
854 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
855 if (dev->rx_info.up) {
856 rx_refill_atomic(ndev);
861 if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
862 schedule_work(&dev->tq_refill);
865 if (dev->rx_info.idle)
866 printk(KERN_DEBUG "%s: BAD\n", ndev->name);
872 static void FASTCALL(rx_irq(struct net_device *ndev));
873 static void fastcall rx_irq(struct net_device *ndev)
875 struct ns83820 *dev = PRIV(ndev);
876 struct rx_info *info = &dev->rx_info;
883 dprintk("rx_irq(%p)\n", ndev);
884 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
885 readl(dev->base + RXDP),
886 (long)(dev->rx_info.phy_descs),
887 (int)dev->rx_info.next_rx,
888 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
889 (int)dev->rx_info.next_empty,
890 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
893 spin_lock_irqsave(&info->lock, flags);
897 dprintk("walking descs\n");
898 next_rx = info->next_rx;
899 desc = info->next_rx_desc;
900 while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
901 (cmdsts != CMDSTS_OWN)) {
903 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
904 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
906 dprintk("cmdsts: %08x\n", cmdsts);
907 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
908 dprintk("extsts: %08x\n", extsts);
910 skb = info->skbs[next_rx];
911 info->skbs[next_rx] = NULL;
912 info->next_rx = (next_rx + 1) % NR_RX_DESC;
915 clear_rx_desc(dev, next_rx);
917 pci_unmap_single(dev->pci_dev, bufptr,
918 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
919 len = cmdsts & CMDSTS_LEN_MASK;
920 #ifdef NS83820_VLAN_ACCEL_SUPPORT
921 /* NH: As was mentioned below, this chip is kinda
922 * brain dead about vlan tag stripping. Frames
923 * that are 64 bytes with a vlan header appended
924 * like arp frames, or pings, are flagged as Runts
925 * when the tag is stripped and hardware. This
926 * also means that the OK bit in the descriptor
927 * is cleared when the frame comes in so we have
928 * to do a specific length check here to make sure
929 * the frame would have been ok, had we not stripped
932 if (likely((CMDSTS_OK & cmdsts) ||
933 ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
935 if (likely(CMDSTS_OK & cmdsts)) {
939 goto netdev_mangle_me_harder_failed;
940 if (cmdsts & CMDSTS_DEST_MULTI)
941 dev->stats.multicast ++;
942 dev->stats.rx_packets ++;
943 dev->stats.rx_bytes += len;
944 if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
945 skb->ip_summed = CHECKSUM_UNNECESSARY;
947 skb->ip_summed = CHECKSUM_NONE;
949 skb->protocol = eth_type_trans(skb, ndev);
950 #ifdef NS83820_VLAN_ACCEL_SUPPORT
951 if(extsts & EXTSTS_VPKT) {
953 tag = ntohs(extsts & EXTSTS_VTG_MASK);
954 rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
956 rx_rc = netif_rx(skb);
959 rx_rc = netif_rx(skb);
961 if (NET_RX_DROP == rx_rc) {
962 netdev_mangle_me_harder_failed:
963 dev->stats.rx_dropped ++;
970 next_rx = info->next_rx;
971 desc = info->descs + (DESC_SIZE * next_rx);
973 info->next_rx = next_rx;
974 info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
978 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
981 spin_unlock_irqrestore(&info->lock, flags);
984 static void rx_action(unsigned long _dev)
986 struct net_device *ndev = (void *)_dev;
987 struct ns83820 *dev = PRIV(ndev);
989 writel(ihr, dev->base + IHR);
991 spin_lock_irq(&dev->misc_lock);
992 dev->IMR_cache |= ISR_RXDESC;
993 writel(dev->IMR_cache, dev->base + IMR);
994 spin_unlock_irq(&dev->misc_lock);
997 ns83820_rx_kick(ndev);
1000 /* Packet Transmit code
1002 static inline void kick_tx(struct ns83820 *dev)
1004 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
1005 dev, dev->tx_idx, dev->tx_free_idx);
1006 writel(CR_TXE, dev->base + CR);
1009 /* No spinlock needed on the transmit irq path as the interrupt handler is
1012 static void do_tx_done(struct net_device *ndev)
1014 struct ns83820 *dev = PRIV(ndev);
1015 u32 cmdsts, tx_done_idx, *desc;
1017 spin_lock_irq(&dev->tx_lock);
1019 dprintk("do_tx_done(%p)\n", ndev);
1020 tx_done_idx = dev->tx_done_idx;
1021 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1023 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1024 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1025 while ((tx_done_idx != dev->tx_free_idx) &&
1026 !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
1027 struct sk_buff *skb;
1031 if (cmdsts & CMDSTS_ERR)
1032 dev->stats.tx_errors ++;
1033 if (cmdsts & CMDSTS_OK)
1034 dev->stats.tx_packets ++;
1035 if (cmdsts & CMDSTS_OK)
1036 dev->stats.tx_bytes += cmdsts & 0xffff;
1038 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1039 tx_done_idx, dev->tx_free_idx, cmdsts);
1040 skb = dev->tx_skbs[tx_done_idx];
1041 dev->tx_skbs[tx_done_idx] = NULL;
1042 dprintk("done(%p)\n", skb);
1044 len = cmdsts & CMDSTS_LEN_MASK;
1045 addr = desc_addr_get(desc + DESC_BUFPTR);
1047 pci_unmap_single(dev->pci_dev,
1051 dev_kfree_skb_irq(skb);
1052 atomic_dec(&dev->nr_tx_skbs);
1054 pci_unmap_page(dev->pci_dev,
1059 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1060 dev->tx_done_idx = tx_done_idx;
1061 desc[DESC_CMDSTS] = cpu_to_le32(0);
1063 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1066 /* Allow network stack to resume queueing packets after we've
1067 * finished transmitting at least 1/4 of the packets in the queue.
1069 if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1070 dprintk("start_queue(%p)\n", ndev);
1071 netif_start_queue(ndev);
1072 netif_wake_queue(ndev);
1074 spin_unlock_irq(&dev->tx_lock);
1077 static void ns83820_cleanup_tx(struct ns83820 *dev)
1081 for (i=0; i<NR_TX_DESC; i++) {
1082 struct sk_buff *skb = dev->tx_skbs[i];
1083 dev->tx_skbs[i] = NULL;
1085 u32 *desc = dev->tx_descs + (i * DESC_SIZE);
1086 pci_unmap_single(dev->pci_dev,
1087 desc_addr_get(desc + DESC_BUFPTR),
1088 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1090 dev_kfree_skb_irq(skb);
1091 atomic_dec(&dev->nr_tx_skbs);
1095 memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1098 /* transmit routine. This code relies on the network layer serializing
1099 * its calls in, but will run happily in parallel with the interrupt
1100 * handler. This code currently has provisions for fragmenting tx buffers
1101 * while trying to track down a bug in either the zero copy code or
1102 * the tx fifo (hence the MAX_FRAG_LEN).
1104 static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1106 struct ns83820 *dev = PRIV(ndev);
1107 u32 free_idx, cmdsts, extsts;
1108 int nr_free, nr_frags;
1109 unsigned tx_done_idx, last_idx;
1115 volatile u32 *first_desc;
1117 dprintk("ns83820_hard_start_xmit\n");
1119 nr_frags = skb_shinfo(skb)->nr_frags;
1121 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1122 netif_stop_queue(ndev);
1123 if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1125 netif_start_queue(ndev);
1128 last_idx = free_idx = dev->tx_free_idx;
1129 tx_done_idx = dev->tx_done_idx;
1130 nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1132 if (nr_free <= nr_frags) {
1133 dprintk("stop_queue - not enough(%p)\n", ndev);
1134 netif_stop_queue(ndev);
1136 /* Check again: we may have raced with a tx done irq */
1137 if (dev->tx_done_idx != tx_done_idx) {
1138 dprintk("restart queue(%p)\n", ndev);
1139 netif_start_queue(ndev);
1145 if (free_idx == dev->tx_intr_idx) {
1147 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1150 nr_free -= nr_frags;
1151 if (nr_free < MIN_TX_DESC_FREE) {
1152 dprintk("stop_queue - last entry(%p)\n", ndev);
1153 netif_stop_queue(ndev);
1157 frag = skb_shinfo(skb)->frags;
1161 if (skb->ip_summed == CHECKSUM_HW) {
1162 extsts |= EXTSTS_IPPKT;
1163 if (IPPROTO_TCP == skb->nh.iph->protocol)
1164 extsts |= EXTSTS_TCPPKT;
1165 else if (IPPROTO_UDP == skb->nh.iph->protocol)
1166 extsts |= EXTSTS_UDPPKT;
1169 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1170 if(vlan_tx_tag_present(skb)) {
1171 /* fetch the vlan tag info out of the
1172 * ancilliary data if the vlan code
1173 * is using hw vlan acceleration
1175 short tag = vlan_tx_tag_get(skb);
1176 extsts |= (EXTSTS_VPKT | htons(tag));
1182 len -= skb->data_len;
1183 buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1185 first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1188 volatile u32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1190 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1191 (unsigned long long)buf);
1192 last_idx = free_idx;
1193 free_idx = (free_idx + 1) % NR_TX_DESC;
1194 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1195 desc_addr_set(desc + DESC_BUFPTR, buf);
1196 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1198 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1199 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1201 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1206 buf = pci_map_page(dev->pci_dev, frag->page,
1208 frag->size, PCI_DMA_TODEVICE);
1209 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1210 (long long)buf, (long) page_to_pfn(frag->page),
1216 dprintk("done pkt\n");
1218 spin_lock_irq(&dev->tx_lock);
1219 dev->tx_skbs[last_idx] = skb;
1220 first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1221 dev->tx_free_idx = free_idx;
1222 atomic_inc(&dev->nr_tx_skbs);
1223 spin_unlock_irq(&dev->tx_lock);
1227 /* Check again: we may have raced with a tx done irq */
1228 if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1229 netif_start_queue(ndev);
1231 /* set the transmit start time to catch transmit timeouts */
1232 ndev->trans_start = jiffies;
1236 static void ns83820_update_stats(struct ns83820 *dev)
1238 u8 __iomem *base = dev->base;
1240 /* the DP83820 will freeze counters, so we need to read all of them */
1241 dev->stats.rx_errors += readl(base + 0x60) & 0xffff;
1242 dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
1243 dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
1244 dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
1245 /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1246 dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
1247 dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
1248 /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1249 /*dev->stats.rx_pause_count += */ readl(base + 0x80);
1250 /*dev->stats.tx_pause_count += */ readl(base + 0x84);
1251 dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
1254 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1256 struct ns83820 *dev = PRIV(ndev);
1258 /* somewhat overkill */
1259 spin_lock_irq(&dev->misc_lock);
1260 ns83820_update_stats(dev);
1261 spin_unlock_irq(&dev->misc_lock);
1266 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1268 struct ns83820 *dev = PRIV(ndev);
1269 strcpy(info->driver, "ns83820");
1270 strcpy(info->version, VERSION);
1271 strcpy(info->bus_info, pci_name(dev->pci_dev));
1274 static u32 ns83820_get_link(struct net_device *ndev)
1276 struct ns83820 *dev = PRIV(ndev);
1277 u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1278 return cfg & CFG_LNKSTS ? 1 : 0;
1281 static struct ethtool_ops ops = {
1282 .get_drvinfo = ns83820_get_drvinfo,
1283 .get_link = ns83820_get_link
1286 static void ns83820_mib_isr(struct ns83820 *dev)
1288 spin_lock(&dev->misc_lock);
1289 ns83820_update_stats(dev);
1290 spin_unlock(&dev->misc_lock);
1293 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1294 static irqreturn_t ns83820_irq(int foo, void *data, struct pt_regs *regs)
1296 struct net_device *ndev = data;
1297 struct ns83820 *dev = PRIV(ndev);
1299 dprintk("ns83820_irq(%p)\n", ndev);
1303 isr = readl(dev->base + ISR);
1304 dprintk("irq: %08x\n", isr);
1305 ns83820_do_isr(ndev, isr);
1309 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1311 struct ns83820 *dev = PRIV(ndev);
1313 if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1314 Dprintk("odd isr? 0x%08x\n", isr);
1317 if (ISR_RXIDLE & isr) {
1318 dev->rx_info.idle = 1;
1319 Dprintk("oh dear, we are idle\n");
1320 ns83820_rx_kick(ndev);
1323 if ((ISR_RXDESC | ISR_RXOK) & isr) {
1324 prefetch(dev->rx_info.next_rx_desc);
1326 spin_lock_irq(&dev->misc_lock);
1327 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1328 writel(dev->IMR_cache, dev->base + IMR);
1329 spin_unlock_irq(&dev->misc_lock);
1331 tasklet_schedule(&dev->rx_tasklet);
1333 //writel(4, dev->base + IHR);
1336 if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1337 ns83820_rx_kick(ndev);
1339 if (unlikely(ISR_RXSOVR & isr)) {
1340 //printk("overrun: rxsovr\n");
1341 dev->stats.rx_fifo_errors ++;
1344 if (unlikely(ISR_RXORN & isr)) {
1345 //printk("overrun: rxorn\n");
1346 dev->stats.rx_fifo_errors ++;
1349 if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1350 writel(CR_RXE, dev->base + CR);
1352 if (ISR_TXIDLE & isr) {
1354 txdp = readl(dev->base + TXDP);
1355 dprintk("txdp: %08x\n", txdp);
1356 txdp -= dev->tx_phy_descs;
1357 dev->tx_idx = txdp / (DESC_SIZE * 4);
1358 if (dev->tx_idx >= NR_TX_DESC) {
1359 printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1362 /* The may have been a race between a pci originated read
1363 * and the descriptor update from the cpu. Just in case,
1364 * kick the transmitter if the hardware thinks it is on a
1365 * different descriptor than we are.
1367 if (dev->tx_idx != dev->tx_free_idx)
1371 /* Defer tx ring processing until more than a minimum amount of
1372 * work has accumulated
1374 if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1377 /* Disable TxOk if there are no outstanding tx packets.
1379 if ((dev->tx_done_idx == dev->tx_free_idx) &&
1380 (dev->IMR_cache & ISR_TXOK)) {
1381 spin_lock_irq(&dev->misc_lock);
1382 dev->IMR_cache &= ~ISR_TXOK;
1383 writel(dev->IMR_cache, dev->base + IMR);
1384 spin_unlock_irq(&dev->misc_lock);
1388 /* The TxIdle interrupt can come in before the transmit has
1389 * completed. Normally we reap packets off of the combination
1390 * of TxDesc and TxIdle and leave TxOk disabled (since it
1391 * occurs on every packet), but when no further irqs of this
1392 * nature are expected, we must enable TxOk.
1394 if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1395 spin_lock_irq(&dev->misc_lock);
1396 dev->IMR_cache |= ISR_TXOK;
1397 writel(dev->IMR_cache, dev->base + IMR);
1398 spin_unlock_irq(&dev->misc_lock);
1401 /* MIB interrupt: one of the statistics counters is about to overflow */
1402 if (unlikely(ISR_MIB & isr))
1403 ns83820_mib_isr(dev);
1405 /* PHY: Link up/down/negotiation state change */
1406 if (unlikely(ISR_PHY & isr))
1409 #if 0 /* Still working on the interrupt mitigation strategy */
1411 writel(dev->ihr, dev->base + IHR);
1415 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1417 Dprintk("resetting chip...\n");
1418 writel(which, dev->base + CR);
1421 } while (readl(dev->base + CR) & which);
1425 static int ns83820_stop(struct net_device *ndev)
1427 struct ns83820 *dev = PRIV(ndev);
1429 /* FIXME: protect against interrupt handler? */
1430 del_timer_sync(&dev->tx_watchdog);
1432 /* disable interrupts */
1433 writel(0, dev->base + IMR);
1434 writel(0, dev->base + IER);
1435 readl(dev->base + IER);
1437 dev->rx_info.up = 0;
1438 synchronize_irq(dev->pci_dev->irq);
1440 ns83820_do_reset(dev, CR_RST);
1442 synchronize_irq(dev->pci_dev->irq);
1444 spin_lock_irq(&dev->misc_lock);
1445 dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1446 spin_unlock_irq(&dev->misc_lock);
1448 ns83820_cleanup_rx(dev);
1449 ns83820_cleanup_tx(dev);
1454 static void ns83820_tx_timeout(struct net_device *ndev)
1456 struct ns83820 *dev = PRIV(ndev);
1457 u32 tx_done_idx, *desc;
1458 unsigned long flags;
1460 local_irq_save(flags);
1462 tx_done_idx = dev->tx_done_idx;
1463 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1465 printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1467 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1472 isr = readl(dev->base + ISR);
1473 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1474 ns83820_do_isr(ndev, isr);
1480 tx_done_idx = dev->tx_done_idx;
1481 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1483 printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1485 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1487 local_irq_restore(flags);
1490 static void ns83820_tx_watch(unsigned long data)
1492 struct net_device *ndev = (void *)data;
1493 struct ns83820 *dev = PRIV(ndev);
1496 printk("ns83820_tx_watch: %u %u %d\n",
1497 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1501 if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
1502 dev->tx_done_idx != dev->tx_free_idx) {
1503 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1505 dev->tx_done_idx, dev->tx_free_idx,
1506 atomic_read(&dev->nr_tx_skbs));
1507 ns83820_tx_timeout(ndev);
1510 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1513 static int ns83820_open(struct net_device *ndev)
1515 struct ns83820 *dev = PRIV(ndev);
1520 dprintk("ns83820_open\n");
1522 writel(0, dev->base + PQCR);
1524 ret = ns83820_setup_rx(ndev);
1528 memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1529 for (i=0; i<NR_TX_DESC; i++) {
1530 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1533 + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1537 dev->tx_done_idx = 0;
1538 desc = dev->tx_phy_descs;
1539 writel(0, dev->base + TXDP_HI);
1540 writel(desc, dev->base + TXDP);
1542 init_timer(&dev->tx_watchdog);
1543 dev->tx_watchdog.data = (unsigned long)ndev;
1544 dev->tx_watchdog.function = ns83820_tx_watch;
1545 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1547 netif_start_queue(ndev); /* FIXME: wait for phy to come up */
1556 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1559 for (i=0; i<3; i++) {
1561 #if 0 /* I've left this in as an example of how to use eeprom.h */
1562 data = eeprom_readw(&dev->ee, 0xa + 2 - i);
1564 /* Read from the perfect match memory: this is loaded by
1565 * the chip from the EEPROM via the EELOAD self test.
1567 writel(i*2, dev->base + RFCR);
1568 data = readl(dev->base + RFDR);
1575 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1577 if (new_mtu > RX_BUF_SIZE)
1579 ndev->mtu = new_mtu;
1583 static void ns83820_set_multicast(struct net_device *ndev)
1585 struct ns83820 *dev = PRIV(ndev);
1586 u8 __iomem *rfcr = dev->base + RFCR;
1587 u32 and_mask = 0xffffffff;
1591 if (ndev->flags & IFF_PROMISC)
1592 or_mask |= RFCR_AAU | RFCR_AAM;
1594 and_mask &= ~(RFCR_AAU | RFCR_AAM);
1596 if (ndev->flags & IFF_ALLMULTI)
1597 or_mask |= RFCR_AAM;
1599 and_mask &= ~RFCR_AAM;
1601 spin_lock_irq(&dev->misc_lock);
1602 val = (readl(rfcr) & and_mask) | or_mask;
1603 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1604 writel(val & ~RFCR_RFEN, rfcr);
1606 spin_unlock_irq(&dev->misc_lock);
1609 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1611 struct ns83820 *dev = PRIV(ndev);
1617 dprintk("%s: start %s\n", ndev->name, name);
1621 writel(enable, dev->base + PTSCR);
1624 status = readl(dev->base + PTSCR);
1625 if (!(status & enable))
1631 if ((jiffies - start) >= HZ) {
1635 schedule_timeout_uninterruptible(1);
1639 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1640 ndev->name, name, status, fail);
1642 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1643 ndev->name, name, status);
1645 dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1648 #ifdef PHY_CODE_IS_FINISHED
1649 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1652 dev->MEAR_cache &= ~MEAR_MDC;
1653 writel(dev->MEAR_cache, dev->base + MEAR);
1654 readl(dev->base + MEAR);
1656 /* enable output, set bit */
1657 dev->MEAR_cache |= MEAR_MDDIR;
1659 dev->MEAR_cache |= MEAR_MDIO;
1661 dev->MEAR_cache &= ~MEAR_MDIO;
1663 /* set the output bit */
1664 writel(dev->MEAR_cache, dev->base + MEAR);
1665 readl(dev->base + MEAR);
1667 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1670 /* drive MDC high causing the data bit to be latched */
1671 dev->MEAR_cache |= MEAR_MDC;
1672 writel(dev->MEAR_cache, dev->base + MEAR);
1673 readl(dev->base + MEAR);
1679 static int ns83820_mii_read_bit(struct ns83820 *dev)
1683 /* drive MDC low, disable output */
1684 dev->MEAR_cache &= ~MEAR_MDC;
1685 dev->MEAR_cache &= ~MEAR_MDDIR;
1686 writel(dev->MEAR_cache, dev->base + MEAR);
1687 readl(dev->base + MEAR);
1689 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1692 /* drive MDC high causing the data bit to be latched */
1693 bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1694 dev->MEAR_cache |= MEAR_MDC;
1695 writel(dev->MEAR_cache, dev->base + MEAR);
1703 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1708 /* read some garbage so that we eventually sync up */
1709 for (i=0; i<64; i++)
1710 ns83820_mii_read_bit(dev);
1712 ns83820_mii_write_bit(dev, 0); /* start */
1713 ns83820_mii_write_bit(dev, 1);
1714 ns83820_mii_write_bit(dev, 1); /* opcode read */
1715 ns83820_mii_write_bit(dev, 0);
1717 /* write out the phy address: 5 bits, msb first */
1719 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1721 /* write out the register address, 5 bits, msb first */
1723 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1725 ns83820_mii_read_bit(dev); /* turn around cycles */
1726 ns83820_mii_read_bit(dev);
1728 /* read in the register data, 16 bits msb first */
1729 for (i=0; i<16; i++) {
1731 data |= ns83820_mii_read_bit(dev);
1737 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1741 /* read some garbage so that we eventually sync up */
1742 for (i=0; i<64; i++)
1743 ns83820_mii_read_bit(dev);
1745 ns83820_mii_write_bit(dev, 0); /* start */
1746 ns83820_mii_write_bit(dev, 1);
1747 ns83820_mii_write_bit(dev, 0); /* opcode read */
1748 ns83820_mii_write_bit(dev, 1);
1750 /* write out the phy address: 5 bits, msb first */
1752 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1754 /* write out the register address, 5 bits, msb first */
1756 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1758 ns83820_mii_read_bit(dev); /* turn around cycles */
1759 ns83820_mii_read_bit(dev);
1761 /* read in the register data, 16 bits msb first */
1762 for (i=0; i<16; i++)
1763 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1768 static void ns83820_probe_phy(struct net_device *ndev)
1770 struct ns83820 *dev = PRIV(ndev);
1773 #define MII_PHYIDR1 0x02
1774 #define MII_PHYIDR2 0x03
1779 ns83820_mii_read_reg(dev, 1, 0x09);
1780 ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1782 tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1783 ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1785 ns83820_mii_read_reg(dev, 1, 0x09);
1790 for (i=1; i<2; i++) {
1793 a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1794 b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1796 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1797 // ndev->name, i, a, b);
1799 for (j=0; j<0x16; j+=4) {
1800 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1802 ns83820_mii_read_reg(dev, i, 0 + j),
1803 ns83820_mii_read_reg(dev, i, 1 + j),
1804 ns83820_mii_read_reg(dev, i, 2 + j),
1805 ns83820_mii_read_reg(dev, i, 3 + j)
1811 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1812 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1813 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1814 a = ns83820_mii_read_reg(dev, 1, 0x1d);
1816 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1817 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1818 b = ns83820_mii_read_reg(dev, 1, 0x1d);
1819 dprintk("version: 0x%04x 0x%04x\n", a, b);
1824 static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id)
1826 struct net_device *ndev;
1827 struct ns83820 *dev;
1832 /* See if we can set the dma mask early on; failure is fatal. */
1833 if (sizeof(dma_addr_t) == 8 &&
1834 !pci_set_dma_mask(pci_dev, 0xffffffffffffffffULL)) {
1836 } else if (!pci_set_dma_mask(pci_dev, 0xffffffff)) {
1839 printk(KERN_WARNING "ns83820.c: pci_set_dma_mask failed!\n");
1843 ndev = alloc_etherdev(sizeof(struct ns83820));
1849 spin_lock_init(&dev->rx_info.lock);
1850 spin_lock_init(&dev->tx_lock);
1851 spin_lock_init(&dev->misc_lock);
1852 dev->pci_dev = pci_dev;
1854 dev->ee.cache = &dev->MEAR_cache;
1855 dev->ee.lock = &dev->misc_lock;
1856 SET_MODULE_OWNER(ndev);
1857 SET_NETDEV_DEV(ndev, &pci_dev->dev);
1859 INIT_WORK(&dev->tq_refill, queue_refill, ndev);
1860 tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1862 err = pci_enable_device(pci_dev);
1864 printk(KERN_INFO "ns83820: pci_enable_dev failed: %d\n", err);
1868 pci_set_master(pci_dev);
1869 addr = pci_resource_start(pci_dev, 1);
1870 dev->base = ioremap_nocache(addr, PAGE_SIZE);
1871 dev->tx_descs = pci_alloc_consistent(pci_dev,
1872 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1873 dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1874 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1876 if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1879 dprintk("%p: %08lx %p: %08lx\n",
1880 dev->tx_descs, (long)dev->tx_phy_descs,
1881 dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1883 /* disable interrupts */
1884 writel(0, dev->base + IMR);
1885 writel(0, dev->base + IER);
1886 readl(dev->base + IER);
1890 setup_ee_mem_bitbanger(&dev->ee, dev->base + MEAR, 3, 2, 1, 0,
1893 err = request_irq(pci_dev->irq, ns83820_irq, SA_SHIRQ,
1896 printk(KERN_INFO "ns83820: unable to register irq %d\n",
1902 * FIXME: we are holding rtnl_lock() over obscenely long area only
1903 * because some of the setup code uses dev->name. It's Wrong(tm) -
1904 * we should be using driver-specific names for all that stuff.
1905 * For now that will do, but we really need to come back and kill
1906 * most of the dev_alloc_name() users later.
1909 err = dev_alloc_name(ndev, ndev->name);
1911 printk(KERN_INFO "ns83820: unable to get netdev name: %d\n", err);
1915 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1916 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
1917 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1919 ndev->open = ns83820_open;
1920 ndev->stop = ns83820_stop;
1921 ndev->hard_start_xmit = ns83820_hard_start_xmit;
1922 ndev->get_stats = ns83820_get_stats;
1923 ndev->change_mtu = ns83820_change_mtu;
1924 ndev->set_multicast_list = ns83820_set_multicast;
1925 SET_ETHTOOL_OPS(ndev, &ops);
1926 ndev->tx_timeout = ns83820_tx_timeout;
1927 ndev->watchdog_timeo = 5 * HZ;
1928 pci_set_drvdata(pci_dev, ndev);
1930 ns83820_do_reset(dev, CR_RST);
1932 /* Must reset the ram bist before running it */
1933 writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1934 ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
1935 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1936 ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1938 ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
1940 /* I love config registers */
1941 dev->CFG_cache = readl(dev->base + CFG);
1943 if ((dev->CFG_cache & CFG_PCI64_DET)) {
1944 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
1946 /*dev->CFG_cache |= CFG_DATA64_EN;*/
1947 if (!(dev->CFG_cache & CFG_DATA64_EN))
1948 printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
1951 dev->CFG_cache &= ~(CFG_DATA64_EN);
1953 dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
1954 CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
1956 dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
1957 CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
1958 dev->CFG_cache |= CFG_REQALG;
1959 dev->CFG_cache |= CFG_POW;
1960 dev->CFG_cache |= CFG_TMRTEST;
1962 /* When compiled with 64 bit addressing, we must always enable
1963 * the 64 bit descriptor format.
1965 if (sizeof(dma_addr_t) == 8)
1966 dev->CFG_cache |= CFG_M64ADDR;
1968 dev->CFG_cache |= CFG_T64ADDR;
1970 /* Big endian mode does not seem to do what the docs suggest */
1971 dev->CFG_cache &= ~CFG_BEM;
1973 /* setup optical transceiver if we have one */
1974 if (dev->CFG_cache & CFG_TBI_EN) {
1975 printk(KERN_INFO "%s: enabling optical transceiver\n",
1977 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
1979 /* setup auto negotiation feature advertisement */
1980 writel(readl(dev->base + TANAR)
1981 | TANAR_HALF_DUP | TANAR_FULL_DUP,
1984 /* start auto negotiation */
1985 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1987 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1988 dev->linkstate = LINK_AUTONEGOTIATE;
1990 dev->CFG_cache |= CFG_MODE_1000;
1993 writel(dev->CFG_cache, dev->base + CFG);
1994 dprintk("CFG: %08x\n", dev->CFG_cache);
1997 printk(KERN_INFO "%s: resetting phy\n", ndev->name);
1998 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2000 writel(dev->CFG_cache, dev->base + CFG);
2003 #if 0 /* Huh? This sets the PCI latency register. Should be done via
2004 * the PCI layer. FIXME.
2006 if (readl(dev->base + SRR))
2007 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2010 /* Note! The DMA burst size interacts with packet
2011 * transmission, such that the largest packet that
2012 * can be transmitted is 8192 - FLTH - burst size.
2013 * If only the transmit fifo was larger...
2015 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2016 * some DELL and COMPAQ SMP systems */
2017 writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2018 | ((1600 / 32) * 0x100),
2021 /* Flush the interrupt holdoff timer */
2022 writel(0x000, dev->base + IHR);
2023 writel(0x100, dev->base + IHR);
2024 writel(0x000, dev->base + IHR);
2026 /* Set Rx to full duplex, don't accept runt, errored, long or length
2027 * range errored packets. Use 512 byte DMA.
2029 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2030 * some DELL and COMPAQ SMP systems
2031 * Turn on ALP, only we are accpeting Jumbo Packets */
2032 writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2035 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2037 /* Disable priority queueing */
2038 writel(0, dev->base + PQCR);
2040 /* Enable IP checksum validation and detetion of VLAN headers.
2041 * Note: do not set the reject options as at least the 0x102
2042 * revision of the chip does not properly accept IP fragments
2045 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2046 * the MAC it calculates the packetsize AFTER stripping the VLAN
2047 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2048 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2049 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2050 * it discrards it!. These guys......
2051 * also turn on tag stripping if hardware acceleration is enabled
2053 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2054 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2056 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2058 writel(VRCR_INIT_VALUE, dev->base + VRCR);
2060 /* Enable per-packet TCP/UDP/IP checksumming
2061 * and per packet vlan tag insertion if
2062 * vlan hardware acceleration is enabled
2064 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2065 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2067 #define VTCR_INIT_VALUE VTCR_PPCHK
2069 writel(VTCR_INIT_VALUE, dev->base + VTCR);
2071 /* Ramit : Enable async and sync pause frames */
2072 /* writel(0, dev->base + PCR); */
2073 writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2074 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2077 /* Disable Wake On Lan */
2078 writel(0, dev->base + WCSR);
2080 ns83820_getmac(dev, ndev->dev_addr);
2082 /* Yes, we support dumb IP checksum on transmit */
2083 ndev->features |= NETIF_F_SG;
2084 ndev->features |= NETIF_F_IP_CSUM;
2086 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2087 /* We also support hardware vlan acceleration */
2088 ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2089 ndev->vlan_rx_register = ns83820_vlan_rx_register;
2090 ndev->vlan_rx_kill_vid = ns83820_vlan_rx_kill_vid;
2094 printk(KERN_INFO "%s: using 64 bit addressing.\n",
2096 ndev->features |= NETIF_F_HIGHDMA;
2099 printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
2101 (unsigned)readl(dev->base + SRR) >> 8,
2102 (unsigned)readl(dev->base + SRR) & 0xff,
2103 ndev->dev_addr[0], ndev->dev_addr[1],
2104 ndev->dev_addr[2], ndev->dev_addr[3],
2105 ndev->dev_addr[4], ndev->dev_addr[5],
2107 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2110 #ifdef PHY_CODE_IS_FINISHED
2111 ns83820_probe_phy(ndev);
2114 err = register_netdevice(ndev);
2116 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2124 writel(0, dev->base + IMR); /* paranoia */
2125 writel(0, dev->base + IER);
2126 readl(dev->base + IER);
2129 free_irq(pci_dev->irq, ndev);
2133 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2134 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2135 pci_disable_device(pci_dev);
2138 pci_set_drvdata(pci_dev, NULL);
2143 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2145 struct net_device *ndev = pci_get_drvdata(pci_dev);
2146 struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2148 if (!ndev) /* paranoia */
2151 writel(0, dev->base + IMR); /* paranoia */
2152 writel(0, dev->base + IER);
2153 readl(dev->base + IER);
2155 unregister_netdev(ndev);
2156 free_irq(dev->pci_dev->irq, ndev);
2158 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2159 dev->tx_descs, dev->tx_phy_descs);
2160 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2161 dev->rx_info.descs, dev->rx_info.phy_descs);
2162 pci_disable_device(dev->pci_dev);
2164 pci_set_drvdata(pci_dev, NULL);
2167 static struct pci_device_id ns83820_pci_tbl[] = {
2168 { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2172 static struct pci_driver driver = {
2174 .id_table = ns83820_pci_tbl,
2175 .probe = ns83820_init_one,
2176 .remove = __devexit_p(ns83820_remove_one),
2177 #if 0 /* FIXME: implement */
2184 static int __init ns83820_init(void)
2186 printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2187 return pci_module_init(&driver);
2190 static void __exit ns83820_exit(void)
2192 pci_unregister_driver(&driver);
2195 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2196 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2197 MODULE_LICENSE("GPL");
2199 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2201 module_param(lnksts, int, 0);
2202 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2204 module_param(ihr, int, 0);
2205 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2207 module_param(reset_phy, int, 0);
2208 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2210 module_init(ns83820_init);
2211 module_exit(ns83820_exit);