4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
66 /* Measure times between events in the driver. */
69 /* Call every 10 ms. */
70 #define SI_TIMEOUT_TIME_USEC 10000
71 #define SI_USEC_PER_JIFFY (1000000/HZ)
72 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
73 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
81 SI_CLEARING_FLAGS_THEN_SET_IRQ,
83 SI_ENABLE_INTERRUPTS1,
85 /* FIXME - add watchdog stuff. */
88 /* Some BT-specific defines we need here. */
89 #define IPMI_BT_INTMASK_REG 2
90 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
91 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
94 SI_KCS, SI_SMIC, SI_BT
96 static char *si_to_str[] = { "KCS", "SMIC", "BT" };
98 #define DEVICE_NAME "ipmi_si"
100 static struct device_driver ipmi_driver =
103 .bus = &platform_bus_type
110 struct si_sm_data *si_sm;
111 struct si_sm_handlers *handlers;
112 enum si_type si_type;
115 struct list_head xmit_msgs;
116 struct list_head hp_xmit_msgs;
117 struct ipmi_smi_msg *curr_msg;
118 enum si_intf_state si_state;
120 /* Used to handle the various types of I/O that can occur with
123 int (*io_setup)(struct smi_info *info);
124 void (*io_cleanup)(struct smi_info *info);
125 int (*irq_setup)(struct smi_info *info);
126 void (*irq_cleanup)(struct smi_info *info);
127 unsigned int io_size;
128 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
129 void (*addr_source_cleanup)(struct smi_info *info);
130 void *addr_source_data;
132 /* Per-OEM handler, called from handle_flags().
133 Returns 1 when handle_flags() needs to be re-run
134 or 0 indicating it set si_state itself.
136 int (*oem_data_avail_handler)(struct smi_info *smi_info);
138 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
139 is set to hold the flags until we are done handling everything
141 #define RECEIVE_MSG_AVAIL 0x01
142 #define EVENT_MSG_BUFFER_FULL 0x02
143 #define WDT_PRE_TIMEOUT_INT 0x08
144 #define OEM0_DATA_AVAIL 0x20
145 #define OEM1_DATA_AVAIL 0x40
146 #define OEM2_DATA_AVAIL 0x80
147 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
150 unsigned char msg_flags;
152 /* If set to true, this will request events the next time the
153 state machine is idle. */
156 /* If true, run the state machine to completion on every send
157 call. Generally used after a panic to make sure stuff goes
159 int run_to_completion;
161 /* The I/O port of an SI interface. */
164 /* The space between start addresses of the two ports. For
165 instance, if the first port is 0xca2 and the spacing is 4, then
166 the second port is 0xca6. */
167 unsigned int spacing;
169 /* zero if no irq; */
172 /* The timer for this si. */
173 struct timer_list si_timer;
175 /* The time (in jiffies) the last timeout occurred at. */
176 unsigned long last_timeout_jiffies;
178 /* Used to gracefully stop the timer without race conditions. */
179 atomic_t stop_operation;
181 /* The driver will disable interrupts when it gets into a
182 situation where it cannot handle messages due to lack of
183 memory. Once that situation clears up, it will re-enable
185 int interrupt_disabled;
187 /* From the get device id response... */
188 struct ipmi_device_id device_id;
190 /* Driver model stuff. */
192 struct platform_device *pdev;
194 /* True if we allocated the device, false if it came from
195 * someplace else (like PCI). */
198 /* Slave address, could be reported from DMI. */
199 unsigned char slave_addr;
201 /* Counters and things for the proc filesystem. */
202 spinlock_t count_lock;
203 unsigned long short_timeouts;
204 unsigned long long_timeouts;
205 unsigned long timeout_restarts;
207 unsigned long interrupts;
208 unsigned long attentions;
209 unsigned long flag_fetches;
210 unsigned long hosed_count;
211 unsigned long complete_transactions;
212 unsigned long events;
213 unsigned long watchdog_pretimeouts;
214 unsigned long incoming_messages;
216 struct task_struct *thread;
218 struct list_head link;
221 static int try_smi_init(struct smi_info *smi);
223 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
224 static int register_xaction_notifier(struct notifier_block * nb)
226 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
229 static void deliver_recv_msg(struct smi_info *smi_info,
230 struct ipmi_smi_msg *msg)
232 /* Deliver the message to the upper layer with the lock
234 spin_unlock(&(smi_info->si_lock));
235 ipmi_smi_msg_received(smi_info->intf, msg);
236 spin_lock(&(smi_info->si_lock));
239 static void return_hosed_msg(struct smi_info *smi_info)
241 struct ipmi_smi_msg *msg = smi_info->curr_msg;
243 /* Make it a reponse */
244 msg->rsp[0] = msg->data[0] | 4;
245 msg->rsp[1] = msg->data[1];
246 msg->rsp[2] = 0xFF; /* Unknown error. */
249 smi_info->curr_msg = NULL;
250 deliver_recv_msg(smi_info, msg);
253 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
256 struct list_head *entry = NULL;
261 /* No need to save flags, we aleady have interrupts off and we
262 already hold the SMI lock. */
263 spin_lock(&(smi_info->msg_lock));
265 /* Pick the high priority queue first. */
266 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
267 entry = smi_info->hp_xmit_msgs.next;
268 } else if (!list_empty(&(smi_info->xmit_msgs))) {
269 entry = smi_info->xmit_msgs.next;
273 smi_info->curr_msg = NULL;
279 smi_info->curr_msg = list_entry(entry,
284 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
286 err = atomic_notifier_call_chain(&xaction_notifier_list,
288 if (err & NOTIFY_STOP_MASK) {
289 rv = SI_SM_CALL_WITHOUT_DELAY;
292 err = smi_info->handlers->start_transaction(
294 smi_info->curr_msg->data,
295 smi_info->curr_msg->data_size);
297 return_hosed_msg(smi_info);
300 rv = SI_SM_CALL_WITHOUT_DELAY;
303 spin_unlock(&(smi_info->msg_lock));
308 static void start_enable_irq(struct smi_info *smi_info)
310 unsigned char msg[2];
312 /* If we are enabling interrupts, we have to tell the
314 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
315 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
317 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
318 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
321 static void start_clear_flags(struct smi_info *smi_info)
323 unsigned char msg[3];
325 /* Make sure the watchdog pre-timeout flag is not set at startup. */
326 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
327 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
328 msg[2] = WDT_PRE_TIMEOUT_INT;
330 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
331 smi_info->si_state = SI_CLEARING_FLAGS;
334 /* When we have a situtaion where we run out of memory and cannot
335 allocate messages, we just leave them in the BMC and run the system
336 polled until we can allocate some memory. Once we have some
337 memory, we will re-enable the interrupt. */
338 static inline void disable_si_irq(struct smi_info *smi_info)
340 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
341 disable_irq_nosync(smi_info->irq);
342 smi_info->interrupt_disabled = 1;
346 static inline void enable_si_irq(struct smi_info *smi_info)
348 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
349 enable_irq(smi_info->irq);
350 smi_info->interrupt_disabled = 0;
354 static void handle_flags(struct smi_info *smi_info)
357 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
358 /* Watchdog pre-timeout */
359 spin_lock(&smi_info->count_lock);
360 smi_info->watchdog_pretimeouts++;
361 spin_unlock(&smi_info->count_lock);
363 start_clear_flags(smi_info);
364 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
365 spin_unlock(&(smi_info->si_lock));
366 ipmi_smi_watchdog_pretimeout(smi_info->intf);
367 spin_lock(&(smi_info->si_lock));
368 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
369 /* Messages available. */
370 smi_info->curr_msg = ipmi_alloc_smi_msg();
371 if (!smi_info->curr_msg) {
372 disable_si_irq(smi_info);
373 smi_info->si_state = SI_NORMAL;
376 enable_si_irq(smi_info);
378 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
379 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
380 smi_info->curr_msg->data_size = 2;
382 smi_info->handlers->start_transaction(
384 smi_info->curr_msg->data,
385 smi_info->curr_msg->data_size);
386 smi_info->si_state = SI_GETTING_MESSAGES;
387 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
388 /* Events available. */
389 smi_info->curr_msg = ipmi_alloc_smi_msg();
390 if (!smi_info->curr_msg) {
391 disable_si_irq(smi_info);
392 smi_info->si_state = SI_NORMAL;
395 enable_si_irq(smi_info);
397 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
398 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
399 smi_info->curr_msg->data_size = 2;
401 smi_info->handlers->start_transaction(
403 smi_info->curr_msg->data,
404 smi_info->curr_msg->data_size);
405 smi_info->si_state = SI_GETTING_EVENTS;
406 } else if (smi_info->msg_flags & OEM_DATA_AVAIL) {
407 if (smi_info->oem_data_avail_handler)
408 if (smi_info->oem_data_avail_handler(smi_info))
411 smi_info->si_state = SI_NORMAL;
415 static void handle_transaction_done(struct smi_info *smi_info)
417 struct ipmi_smi_msg *msg;
422 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
424 switch (smi_info->si_state) {
426 if (!smi_info->curr_msg)
429 smi_info->curr_msg->rsp_size
430 = smi_info->handlers->get_result(
432 smi_info->curr_msg->rsp,
433 IPMI_MAX_MSG_LENGTH);
435 /* Do this here becase deliver_recv_msg() releases the
436 lock, and a new message can be put in during the
437 time the lock is released. */
438 msg = smi_info->curr_msg;
439 smi_info->curr_msg = NULL;
440 deliver_recv_msg(smi_info, msg);
443 case SI_GETTING_FLAGS:
445 unsigned char msg[4];
448 /* We got the flags from the SMI, now handle them. */
449 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
451 /* Error fetching flags, just give up for
453 smi_info->si_state = SI_NORMAL;
454 } else if (len < 4) {
455 /* Hmm, no flags. That's technically illegal, but
456 don't use uninitialized data. */
457 smi_info->si_state = SI_NORMAL;
459 smi_info->msg_flags = msg[3];
460 handle_flags(smi_info);
465 case SI_CLEARING_FLAGS:
466 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
468 unsigned char msg[3];
470 /* We cleared the flags. */
471 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
473 /* Error clearing flags */
475 "ipmi_si: Error clearing flags: %2.2x\n",
478 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
479 start_enable_irq(smi_info);
481 smi_info->si_state = SI_NORMAL;
485 case SI_GETTING_EVENTS:
487 smi_info->curr_msg->rsp_size
488 = smi_info->handlers->get_result(
490 smi_info->curr_msg->rsp,
491 IPMI_MAX_MSG_LENGTH);
493 /* Do this here becase deliver_recv_msg() releases the
494 lock, and a new message can be put in during the
495 time the lock is released. */
496 msg = smi_info->curr_msg;
497 smi_info->curr_msg = NULL;
498 if (msg->rsp[2] != 0) {
499 /* Error getting event, probably done. */
502 /* Take off the event flag. */
503 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
504 handle_flags(smi_info);
506 spin_lock(&smi_info->count_lock);
508 spin_unlock(&smi_info->count_lock);
510 /* Do this before we deliver the message
511 because delivering the message releases the
512 lock and something else can mess with the
514 handle_flags(smi_info);
516 deliver_recv_msg(smi_info, msg);
521 case SI_GETTING_MESSAGES:
523 smi_info->curr_msg->rsp_size
524 = smi_info->handlers->get_result(
526 smi_info->curr_msg->rsp,
527 IPMI_MAX_MSG_LENGTH);
529 /* Do this here becase deliver_recv_msg() releases the
530 lock, and a new message can be put in during the
531 time the lock is released. */
532 msg = smi_info->curr_msg;
533 smi_info->curr_msg = NULL;
534 if (msg->rsp[2] != 0) {
535 /* Error getting event, probably done. */
538 /* Take off the msg flag. */
539 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
540 handle_flags(smi_info);
542 spin_lock(&smi_info->count_lock);
543 smi_info->incoming_messages++;
544 spin_unlock(&smi_info->count_lock);
546 /* Do this before we deliver the message
547 because delivering the message releases the
548 lock and something else can mess with the
550 handle_flags(smi_info);
552 deliver_recv_msg(smi_info, msg);
557 case SI_ENABLE_INTERRUPTS1:
559 unsigned char msg[4];
561 /* We got the flags from the SMI, now handle them. */
562 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
565 "ipmi_si: Could not enable interrupts"
566 ", failed get, using polled mode.\n");
567 smi_info->si_state = SI_NORMAL;
569 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
570 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
571 msg[2] = msg[3] | 1; /* enable msg queue int */
572 smi_info->handlers->start_transaction(
573 smi_info->si_sm, msg, 3);
574 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
579 case SI_ENABLE_INTERRUPTS2:
581 unsigned char msg[4];
583 /* We got the flags from the SMI, now handle them. */
584 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
587 "ipmi_si: Could not enable interrupts"
588 ", failed set, using polled mode.\n");
590 smi_info->si_state = SI_NORMAL;
596 /* Called on timeouts and events. Timeouts should pass the elapsed
597 time, interrupts should pass in zero. */
598 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
601 enum si_sm_result si_sm_result;
604 /* There used to be a loop here that waited a little while
605 (around 25us) before giving up. That turned out to be
606 pointless, the minimum delays I was seeing were in the 300us
607 range, which is far too long to wait in an interrupt. So
608 we just run until the state machine tells us something
609 happened or it needs a delay. */
610 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
612 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
614 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
617 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
619 spin_lock(&smi_info->count_lock);
620 smi_info->complete_transactions++;
621 spin_unlock(&smi_info->count_lock);
623 handle_transaction_done(smi_info);
624 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
626 else if (si_sm_result == SI_SM_HOSED)
628 spin_lock(&smi_info->count_lock);
629 smi_info->hosed_count++;
630 spin_unlock(&smi_info->count_lock);
632 /* Do the before return_hosed_msg, because that
633 releases the lock. */
634 smi_info->si_state = SI_NORMAL;
635 if (smi_info->curr_msg != NULL) {
636 /* If we were handling a user message, format
637 a response to send to the upper layer to
638 tell it about the error. */
639 return_hosed_msg(smi_info);
641 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
644 /* We prefer handling attn over new messages. */
645 if (si_sm_result == SI_SM_ATTN)
647 unsigned char msg[2];
649 spin_lock(&smi_info->count_lock);
650 smi_info->attentions++;
651 spin_unlock(&smi_info->count_lock);
653 /* Got a attn, send down a get message flags to see
654 what's causing it. It would be better to handle
655 this in the upper layer, but due to the way
656 interrupts work with the SMI, that's not really
658 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
659 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
661 smi_info->handlers->start_transaction(
662 smi_info->si_sm, msg, 2);
663 smi_info->si_state = SI_GETTING_FLAGS;
667 /* If we are currently idle, try to start the next message. */
668 if (si_sm_result == SI_SM_IDLE) {
669 spin_lock(&smi_info->count_lock);
671 spin_unlock(&smi_info->count_lock);
673 si_sm_result = start_next_msg(smi_info);
674 if (si_sm_result != SI_SM_IDLE)
678 if ((si_sm_result == SI_SM_IDLE)
679 && (atomic_read(&smi_info->req_events)))
681 /* We are idle and the upper layer requested that I fetch
683 unsigned char msg[2];
685 spin_lock(&smi_info->count_lock);
686 smi_info->flag_fetches++;
687 spin_unlock(&smi_info->count_lock);
689 atomic_set(&smi_info->req_events, 0);
690 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
691 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
693 smi_info->handlers->start_transaction(
694 smi_info->si_sm, msg, 2);
695 smi_info->si_state = SI_GETTING_FLAGS;
702 static void sender(void *send_info,
703 struct ipmi_smi_msg *msg,
706 struct smi_info *smi_info = send_info;
707 enum si_sm_result result;
713 spin_lock_irqsave(&(smi_info->msg_lock), flags);
716 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
719 if (smi_info->run_to_completion) {
720 /* If we are running to completion, then throw it in
721 the list and run transactions until everything is
722 clear. Priority doesn't matter here. */
723 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
725 /* We have to release the msg lock and claim the smi
726 lock in this case, because of race conditions. */
727 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
729 spin_lock_irqsave(&(smi_info->si_lock), flags);
730 result = smi_event_handler(smi_info, 0);
731 while (result != SI_SM_IDLE) {
732 udelay(SI_SHORT_TIMEOUT_USEC);
733 result = smi_event_handler(smi_info,
734 SI_SHORT_TIMEOUT_USEC);
736 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
740 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
742 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
745 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
747 spin_lock_irqsave(&(smi_info->si_lock), flags);
748 if ((smi_info->si_state == SI_NORMAL)
749 && (smi_info->curr_msg == NULL))
751 start_next_msg(smi_info);
753 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
756 static void set_run_to_completion(void *send_info, int i_run_to_completion)
758 struct smi_info *smi_info = send_info;
759 enum si_sm_result result;
762 spin_lock_irqsave(&(smi_info->si_lock), flags);
764 smi_info->run_to_completion = i_run_to_completion;
765 if (i_run_to_completion) {
766 result = smi_event_handler(smi_info, 0);
767 while (result != SI_SM_IDLE) {
768 udelay(SI_SHORT_TIMEOUT_USEC);
769 result = smi_event_handler(smi_info,
770 SI_SHORT_TIMEOUT_USEC);
774 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
777 static int ipmi_thread(void *data)
779 struct smi_info *smi_info = data;
781 enum si_sm_result smi_result;
783 set_user_nice(current, 19);
784 while (!kthread_should_stop()) {
785 spin_lock_irqsave(&(smi_info->si_lock), flags);
786 smi_result = smi_event_handler(smi_info, 0);
787 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
788 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
791 else if (smi_result == SI_SM_CALL_WITH_DELAY)
794 schedule_timeout_interruptible(1);
800 static void poll(void *send_info)
802 struct smi_info *smi_info = send_info;
804 smi_event_handler(smi_info, 0);
807 static void request_events(void *send_info)
809 struct smi_info *smi_info = send_info;
811 atomic_set(&smi_info->req_events, 1);
814 static int initialized = 0;
816 static void smi_timeout(unsigned long data)
818 struct smi_info *smi_info = (struct smi_info *) data;
819 enum si_sm_result smi_result;
821 unsigned long jiffies_now;
827 if (atomic_read(&smi_info->stop_operation))
830 spin_lock_irqsave(&(smi_info->si_lock), flags);
833 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
835 jiffies_now = jiffies;
836 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
837 * SI_USEC_PER_JIFFY);
838 smi_result = smi_event_handler(smi_info, time_diff);
840 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
842 smi_info->last_timeout_jiffies = jiffies_now;
844 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
845 /* Running with interrupts, only do long timeouts. */
846 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
847 spin_lock_irqsave(&smi_info->count_lock, flags);
848 smi_info->long_timeouts++;
849 spin_unlock_irqrestore(&smi_info->count_lock, flags);
853 /* If the state machine asks for a short delay, then shorten
854 the timer timeout. */
855 if (smi_result == SI_SM_CALL_WITH_DELAY) {
856 spin_lock_irqsave(&smi_info->count_lock, flags);
857 smi_info->short_timeouts++;
858 spin_unlock_irqrestore(&smi_info->count_lock, flags);
859 smi_info->si_timer.expires = jiffies + 1;
861 spin_lock_irqsave(&smi_info->count_lock, flags);
862 smi_info->long_timeouts++;
863 spin_unlock_irqrestore(&smi_info->count_lock, flags);
864 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
868 add_timer(&(smi_info->si_timer));
871 static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
873 struct smi_info *smi_info = data;
879 spin_lock_irqsave(&(smi_info->si_lock), flags);
881 spin_lock(&smi_info->count_lock);
882 smi_info->interrupts++;
883 spin_unlock(&smi_info->count_lock);
885 if (atomic_read(&smi_info->stop_operation))
890 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
892 smi_event_handler(smi_info, 0);
894 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
898 static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
900 struct smi_info *smi_info = data;
901 /* We need to clear the IRQ flag for the BT interface. */
902 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
903 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
904 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
905 return si_irq_handler(irq, data, regs);
908 static int smi_start_processing(void *send_info,
911 struct smi_info *new_smi = send_info;
913 new_smi->intf = intf;
915 /* Set up the timer that drives the interface. */
916 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
917 new_smi->last_timeout_jiffies = jiffies;
918 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
920 if (new_smi->si_type != SI_BT) {
921 new_smi->thread = kthread_run(ipmi_thread, new_smi,
922 "kipmi%d", new_smi->intf_num);
923 if (IS_ERR(new_smi->thread)) {
924 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
925 " kernel thread due to error %ld, only using"
926 " timers to drive the interface\n",
927 PTR_ERR(new_smi->thread));
928 new_smi->thread = NULL;
935 static struct ipmi_smi_handlers handlers =
937 .owner = THIS_MODULE,
938 .start_processing = smi_start_processing,
940 .request_events = request_events,
941 .set_run_to_completion = set_run_to_completion,
945 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
946 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
948 #define SI_MAX_PARMS 4
949 static LIST_HEAD(smi_infos);
950 static DEFINE_MUTEX(smi_infos_lock);
951 static int smi_num; /* Used to sequence the SMIs */
953 #define DEFAULT_REGSPACING 1
955 static int si_trydefaults = 1;
956 static char *si_type[SI_MAX_PARMS];
957 #define MAX_SI_TYPE_STR 30
958 static char si_type_str[MAX_SI_TYPE_STR];
959 static unsigned long addrs[SI_MAX_PARMS];
960 static int num_addrs;
961 static unsigned int ports[SI_MAX_PARMS];
962 static int num_ports;
963 static int irqs[SI_MAX_PARMS];
965 static int regspacings[SI_MAX_PARMS];
966 static int num_regspacings = 0;
967 static int regsizes[SI_MAX_PARMS];
968 static int num_regsizes = 0;
969 static int regshifts[SI_MAX_PARMS];
970 static int num_regshifts = 0;
971 static int slave_addrs[SI_MAX_PARMS];
972 static int num_slave_addrs = 0;
975 module_param_named(trydefaults, si_trydefaults, bool, 0);
976 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
977 " default scan of the KCS and SMIC interface at the standard"
979 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
980 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
981 " interface separated by commas. The types are 'kcs',"
982 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
983 " the first interface to kcs and the second to bt");
984 module_param_array(addrs, long, &num_addrs, 0);
985 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
986 " addresses separated by commas. Only use if an interface"
987 " is in memory. Otherwise, set it to zero or leave"
989 module_param_array(ports, int, &num_ports, 0);
990 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
991 " addresses separated by commas. Only use if an interface"
992 " is a port. Otherwise, set it to zero or leave"
994 module_param_array(irqs, int, &num_irqs, 0);
995 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
996 " addresses separated by commas. Only use if an interface"
997 " has an interrupt. Otherwise, set it to zero or leave"
999 module_param_array(regspacings, int, &num_regspacings, 0);
1000 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1001 " and each successive register used by the interface. For"
1002 " instance, if the start address is 0xca2 and the spacing"
1003 " is 2, then the second address is at 0xca4. Defaults"
1005 module_param_array(regsizes, int, &num_regsizes, 0);
1006 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1007 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1008 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1009 " the 8-bit IPMI register has to be read from a larger"
1011 module_param_array(regshifts, int, &num_regshifts, 0);
1012 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1013 " IPMI register, in bits. For instance, if the data"
1014 " is read from a 32-bit word and the IPMI data is in"
1015 " bit 8-15, then the shift would be 8");
1016 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1017 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1018 " the controller. Normally this is 0x20, but can be"
1019 " overridden by this parm. This is an array indexed"
1020 " by interface number.");
1023 #define IPMI_IO_ADDR_SPACE 0
1024 #define IPMI_MEM_ADDR_SPACE 1
1025 static char *addr_space_to_str[] = { "I/O", "memory" };
1027 static void std_irq_cleanup(struct smi_info *info)
1029 if (info->si_type == SI_BT)
1030 /* Disable the interrupt in the BT interface. */
1031 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1032 free_irq(info->irq, info);
1035 static int std_irq_setup(struct smi_info *info)
1042 if (info->si_type == SI_BT) {
1043 rv = request_irq(info->irq,
1049 /* Enable the interrupt in the BT interface. */
1050 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1051 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1053 rv = request_irq(info->irq,
1060 "ipmi_si: %s unable to claim interrupt %d,"
1061 " running polled\n",
1062 DEVICE_NAME, info->irq);
1065 info->irq_cleanup = std_irq_cleanup;
1066 printk(" Using irq %d\n", info->irq);
1072 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1074 unsigned int addr = io->addr_data;
1076 return inb(addr + (offset * io->regspacing));
1079 static void port_outb(struct si_sm_io *io, unsigned int offset,
1082 unsigned int addr = io->addr_data;
1084 outb(b, addr + (offset * io->regspacing));
1087 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1089 unsigned int addr = io->addr_data;
1091 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1094 static void port_outw(struct si_sm_io *io, unsigned int offset,
1097 unsigned int addr = io->addr_data;
1099 outw(b << io->regshift, addr + (offset * io->regspacing));
1102 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1104 unsigned int addr = io->addr_data;
1106 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1109 static void port_outl(struct si_sm_io *io, unsigned int offset,
1112 unsigned int addr = io->addr_data;
1114 outl(b << io->regshift, addr+(offset * io->regspacing));
1117 static void port_cleanup(struct smi_info *info)
1119 unsigned int addr = info->io.addr_data;
1123 for (idx = 0; idx < info->io_size; idx++) {
1124 release_region(addr + idx * info->io.regspacing,
1130 static int port_setup(struct smi_info *info)
1132 unsigned int addr = info->io.addr_data;
1138 info->io_cleanup = port_cleanup;
1140 /* Figure out the actual inb/inw/inl/etc routine to use based
1141 upon the register size. */
1142 switch (info->io.regsize) {
1144 info->io.inputb = port_inb;
1145 info->io.outputb = port_outb;
1148 info->io.inputb = port_inw;
1149 info->io.outputb = port_outw;
1152 info->io.inputb = port_inl;
1153 info->io.outputb = port_outl;
1156 printk("ipmi_si: Invalid register size: %d\n",
1161 /* Some BIOSes reserve disjoint I/O regions in their ACPI
1162 * tables. This causes problems when trying to register the
1163 * entire I/O region. Therefore we must register each I/O
1166 for (idx = 0; idx < info->io_size; idx++) {
1167 if (request_region(addr + idx * info->io.regspacing,
1168 info->io.regsize, DEVICE_NAME) == NULL) {
1169 /* Undo allocations */
1171 release_region(addr + idx * info->io.regspacing,
1180 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1182 return readb((io->addr)+(offset * io->regspacing));
1185 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1188 writeb(b, (io->addr)+(offset * io->regspacing));
1191 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1193 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1197 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1200 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1203 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1205 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1209 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1212 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1216 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1218 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1222 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1225 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1229 static void mem_cleanup(struct smi_info *info)
1231 unsigned long addr = info->io.addr_data;
1234 if (info->io.addr) {
1235 iounmap(info->io.addr);
1237 mapsize = ((info->io_size * info->io.regspacing)
1238 - (info->io.regspacing - info->io.regsize));
1240 release_mem_region(addr, mapsize);
1244 static int mem_setup(struct smi_info *info)
1246 unsigned long addr = info->io.addr_data;
1252 info->io_cleanup = mem_cleanup;
1254 /* Figure out the actual readb/readw/readl/etc routine to use based
1255 upon the register size. */
1256 switch (info->io.regsize) {
1258 info->io.inputb = intf_mem_inb;
1259 info->io.outputb = intf_mem_outb;
1262 info->io.inputb = intf_mem_inw;
1263 info->io.outputb = intf_mem_outw;
1266 info->io.inputb = intf_mem_inl;
1267 info->io.outputb = intf_mem_outl;
1271 info->io.inputb = mem_inq;
1272 info->io.outputb = mem_outq;
1276 printk("ipmi_si: Invalid register size: %d\n",
1281 /* Calculate the total amount of memory to claim. This is an
1282 * unusual looking calculation, but it avoids claiming any
1283 * more memory than it has to. It will claim everything
1284 * between the first address to the end of the last full
1286 mapsize = ((info->io_size * info->io.regspacing)
1287 - (info->io.regspacing - info->io.regsize));
1289 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1292 info->io.addr = ioremap(addr, mapsize);
1293 if (info->io.addr == NULL) {
1294 release_mem_region(addr, mapsize);
1301 static __devinit void hardcode_find_bmc(void)
1304 struct smi_info *info;
1306 for (i = 0; i < SI_MAX_PARMS; i++) {
1307 if (!ports[i] && !addrs[i])
1310 info = kzalloc(sizeof(*info), GFP_KERNEL);
1314 info->addr_source = "hardcoded";
1316 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1317 info->si_type = SI_KCS;
1318 } else if (strcmp(si_type[i], "smic") == 0) {
1319 info->si_type = SI_SMIC;
1320 } else if (strcmp(si_type[i], "bt") == 0) {
1321 info->si_type = SI_BT;
1324 "ipmi_si: Interface type specified "
1325 "for interface %d, was invalid: %s\n",
1333 info->io_setup = port_setup;
1334 info->io.addr_data = ports[i];
1335 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1336 } else if (addrs[i]) {
1338 info->io_setup = mem_setup;
1339 info->io.addr_data = addrs[i];
1340 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1343 "ipmi_si: Interface type specified "
1344 "for interface %d, "
1345 "but port and address were not set or "
1346 "set to zero.\n", i);
1351 info->io.addr = NULL;
1352 info->io.regspacing = regspacings[i];
1353 if (!info->io.regspacing)
1354 info->io.regspacing = DEFAULT_REGSPACING;
1355 info->io.regsize = regsizes[i];
1356 if (!info->io.regsize)
1357 info->io.regsize = DEFAULT_REGSPACING;
1358 info->io.regshift = regshifts[i];
1359 info->irq = irqs[i];
1361 info->irq_setup = std_irq_setup;
1369 #include <linux/acpi.h>
1371 /* Once we get an ACPI failure, we don't try any more, because we go
1372 through the tables sequentially. Once we don't find a table, there
1374 static int acpi_failure = 0;
1376 /* For GPE-type interrupts. */
1377 static u32 ipmi_acpi_gpe(void *context)
1379 struct smi_info *smi_info = context;
1380 unsigned long flags;
1385 spin_lock_irqsave(&(smi_info->si_lock), flags);
1387 spin_lock(&smi_info->count_lock);
1388 smi_info->interrupts++;
1389 spin_unlock(&smi_info->count_lock);
1391 if (atomic_read(&smi_info->stop_operation))
1395 do_gettimeofday(&t);
1396 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1398 smi_event_handler(smi_info, 0);
1400 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1402 return ACPI_INTERRUPT_HANDLED;
1405 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1410 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1413 static int acpi_gpe_irq_setup(struct smi_info *info)
1420 /* FIXME - is level triggered right? */
1421 status = acpi_install_gpe_handler(NULL,
1423 ACPI_GPE_LEVEL_TRIGGERED,
1426 if (status != AE_OK) {
1428 "ipmi_si: %s unable to claim ACPI GPE %d,"
1429 " running polled\n",
1430 DEVICE_NAME, info->irq);
1434 info->irq_cleanup = acpi_gpe_irq_cleanup;
1435 printk(" Using ACPI GPE %d\n", info->irq);
1442 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1453 s8 CreatorRevision[4];
1456 s16 SpecificationRevision;
1459 * Bit 0 - SCI interrupt supported
1460 * Bit 1 - I/O APIC/SAPIC
1464 /* If bit 0 of InterruptType is set, then this is the SCI
1465 interrupt in the GPEx_STS register. */
1470 /* If bit 1 of InterruptType is set, then this is the I/O
1471 APIC/SAPIC interrupt. */
1472 u32 GlobalSystemInterrupt;
1474 /* The actual register address. */
1475 struct acpi_generic_address addr;
1479 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1482 static __devinit int try_init_acpi(struct SPMITable *spmi)
1484 struct smi_info *info;
1488 if (spmi->IPMIlegacy != 1) {
1489 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1493 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1494 addr_space = IPMI_MEM_ADDR_SPACE;
1496 addr_space = IPMI_IO_ADDR_SPACE;
1498 info = kzalloc(sizeof(*info), GFP_KERNEL);
1500 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1504 info->addr_source = "ACPI";
1506 /* Figure out the interface type. */
1507 switch (spmi->InterfaceType)
1510 info->si_type = SI_KCS;
1513 info->si_type = SI_SMIC;
1516 info->si_type = SI_BT;
1519 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1520 spmi->InterfaceType);
1525 if (spmi->InterruptType & 1) {
1526 /* We've got a GPE interrupt. */
1527 info->irq = spmi->GPE;
1528 info->irq_setup = acpi_gpe_irq_setup;
1529 } else if (spmi->InterruptType & 2) {
1530 /* We've got an APIC/SAPIC interrupt. */
1531 info->irq = spmi->GlobalSystemInterrupt;
1532 info->irq_setup = std_irq_setup;
1534 /* Use the default interrupt setting. */
1536 info->irq_setup = NULL;
1539 if (spmi->addr.register_bit_width) {
1540 /* A (hopefully) properly formed register bit width. */
1541 info->io.regspacing = spmi->addr.register_bit_width / 8;
1543 info->io.regspacing = DEFAULT_REGSPACING;
1545 info->io.regsize = info->io.regspacing;
1546 info->io.regshift = spmi->addr.register_bit_offset;
1548 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1550 info->io_setup = mem_setup;
1551 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1552 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1554 info->io_setup = port_setup;
1555 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1558 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1561 info->io.addr_data = spmi->addr.address;
1568 static __devinit void acpi_find_bmc(void)
1571 struct SPMITable *spmi;
1580 for (i = 0; ; i++) {
1581 status = acpi_get_firmware_table("SPMI", i+1,
1582 ACPI_LOGICAL_ADDRESSING,
1583 (struct acpi_table_header **)
1585 if (status != AE_OK)
1588 try_init_acpi(spmi);
1594 struct dmi_ipmi_data
1598 unsigned long base_addr;
1604 static int __devinit decode_dmi(struct dmi_header *dm,
1605 struct dmi_ipmi_data *dmi)
1607 u8 *data = (u8 *)dm;
1608 unsigned long base_addr;
1610 u8 len = dm->length;
1612 dmi->type = data[4];
1614 memcpy(&base_addr, data+8, sizeof(unsigned long));
1616 if (base_addr & 1) {
1618 base_addr &= 0xFFFE;
1619 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1623 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1625 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1627 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1629 dmi->irq = data[0x11];
1631 /* The top two bits of byte 0x10 hold the register spacing. */
1632 reg_spacing = (data[0x10] & 0xC0) >> 6;
1633 switch(reg_spacing){
1634 case 0x00: /* Byte boundaries */
1637 case 0x01: /* 32-bit boundaries */
1640 case 0x02: /* 16-byte boundaries */
1644 /* Some other interface, just ignore it. */
1649 /* Note that technically, the lower bit of the base
1650 * address should be 1 if the address is I/O and 0 if
1651 * the address is in memory. So many systems get that
1652 * wrong (and all that I have seen are I/O) so we just
1653 * ignore that bit and assume I/O. Systems that use
1654 * memory should use the newer spec, anyway. */
1655 dmi->base_addr = base_addr & 0xfffe;
1656 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1660 dmi->slave_addr = data[6];
1665 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1667 struct smi_info *info;
1669 info = kzalloc(sizeof(*info), GFP_KERNEL);
1672 "ipmi_si: Could not allocate SI data\n");
1676 info->addr_source = "SMBIOS";
1678 switch (ipmi_data->type) {
1679 case 0x01: /* KCS */
1680 info->si_type = SI_KCS;
1682 case 0x02: /* SMIC */
1683 info->si_type = SI_SMIC;
1686 info->si_type = SI_BT;
1692 switch (ipmi_data->addr_space) {
1693 case IPMI_MEM_ADDR_SPACE:
1694 info->io_setup = mem_setup;
1695 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1698 case IPMI_IO_ADDR_SPACE:
1699 info->io_setup = port_setup;
1700 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1706 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
1707 ipmi_data->addr_space);
1710 info->io.addr_data = ipmi_data->base_addr;
1712 info->io.regspacing = ipmi_data->offset;
1713 if (!info->io.regspacing)
1714 info->io.regspacing = DEFAULT_REGSPACING;
1715 info->io.regsize = DEFAULT_REGSPACING;
1716 info->io.regshift = 0;
1718 info->slave_addr = ipmi_data->slave_addr;
1720 info->irq = ipmi_data->irq;
1722 info->irq_setup = std_irq_setup;
1727 static void __devinit dmi_find_bmc(void)
1729 struct dmi_device *dev = NULL;
1730 struct dmi_ipmi_data data;
1733 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1734 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
1736 try_init_dmi(&data);
1739 #endif /* CONFIG_DMI */
1743 #define PCI_ERMC_CLASSCODE 0x0C0700
1744 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
1745 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
1746 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
1747 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
1748 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
1750 #define PCI_HP_VENDOR_ID 0x103C
1751 #define PCI_MMC_DEVICE_ID 0x121A
1752 #define PCI_MMC_ADDR_CW 0x10
1754 static void ipmi_pci_cleanup(struct smi_info *info)
1756 struct pci_dev *pdev = info->addr_source_data;
1758 pci_disable_device(pdev);
1761 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
1762 const struct pci_device_id *ent)
1765 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
1766 struct smi_info *info;
1767 int first_reg_offset = 0;
1769 info = kzalloc(sizeof(*info), GFP_KERNEL);
1773 info->addr_source = "PCI";
1775 switch (class_type) {
1776 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
1777 info->si_type = SI_SMIC;
1780 case PCI_ERMC_CLASSCODE_TYPE_KCS:
1781 info->si_type = SI_KCS;
1784 case PCI_ERMC_CLASSCODE_TYPE_BT:
1785 info->si_type = SI_BT;
1790 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
1791 pci_name(pdev), class_type);
1795 rv = pci_enable_device(pdev);
1797 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
1803 info->addr_source_cleanup = ipmi_pci_cleanup;
1804 info->addr_source_data = pdev;
1806 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
1807 first_reg_offset = 1;
1809 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
1810 info->io_setup = port_setup;
1811 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1813 info->io_setup = mem_setup;
1814 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1816 info->io.addr_data = pci_resource_start(pdev, 0);
1818 info->io.regspacing = DEFAULT_REGSPACING;
1819 info->io.regsize = DEFAULT_REGSPACING;
1820 info->io.regshift = 0;
1822 info->irq = pdev->irq;
1824 info->irq_setup = std_irq_setup;
1826 info->dev = &pdev->dev;
1828 return try_smi_init(info);
1831 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
1836 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
1841 static int ipmi_pci_resume(struct pci_dev *pdev)
1847 static struct pci_device_id ipmi_pci_devices[] = {
1848 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
1849 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE) }
1851 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
1853 static struct pci_driver ipmi_pci_driver = {
1854 .name = DEVICE_NAME,
1855 .id_table = ipmi_pci_devices,
1856 .probe = ipmi_pci_probe,
1857 .remove = __devexit_p(ipmi_pci_remove),
1859 .suspend = ipmi_pci_suspend,
1860 .resume = ipmi_pci_resume,
1863 #endif /* CONFIG_PCI */
1866 static int try_get_dev_id(struct smi_info *smi_info)
1868 unsigned char msg[2];
1869 unsigned char *resp;
1870 unsigned long resp_len;
1871 enum si_sm_result smi_result;
1874 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1878 /* Do a Get Device ID command, since it comes back with some
1880 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1881 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1882 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1884 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1887 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1888 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1889 schedule_timeout_uninterruptible(1);
1890 smi_result = smi_info->handlers->event(
1891 smi_info->si_sm, 100);
1893 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1895 smi_result = smi_info->handlers->event(
1896 smi_info->si_sm, 0);
1901 if (smi_result == SI_SM_HOSED) {
1902 /* We couldn't get the state machine to run, so whatever's at
1903 the port is probably not an IPMI SMI interface. */
1908 /* Otherwise, we got some data. */
1909 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1910 resp, IPMI_MAX_MSG_LENGTH);
1911 if (resp_len < 14) {
1912 /* That's odd, it should be longer. */
1917 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1918 /* That's odd, it shouldn't be able to fail. */
1923 /* Record info from the get device id, in case we need it. */
1924 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
1931 static int type_file_read_proc(char *page, char **start, off_t off,
1932 int count, int *eof, void *data)
1934 char *out = (char *) page;
1935 struct smi_info *smi = data;
1937 switch (smi->si_type) {
1939 return sprintf(out, "kcs\n");
1941 return sprintf(out, "smic\n");
1943 return sprintf(out, "bt\n");
1949 static int stat_file_read_proc(char *page, char **start, off_t off,
1950 int count, int *eof, void *data)
1952 char *out = (char *) page;
1953 struct smi_info *smi = data;
1955 out += sprintf(out, "interrupts_enabled: %d\n",
1956 smi->irq && !smi->interrupt_disabled);
1957 out += sprintf(out, "short_timeouts: %ld\n",
1958 smi->short_timeouts);
1959 out += sprintf(out, "long_timeouts: %ld\n",
1960 smi->long_timeouts);
1961 out += sprintf(out, "timeout_restarts: %ld\n",
1962 smi->timeout_restarts);
1963 out += sprintf(out, "idles: %ld\n",
1965 out += sprintf(out, "interrupts: %ld\n",
1967 out += sprintf(out, "attentions: %ld\n",
1969 out += sprintf(out, "flag_fetches: %ld\n",
1971 out += sprintf(out, "hosed_count: %ld\n",
1973 out += sprintf(out, "complete_transactions: %ld\n",
1974 smi->complete_transactions);
1975 out += sprintf(out, "events: %ld\n",
1977 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
1978 smi->watchdog_pretimeouts);
1979 out += sprintf(out, "incoming_messages: %ld\n",
1980 smi->incoming_messages);
1982 return (out - ((char *) page));
1986 * oem_data_avail_to_receive_msg_avail
1987 * @info - smi_info structure with msg_flags set
1989 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1990 * Returns 1 indicating need to re-run handle_flags().
1992 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1994 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2000 * setup_dell_poweredge_oem_data_handler
2001 * @info - smi_info.device_id must be populated
2003 * Systems that match, but have firmware version < 1.40 may assert
2004 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2005 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2006 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2007 * as RECEIVE_MSG_AVAIL instead.
2009 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2010 * assert the OEM[012] bits, and if it did, the driver would have to
2011 * change to handle that properly, we don't actually check for the
2013 * Device ID = 0x20 BMC on PowerEdge 8G servers
2014 * Device Revision = 0x80
2015 * Firmware Revision1 = 0x01 BMC version 1.40
2016 * Firmware Revision2 = 0x40 BCD encoded
2017 * IPMI Version = 0x51 IPMI 1.5
2018 * Manufacturer ID = A2 02 00 Dell IANA
2020 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2021 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2024 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2025 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2026 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2027 #define DELL_IANA_MFR_ID 0x0002a2
2028 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2030 struct ipmi_device_id *id = &smi_info->device_id;
2031 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2032 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2033 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2034 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2035 smi_info->oem_data_avail_handler =
2036 oem_data_avail_to_receive_msg_avail;
2038 else if (ipmi_version_major(id) < 1 ||
2039 (ipmi_version_major(id) == 1 &&
2040 ipmi_version_minor(id) < 5)) {
2041 smi_info->oem_data_avail_handler =
2042 oem_data_avail_to_receive_msg_avail;
2047 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2048 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2050 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2052 /* Make it a reponse */
2053 msg->rsp[0] = msg->data[0] | 4;
2054 msg->rsp[1] = msg->data[1];
2055 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2057 smi_info->curr_msg = NULL;
2058 deliver_recv_msg(smi_info, msg);
2062 * dell_poweredge_bt_xaction_handler
2063 * @info - smi_info.device_id must be populated
2065 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2066 * not respond to a Get SDR command if the length of the data
2067 * requested is exactly 0x3A, which leads to command timeouts and no
2068 * data returned. This intercepts such commands, and causes userspace
2069 * callers to try again with a different-sized buffer, which succeeds.
2072 #define STORAGE_NETFN 0x0A
2073 #define STORAGE_CMD_GET_SDR 0x23
2074 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2075 unsigned long unused,
2078 struct smi_info *smi_info = in;
2079 unsigned char *data = smi_info->curr_msg->data;
2080 unsigned int size = smi_info->curr_msg->data_size;
2082 (data[0]>>2) == STORAGE_NETFN &&
2083 data[1] == STORAGE_CMD_GET_SDR &&
2085 return_hosed_msg_badsize(smi_info);
2091 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2092 .notifier_call = dell_poweredge_bt_xaction_handler,
2096 * setup_dell_poweredge_bt_xaction_handler
2097 * @info - smi_info.device_id must be filled in already
2099 * Fills in smi_info.device_id.start_transaction_pre_hook
2100 * when we know what function to use there.
2103 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2105 struct ipmi_device_id *id = &smi_info->device_id;
2106 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2107 smi_info->si_type == SI_BT)
2108 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2112 * setup_oem_data_handler
2113 * @info - smi_info.device_id must be filled in already
2115 * Fills in smi_info.device_id.oem_data_available_handler
2116 * when we know what function to use there.
2119 static void setup_oem_data_handler(struct smi_info *smi_info)
2121 setup_dell_poweredge_oem_data_handler(smi_info);
2124 static void setup_xaction_handlers(struct smi_info *smi_info)
2126 setup_dell_poweredge_bt_xaction_handler(smi_info);
2129 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2131 if (smi_info->intf) {
2132 /* The timer and thread are only running if the
2133 interface has been started up and registered. */
2134 if (smi_info->thread != NULL)
2135 kthread_stop(smi_info->thread);
2136 del_timer_sync(&smi_info->si_timer);
2140 static __devinitdata struct ipmi_default_vals
2146 { .type = SI_KCS, .port = 0xca2 },
2147 { .type = SI_SMIC, .port = 0xca9 },
2148 { .type = SI_BT, .port = 0xe4 },
2152 static __devinit void default_find_bmc(void)
2154 struct smi_info *info;
2157 for (i = 0; ; i++) {
2158 if (!ipmi_defaults[i].port)
2161 info = kzalloc(sizeof(*info), GFP_KERNEL);
2165 info->addr_source = NULL;
2167 info->si_type = ipmi_defaults[i].type;
2168 info->io_setup = port_setup;
2169 info->io.addr_data = ipmi_defaults[i].port;
2170 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2172 info->io.addr = NULL;
2173 info->io.regspacing = DEFAULT_REGSPACING;
2174 info->io.regsize = DEFAULT_REGSPACING;
2175 info->io.regshift = 0;
2177 if (try_smi_init(info) == 0) {
2179 printk(KERN_INFO "ipmi_si: Found default %s state"
2180 " machine at %s address 0x%lx\n",
2181 si_to_str[info->si_type],
2182 addr_space_to_str[info->io.addr_type],
2183 info->io.addr_data);
2189 static int is_new_interface(struct smi_info *info)
2193 list_for_each_entry(e, &smi_infos, link) {
2194 if (e->io.addr_type != info->io.addr_type)
2196 if (e->io.addr_data == info->io.addr_data)
2203 static int try_smi_init(struct smi_info *new_smi)
2207 if (new_smi->addr_source) {
2208 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2209 " machine at %s address 0x%lx, slave address 0x%x,"
2211 new_smi->addr_source,
2212 si_to_str[new_smi->si_type],
2213 addr_space_to_str[new_smi->io.addr_type],
2214 new_smi->io.addr_data,
2215 new_smi->slave_addr, new_smi->irq);
2218 mutex_lock(&smi_infos_lock);
2219 if (!is_new_interface(new_smi)) {
2220 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2225 /* So we know not to free it unless we have allocated one. */
2226 new_smi->intf = NULL;
2227 new_smi->si_sm = NULL;
2228 new_smi->handlers = NULL;
2230 switch (new_smi->si_type) {
2232 new_smi->handlers = &kcs_smi_handlers;
2236 new_smi->handlers = &smic_smi_handlers;
2240 new_smi->handlers = &bt_smi_handlers;
2244 /* No support for anything else yet. */
2249 /* Allocate the state machine's data and initialize it. */
2250 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2251 if (!new_smi->si_sm) {
2252 printk(" Could not allocate state machine memory\n");
2256 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2259 /* Now that we know the I/O size, we can set up the I/O. */
2260 rv = new_smi->io_setup(new_smi);
2262 printk(" Could not set up I/O space\n");
2266 spin_lock_init(&(new_smi->si_lock));
2267 spin_lock_init(&(new_smi->msg_lock));
2268 spin_lock_init(&(new_smi->count_lock));
2270 /* Do low-level detection first. */
2271 if (new_smi->handlers->detect(new_smi->si_sm)) {
2272 if (new_smi->addr_source)
2273 printk(KERN_INFO "ipmi_si: Interface detection"
2279 /* Attempt a get device id command. If it fails, we probably
2280 don't have a BMC here. */
2281 rv = try_get_dev_id(new_smi);
2283 if (new_smi->addr_source)
2284 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2285 " at this location\n");
2289 setup_oem_data_handler(new_smi);
2290 setup_xaction_handlers(new_smi);
2292 /* Try to claim any interrupts. */
2293 if (new_smi->irq_setup)
2294 new_smi->irq_setup(new_smi);
2296 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2297 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2298 new_smi->curr_msg = NULL;
2299 atomic_set(&new_smi->req_events, 0);
2300 new_smi->run_to_completion = 0;
2302 new_smi->interrupt_disabled = 0;
2303 atomic_set(&new_smi->stop_operation, 0);
2304 new_smi->intf_num = smi_num;
2307 /* Start clearing the flags before we enable interrupts or the
2308 timer to avoid racing with the timer. */
2309 start_clear_flags(new_smi);
2310 /* IRQ is defined to be set when non-zero. */
2312 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2314 if (!new_smi->dev) {
2315 /* If we don't already have a device from something
2316 * else (like PCI), then register a new one. */
2317 new_smi->pdev = platform_device_alloc("ipmi_si",
2322 " Unable to allocate platform device\n");
2325 new_smi->dev = &new_smi->pdev->dev;
2326 new_smi->dev->driver = &ipmi_driver;
2328 rv = platform_device_register(new_smi->pdev);
2332 " Unable to register system interface device:"
2337 new_smi->dev_registered = 1;
2340 rv = ipmi_register_smi(&handlers,
2342 &new_smi->device_id,
2344 new_smi->slave_addr);
2347 "ipmi_si: Unable to register device: error %d\n",
2349 goto out_err_stop_timer;
2352 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2353 type_file_read_proc, NULL,
2354 new_smi, THIS_MODULE);
2357 "ipmi_si: Unable to create proc entry: %d\n",
2359 goto out_err_stop_timer;
2362 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2363 stat_file_read_proc, NULL,
2364 new_smi, THIS_MODULE);
2367 "ipmi_si: Unable to create proc entry: %d\n",
2369 goto out_err_stop_timer;
2372 list_add_tail(&new_smi->link, &smi_infos);
2374 mutex_unlock(&smi_infos_lock);
2376 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
2381 atomic_inc(&new_smi->stop_operation);
2382 wait_for_timer_and_thread(new_smi);
2386 ipmi_unregister_smi(new_smi->intf);
2388 if (new_smi->irq_cleanup)
2389 new_smi->irq_cleanup(new_smi);
2391 /* Wait until we know that we are out of any interrupt
2392 handlers might have been running before we freed the
2394 synchronize_sched();
2396 if (new_smi->si_sm) {
2397 if (new_smi->handlers)
2398 new_smi->handlers->cleanup(new_smi->si_sm);
2399 kfree(new_smi->si_sm);
2401 if (new_smi->addr_source_cleanup)
2402 new_smi->addr_source_cleanup(new_smi);
2403 if (new_smi->io_cleanup)
2404 new_smi->io_cleanup(new_smi);
2406 if (new_smi->dev_registered)
2407 platform_device_unregister(new_smi->pdev);
2411 mutex_unlock(&smi_infos_lock);
2416 static __devinit int init_ipmi_si(void)
2426 /* Register the device drivers. */
2427 rv = driver_register(&ipmi_driver);
2430 "init_ipmi_si: Unable to register driver: %d\n",
2436 /* Parse out the si_type string into its components. */
2439 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
2441 str = strchr(str, ',');
2451 printk(KERN_INFO "IPMI System Interface driver.\n");
2453 hardcode_find_bmc();
2465 pci_module_init(&ipmi_pci_driver);
2468 if (si_trydefaults) {
2469 mutex_lock(&smi_infos_lock);
2470 if (list_empty(&smi_infos)) {
2471 /* No BMC was found, try defaults. */
2472 mutex_unlock(&smi_infos_lock);
2475 mutex_unlock(&smi_infos_lock);
2479 mutex_lock(&smi_infos_lock);
2480 if (list_empty(&smi_infos)) {
2481 mutex_unlock(&smi_infos_lock);
2483 pci_unregister_driver(&ipmi_pci_driver);
2485 printk("ipmi_si: Unable to find any System Interface(s)\n");
2488 mutex_unlock(&smi_infos_lock);
2492 module_init(init_ipmi_si);
2494 static void __devexit cleanup_one_si(struct smi_info *to_clean)
2497 unsigned long flags;
2502 list_del(&to_clean->link);
2504 /* Tell the timer and interrupt handlers that we are shutting
2506 spin_lock_irqsave(&(to_clean->si_lock), flags);
2507 spin_lock(&(to_clean->msg_lock));
2509 atomic_inc(&to_clean->stop_operation);
2511 if (to_clean->irq_cleanup)
2512 to_clean->irq_cleanup(to_clean);
2514 spin_unlock(&(to_clean->msg_lock));
2515 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2517 /* Wait until we know that we are out of any interrupt
2518 handlers might have been running before we freed the
2520 synchronize_sched();
2522 wait_for_timer_and_thread(to_clean);
2524 /* Interrupts and timeouts are stopped, now make sure the
2525 interface is in a clean state. */
2526 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
2528 schedule_timeout_uninterruptible(1);
2531 rv = ipmi_unregister_smi(to_clean->intf);
2534 "ipmi_si: Unable to unregister device: errno=%d\n",
2538 to_clean->handlers->cleanup(to_clean->si_sm);
2540 kfree(to_clean->si_sm);
2542 if (to_clean->addr_source_cleanup)
2543 to_clean->addr_source_cleanup(to_clean);
2544 if (to_clean->io_cleanup)
2545 to_clean->io_cleanup(to_clean);
2547 if (to_clean->dev_registered)
2548 platform_device_unregister(to_clean->pdev);
2553 static __exit void cleanup_ipmi_si(void)
2555 struct smi_info *e, *tmp_e;
2561 pci_unregister_driver(&ipmi_pci_driver);
2564 mutex_lock(&smi_infos_lock);
2565 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2567 mutex_unlock(&smi_infos_lock);
2569 driver_unregister(&ipmi_driver);
2571 module_exit(cleanup_ipmi_si);
2573 MODULE_LICENSE("GPL");
2574 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2575 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");