Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[linux-2.6] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS                                               \
48         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS                                               \
52         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
54                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
55                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 /* EFER defaults:
59  * - enable syscall per default because its emulated by KVM
60  * - enable LME and LMA per default on 64 bit KVM
61  */
62 #ifdef CONFIG_X86_64
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
64 #else
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
66 #endif
67
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72                                     struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74                                               u32 function, u32 index);
75
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
78
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80         { "pf_fixed", VCPU_STAT(pf_fixed) },
81         { "pf_guest", VCPU_STAT(pf_guest) },
82         { "tlb_flush", VCPU_STAT(tlb_flush) },
83         { "invlpg", VCPU_STAT(invlpg) },
84         { "exits", VCPU_STAT(exits) },
85         { "io_exits", VCPU_STAT(io_exits) },
86         { "mmio_exits", VCPU_STAT(mmio_exits) },
87         { "signal_exits", VCPU_STAT(signal_exits) },
88         { "irq_window", VCPU_STAT(irq_window_exits) },
89         { "nmi_window", VCPU_STAT(nmi_window_exits) },
90         { "halt_exits", VCPU_STAT(halt_exits) },
91         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92         { "hypercalls", VCPU_STAT(hypercalls) },
93         { "request_irq", VCPU_STAT(request_irq_exits) },
94         { "request_nmi", VCPU_STAT(request_nmi_exits) },
95         { "irq_exits", VCPU_STAT(irq_exits) },
96         { "host_state_reload", VCPU_STAT(host_state_reload) },
97         { "efer_reload", VCPU_STAT(efer_reload) },
98         { "fpu_reload", VCPU_STAT(fpu_reload) },
99         { "insn_emulation", VCPU_STAT(insn_emulation) },
100         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
101         { "irq_injections", VCPU_STAT(irq_injections) },
102         { "nmi_injections", VCPU_STAT(nmi_injections) },
103         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
104         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
105         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
106         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
107         { "mmu_flooded", VM_STAT(mmu_flooded) },
108         { "mmu_recycled", VM_STAT(mmu_recycled) },
109         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
110         { "mmu_unsync", VM_STAT(mmu_unsync) },
111         { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
112         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
113         { "largepages", VM_STAT(lpages) },
114         { NULL }
115 };
116
117 unsigned long segment_base(u16 selector)
118 {
119         struct descriptor_table gdt;
120         struct desc_struct *d;
121         unsigned long table_base;
122         unsigned long v;
123
124         if (selector == 0)
125                 return 0;
126
127         asm("sgdt %0" : "=m"(gdt));
128         table_base = gdt.base;
129
130         if (selector & 4) {           /* from ldt */
131                 u16 ldt_selector;
132
133                 asm("sldt %0" : "=g"(ldt_selector));
134                 table_base = segment_base(ldt_selector);
135         }
136         d = (struct desc_struct *)(table_base + (selector & ~7));
137         v = d->base0 | ((unsigned long)d->base1 << 16) |
138                 ((unsigned long)d->base2 << 24);
139 #ifdef CONFIG_X86_64
140         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
141                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
142 #endif
143         return v;
144 }
145 EXPORT_SYMBOL_GPL(segment_base);
146
147 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
148 {
149         if (irqchip_in_kernel(vcpu->kvm))
150                 return vcpu->arch.apic_base;
151         else
152                 return vcpu->arch.apic_base;
153 }
154 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
155
156 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
157 {
158         /* TODO: reserve bits check */
159         if (irqchip_in_kernel(vcpu->kvm))
160                 kvm_lapic_set_base(vcpu, data);
161         else
162                 vcpu->arch.apic_base = data;
163 }
164 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
165
166 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
167 {
168         WARN_ON(vcpu->arch.exception.pending);
169         vcpu->arch.exception.pending = true;
170         vcpu->arch.exception.has_error_code = false;
171         vcpu->arch.exception.nr = nr;
172 }
173 EXPORT_SYMBOL_GPL(kvm_queue_exception);
174
175 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
176                            u32 error_code)
177 {
178         ++vcpu->stat.pf_guest;
179
180         if (vcpu->arch.exception.pending) {
181                 if (vcpu->arch.exception.nr == PF_VECTOR) {
182                         printk(KERN_DEBUG "kvm: inject_page_fault:"
183                                         " double fault 0x%lx\n", addr);
184                         vcpu->arch.exception.nr = DF_VECTOR;
185                         vcpu->arch.exception.error_code = 0;
186                 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
187                         /* triple fault -> shutdown */
188                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
189                 }
190                 return;
191         }
192         vcpu->arch.cr2 = addr;
193         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
194 }
195
196 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
197 {
198         vcpu->arch.nmi_pending = 1;
199 }
200 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
201
202 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
203 {
204         WARN_ON(vcpu->arch.exception.pending);
205         vcpu->arch.exception.pending = true;
206         vcpu->arch.exception.has_error_code = true;
207         vcpu->arch.exception.nr = nr;
208         vcpu->arch.exception.error_code = error_code;
209 }
210 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
211
212 static void __queue_exception(struct kvm_vcpu *vcpu)
213 {
214         kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
215                                      vcpu->arch.exception.has_error_code,
216                                      vcpu->arch.exception.error_code);
217 }
218
219 /*
220  * Load the pae pdptrs.  Return true is they are all valid.
221  */
222 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
223 {
224         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
225         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
226         int i;
227         int ret;
228         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
229
230         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
231                                   offset * sizeof(u64), sizeof(pdpte));
232         if (ret < 0) {
233                 ret = 0;
234                 goto out;
235         }
236         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
237                 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
238                         ret = 0;
239                         goto out;
240                 }
241         }
242         ret = 1;
243
244         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
245 out:
246
247         return ret;
248 }
249 EXPORT_SYMBOL_GPL(load_pdptrs);
250
251 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
252 {
253         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
254         bool changed = true;
255         int r;
256
257         if (is_long_mode(vcpu) || !is_pae(vcpu))
258                 return false;
259
260         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
261         if (r < 0)
262                 goto out;
263         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
264 out:
265
266         return changed;
267 }
268
269 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
270 {
271         if (cr0 & CR0_RESERVED_BITS) {
272                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
273                        cr0, vcpu->arch.cr0);
274                 kvm_inject_gp(vcpu, 0);
275                 return;
276         }
277
278         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
279                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
280                 kvm_inject_gp(vcpu, 0);
281                 return;
282         }
283
284         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
285                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
286                        "and a clear PE flag\n");
287                 kvm_inject_gp(vcpu, 0);
288                 return;
289         }
290
291         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
292 #ifdef CONFIG_X86_64
293                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
294                         int cs_db, cs_l;
295
296                         if (!is_pae(vcpu)) {
297                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
298                                        "in long mode while PAE is disabled\n");
299                                 kvm_inject_gp(vcpu, 0);
300                                 return;
301                         }
302                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
303                         if (cs_l) {
304                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
305                                        "in long mode while CS.L == 1\n");
306                                 kvm_inject_gp(vcpu, 0);
307                                 return;
308
309                         }
310                 } else
311 #endif
312                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
313                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
314                                "reserved bits\n");
315                         kvm_inject_gp(vcpu, 0);
316                         return;
317                 }
318
319         }
320
321         kvm_x86_ops->set_cr0(vcpu, cr0);
322         vcpu->arch.cr0 = cr0;
323
324         kvm_mmu_sync_global(vcpu);
325         kvm_mmu_reset_context(vcpu);
326         return;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_cr0);
329
330 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
331 {
332         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
333         KVMTRACE_1D(LMSW, vcpu,
334                     (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
335                     handler);
336 }
337 EXPORT_SYMBOL_GPL(kvm_lmsw);
338
339 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
340 {
341         unsigned long old_cr4 = vcpu->arch.cr4;
342         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
343
344         if (cr4 & CR4_RESERVED_BITS) {
345                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
346                 kvm_inject_gp(vcpu, 0);
347                 return;
348         }
349
350         if (is_long_mode(vcpu)) {
351                 if (!(cr4 & X86_CR4_PAE)) {
352                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
353                                "in long mode\n");
354                         kvm_inject_gp(vcpu, 0);
355                         return;
356                 }
357         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
358                    && ((cr4 ^ old_cr4) & pdptr_bits)
359                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
360                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
361                 kvm_inject_gp(vcpu, 0);
362                 return;
363         }
364
365         if (cr4 & X86_CR4_VMXE) {
366                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
367                 kvm_inject_gp(vcpu, 0);
368                 return;
369         }
370         kvm_x86_ops->set_cr4(vcpu, cr4);
371         vcpu->arch.cr4 = cr4;
372         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
373         kvm_mmu_sync_global(vcpu);
374         kvm_mmu_reset_context(vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_set_cr4);
377
378 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
379 {
380         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
381                 kvm_mmu_sync_roots(vcpu);
382                 kvm_mmu_flush_tlb(vcpu);
383                 return;
384         }
385
386         if (is_long_mode(vcpu)) {
387                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
388                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
389                         kvm_inject_gp(vcpu, 0);
390                         return;
391                 }
392         } else {
393                 if (is_pae(vcpu)) {
394                         if (cr3 & CR3_PAE_RESERVED_BITS) {
395                                 printk(KERN_DEBUG
396                                        "set_cr3: #GP, reserved bits\n");
397                                 kvm_inject_gp(vcpu, 0);
398                                 return;
399                         }
400                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
401                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
402                                        "reserved bits\n");
403                                 kvm_inject_gp(vcpu, 0);
404                                 return;
405                         }
406                 }
407                 /*
408                  * We don't check reserved bits in nonpae mode, because
409                  * this isn't enforced, and VMware depends on this.
410                  */
411         }
412
413         /*
414          * Does the new cr3 value map to physical memory? (Note, we
415          * catch an invalid cr3 even in real-mode, because it would
416          * cause trouble later on when we turn on paging anyway.)
417          *
418          * A real CPU would silently accept an invalid cr3 and would
419          * attempt to use it - with largely undefined (and often hard
420          * to debug) behavior on the guest side.
421          */
422         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
423                 kvm_inject_gp(vcpu, 0);
424         else {
425                 vcpu->arch.cr3 = cr3;
426                 vcpu->arch.mmu.new_cr3(vcpu);
427         }
428 }
429 EXPORT_SYMBOL_GPL(kvm_set_cr3);
430
431 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
432 {
433         if (cr8 & CR8_RESERVED_BITS) {
434                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
435                 kvm_inject_gp(vcpu, 0);
436                 return;
437         }
438         if (irqchip_in_kernel(vcpu->kvm))
439                 kvm_lapic_set_tpr(vcpu, cr8);
440         else
441                 vcpu->arch.cr8 = cr8;
442 }
443 EXPORT_SYMBOL_GPL(kvm_set_cr8);
444
445 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
446 {
447         if (irqchip_in_kernel(vcpu->kvm))
448                 return kvm_lapic_get_cr8(vcpu);
449         else
450                 return vcpu->arch.cr8;
451 }
452 EXPORT_SYMBOL_GPL(kvm_get_cr8);
453
454 static inline u32 bit(int bitno)
455 {
456         return 1 << (bitno & 31);
457 }
458
459 /*
460  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
461  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
462  *
463  * This list is modified at module load time to reflect the
464  * capabilities of the host cpu.
465  */
466 static u32 msrs_to_save[] = {
467         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
468         MSR_K6_STAR,
469 #ifdef CONFIG_X86_64
470         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
471 #endif
472         MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
473         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
474 };
475
476 static unsigned num_msrs_to_save;
477
478 static u32 emulated_msrs[] = {
479         MSR_IA32_MISC_ENABLE,
480 };
481
482 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
483 {
484         if (efer & efer_reserved_bits) {
485                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
486                        efer);
487                 kvm_inject_gp(vcpu, 0);
488                 return;
489         }
490
491         if (is_paging(vcpu)
492             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
493                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
494                 kvm_inject_gp(vcpu, 0);
495                 return;
496         }
497
498         if (efer & EFER_FFXSR) {
499                 struct kvm_cpuid_entry2 *feat;
500
501                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
502                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
503                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
504                         kvm_inject_gp(vcpu, 0);
505                         return;
506                 }
507         }
508
509         if (efer & EFER_SVME) {
510                 struct kvm_cpuid_entry2 *feat;
511
512                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
513                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
514                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
515                         kvm_inject_gp(vcpu, 0);
516                         return;
517                 }
518         }
519
520         kvm_x86_ops->set_efer(vcpu, efer);
521
522         efer &= ~EFER_LMA;
523         efer |= vcpu->arch.shadow_efer & EFER_LMA;
524
525         vcpu->arch.shadow_efer = efer;
526 }
527
528 void kvm_enable_efer_bits(u64 mask)
529 {
530        efer_reserved_bits &= ~mask;
531 }
532 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
533
534
535 /*
536  * Writes msr value into into the appropriate "register".
537  * Returns 0 on success, non-0 otherwise.
538  * Assumes vcpu_load() was already called.
539  */
540 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
541 {
542         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
543 }
544
545 /*
546  * Adapt set_msr() to msr_io()'s calling convention
547  */
548 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
549 {
550         return kvm_set_msr(vcpu, index, *data);
551 }
552
553 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
554 {
555         static int version;
556         struct pvclock_wall_clock wc;
557         struct timespec now, sys, boot;
558
559         if (!wall_clock)
560                 return;
561
562         version++;
563
564         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
565
566         /*
567          * The guest calculates current wall clock time by adding
568          * system time (updated by kvm_write_guest_time below) to the
569          * wall clock specified here.  guest system time equals host
570          * system time for us, thus we must fill in host boot time here.
571          */
572         now = current_kernel_time();
573         ktime_get_ts(&sys);
574         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
575
576         wc.sec = boot.tv_sec;
577         wc.nsec = boot.tv_nsec;
578         wc.version = version;
579
580         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
581
582         version++;
583         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
584 }
585
586 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
587 {
588         uint32_t quotient, remainder;
589
590         /* Don't try to replace with do_div(), this one calculates
591          * "(dividend << 32) / divisor" */
592         __asm__ ( "divl %4"
593                   : "=a" (quotient), "=d" (remainder)
594                   : "0" (0), "1" (dividend), "r" (divisor) );
595         return quotient;
596 }
597
598 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
599 {
600         uint64_t nsecs = 1000000000LL;
601         int32_t  shift = 0;
602         uint64_t tps64;
603         uint32_t tps32;
604
605         tps64 = tsc_khz * 1000LL;
606         while (tps64 > nsecs*2) {
607                 tps64 >>= 1;
608                 shift--;
609         }
610
611         tps32 = (uint32_t)tps64;
612         while (tps32 <= (uint32_t)nsecs) {
613                 tps32 <<= 1;
614                 shift++;
615         }
616
617         hv_clock->tsc_shift = shift;
618         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
619
620         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
621                  __func__, tsc_khz, hv_clock->tsc_shift,
622                  hv_clock->tsc_to_system_mul);
623 }
624
625 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
626
627 static void kvm_write_guest_time(struct kvm_vcpu *v)
628 {
629         struct timespec ts;
630         unsigned long flags;
631         struct kvm_vcpu_arch *vcpu = &v->arch;
632         void *shared_kaddr;
633
634         if ((!vcpu->time_page))
635                 return;
636
637         if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) {
638                 kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock);
639                 vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz);
640         }
641
642         /* Keep irq disabled to prevent changes to the clock */
643         local_irq_save(flags);
644         kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
645                           &vcpu->hv_clock.tsc_timestamp);
646         ktime_get_ts(&ts);
647         local_irq_restore(flags);
648
649         /* With all the info we got, fill in the values */
650
651         vcpu->hv_clock.system_time = ts.tv_nsec +
652                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
653         /*
654          * The interface expects us to write an even number signaling that the
655          * update is finished. Since the guest won't see the intermediate
656          * state, we just increase by 2 at the end.
657          */
658         vcpu->hv_clock.version += 2;
659
660         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
661
662         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
663                sizeof(vcpu->hv_clock));
664
665         kunmap_atomic(shared_kaddr, KM_USER0);
666
667         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
668 }
669
670 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
671 {
672         struct kvm_vcpu_arch *vcpu = &v->arch;
673
674         if (!vcpu->time_page)
675                 return 0;
676         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
677         return 1;
678 }
679
680 static bool msr_mtrr_valid(unsigned msr)
681 {
682         switch (msr) {
683         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
684         case MSR_MTRRfix64K_00000:
685         case MSR_MTRRfix16K_80000:
686         case MSR_MTRRfix16K_A0000:
687         case MSR_MTRRfix4K_C0000:
688         case MSR_MTRRfix4K_C8000:
689         case MSR_MTRRfix4K_D0000:
690         case MSR_MTRRfix4K_D8000:
691         case MSR_MTRRfix4K_E0000:
692         case MSR_MTRRfix4K_E8000:
693         case MSR_MTRRfix4K_F0000:
694         case MSR_MTRRfix4K_F8000:
695         case MSR_MTRRdefType:
696         case MSR_IA32_CR_PAT:
697                 return true;
698         case 0x2f8:
699                 return true;
700         }
701         return false;
702 }
703
704 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
705 {
706         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
707
708         if (!msr_mtrr_valid(msr))
709                 return 1;
710
711         if (msr == MSR_MTRRdefType) {
712                 vcpu->arch.mtrr_state.def_type = data;
713                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
714         } else if (msr == MSR_MTRRfix64K_00000)
715                 p[0] = data;
716         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
717                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
718         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
719                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
720         else if (msr == MSR_IA32_CR_PAT)
721                 vcpu->arch.pat = data;
722         else {  /* Variable MTRRs */
723                 int idx, is_mtrr_mask;
724                 u64 *pt;
725
726                 idx = (msr - 0x200) / 2;
727                 is_mtrr_mask = msr - 0x200 - 2 * idx;
728                 if (!is_mtrr_mask)
729                         pt =
730                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
731                 else
732                         pt =
733                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
734                 *pt = data;
735         }
736
737         kvm_mmu_reset_context(vcpu);
738         return 0;
739 }
740
741 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
742 {
743         switch (msr) {
744         case MSR_EFER:
745                 set_efer(vcpu, data);
746                 break;
747         case MSR_IA32_MC0_STATUS:
748                 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
749                        __func__, data);
750                 break;
751         case MSR_IA32_MCG_STATUS:
752                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
753                         __func__, data);
754                 break;
755         case MSR_IA32_MCG_CTL:
756                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
757                         __func__, data);
758                 break;
759         case MSR_IA32_DEBUGCTLMSR:
760                 if (!data) {
761                         /* We support the non-activated case already */
762                         break;
763                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
764                         /* Values other than LBR and BTF are vendor-specific,
765                            thus reserved and should throw a #GP */
766                         return 1;
767                 }
768                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
769                         __func__, data);
770                 break;
771         case MSR_IA32_UCODE_REV:
772         case MSR_IA32_UCODE_WRITE:
773         case MSR_VM_HSAVE_PA:
774                 break;
775         case 0x200 ... 0x2ff:
776                 return set_msr_mtrr(vcpu, msr, data);
777         case MSR_IA32_APICBASE:
778                 kvm_set_apic_base(vcpu, data);
779                 break;
780         case MSR_IA32_MISC_ENABLE:
781                 vcpu->arch.ia32_misc_enable_msr = data;
782                 break;
783         case MSR_KVM_WALL_CLOCK:
784                 vcpu->kvm->arch.wall_clock = data;
785                 kvm_write_wall_clock(vcpu->kvm, data);
786                 break;
787         case MSR_KVM_SYSTEM_TIME: {
788                 if (vcpu->arch.time_page) {
789                         kvm_release_page_dirty(vcpu->arch.time_page);
790                         vcpu->arch.time_page = NULL;
791                 }
792
793                 vcpu->arch.time = data;
794
795                 /* we verify if the enable bit is set... */
796                 if (!(data & 1))
797                         break;
798
799                 /* ...but clean it before doing the actual write */
800                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
801
802                 vcpu->arch.time_page =
803                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
804
805                 if (is_error_page(vcpu->arch.time_page)) {
806                         kvm_release_page_clean(vcpu->arch.time_page);
807                         vcpu->arch.time_page = NULL;
808                 }
809
810                 kvm_request_guest_time_update(vcpu);
811                 break;
812         }
813         default:
814                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
815                 return 1;
816         }
817         return 0;
818 }
819 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
820
821
822 /*
823  * Reads an msr value (of 'msr_index') into 'pdata'.
824  * Returns 0 on success, non-0 otherwise.
825  * Assumes vcpu_load() was already called.
826  */
827 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
828 {
829         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
830 }
831
832 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
833 {
834         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
835
836         if (!msr_mtrr_valid(msr))
837                 return 1;
838
839         if (msr == MSR_MTRRdefType)
840                 *pdata = vcpu->arch.mtrr_state.def_type +
841                          (vcpu->arch.mtrr_state.enabled << 10);
842         else if (msr == MSR_MTRRfix64K_00000)
843                 *pdata = p[0];
844         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
845                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
846         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
847                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
848         else if (msr == MSR_IA32_CR_PAT)
849                 *pdata = vcpu->arch.pat;
850         else {  /* Variable MTRRs */
851                 int idx, is_mtrr_mask;
852                 u64 *pt;
853
854                 idx = (msr - 0x200) / 2;
855                 is_mtrr_mask = msr - 0x200 - 2 * idx;
856                 if (!is_mtrr_mask)
857                         pt =
858                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
859                 else
860                         pt =
861                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
862                 *pdata = *pt;
863         }
864
865         return 0;
866 }
867
868 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
869 {
870         u64 data;
871
872         switch (msr) {
873         case 0xc0010010: /* SYSCFG */
874         case 0xc0010015: /* HWCR */
875         case MSR_IA32_PLATFORM_ID:
876         case MSR_IA32_P5_MC_ADDR:
877         case MSR_IA32_P5_MC_TYPE:
878         case MSR_IA32_MC0_CTL:
879         case MSR_IA32_MCG_STATUS:
880         case MSR_IA32_MCG_CAP:
881         case MSR_IA32_MCG_CTL:
882         case MSR_IA32_MC0_MISC:
883         case MSR_IA32_MC0_MISC+4:
884         case MSR_IA32_MC0_MISC+8:
885         case MSR_IA32_MC0_MISC+12:
886         case MSR_IA32_MC0_MISC+16:
887         case MSR_IA32_MC0_MISC+20:
888         case MSR_IA32_UCODE_REV:
889         case MSR_IA32_EBL_CR_POWERON:
890         case MSR_IA32_DEBUGCTLMSR:
891         case MSR_IA32_LASTBRANCHFROMIP:
892         case MSR_IA32_LASTBRANCHTOIP:
893         case MSR_IA32_LASTINTFROMIP:
894         case MSR_IA32_LASTINTTOIP:
895         case MSR_VM_HSAVE_PA:
896                 data = 0;
897                 break;
898         case MSR_MTRRcap:
899                 data = 0x500 | KVM_NR_VAR_MTRR;
900                 break;
901         case 0x200 ... 0x2ff:
902                 return get_msr_mtrr(vcpu, msr, pdata);
903         case 0xcd: /* fsb frequency */
904                 data = 3;
905                 break;
906         case MSR_IA32_APICBASE:
907                 data = kvm_get_apic_base(vcpu);
908                 break;
909         case MSR_IA32_MISC_ENABLE:
910                 data = vcpu->arch.ia32_misc_enable_msr;
911                 break;
912         case MSR_IA32_PERF_STATUS:
913                 /* TSC increment by tick */
914                 data = 1000ULL;
915                 /* CPU multiplier */
916                 data |= (((uint64_t)4ULL) << 40);
917                 break;
918         case MSR_EFER:
919                 data = vcpu->arch.shadow_efer;
920                 break;
921         case MSR_KVM_WALL_CLOCK:
922                 data = vcpu->kvm->arch.wall_clock;
923                 break;
924         case MSR_KVM_SYSTEM_TIME:
925                 data = vcpu->arch.time;
926                 break;
927         default:
928                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
929                 return 1;
930         }
931         *pdata = data;
932         return 0;
933 }
934 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
935
936 /*
937  * Read or write a bunch of msrs. All parameters are kernel addresses.
938  *
939  * @return number of msrs set successfully.
940  */
941 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
942                     struct kvm_msr_entry *entries,
943                     int (*do_msr)(struct kvm_vcpu *vcpu,
944                                   unsigned index, u64 *data))
945 {
946         int i;
947
948         vcpu_load(vcpu);
949
950         down_read(&vcpu->kvm->slots_lock);
951         for (i = 0; i < msrs->nmsrs; ++i)
952                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
953                         break;
954         up_read(&vcpu->kvm->slots_lock);
955
956         vcpu_put(vcpu);
957
958         return i;
959 }
960
961 /*
962  * Read or write a bunch of msrs. Parameters are user addresses.
963  *
964  * @return number of msrs set successfully.
965  */
966 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
967                   int (*do_msr)(struct kvm_vcpu *vcpu,
968                                 unsigned index, u64 *data),
969                   int writeback)
970 {
971         struct kvm_msrs msrs;
972         struct kvm_msr_entry *entries;
973         int r, n;
974         unsigned size;
975
976         r = -EFAULT;
977         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
978                 goto out;
979
980         r = -E2BIG;
981         if (msrs.nmsrs >= MAX_IO_MSRS)
982                 goto out;
983
984         r = -ENOMEM;
985         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
986         entries = vmalloc(size);
987         if (!entries)
988                 goto out;
989
990         r = -EFAULT;
991         if (copy_from_user(entries, user_msrs->entries, size))
992                 goto out_free;
993
994         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
995         if (r < 0)
996                 goto out_free;
997
998         r = -EFAULT;
999         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1000                 goto out_free;
1001
1002         r = n;
1003
1004 out_free:
1005         vfree(entries);
1006 out:
1007         return r;
1008 }
1009
1010 int kvm_dev_ioctl_check_extension(long ext)
1011 {
1012         int r;
1013
1014         switch (ext) {
1015         case KVM_CAP_IRQCHIP:
1016         case KVM_CAP_HLT:
1017         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1018         case KVM_CAP_SET_TSS_ADDR:
1019         case KVM_CAP_EXT_CPUID:
1020         case KVM_CAP_CLOCKSOURCE:
1021         case KVM_CAP_PIT:
1022         case KVM_CAP_NOP_IO_DELAY:
1023         case KVM_CAP_MP_STATE:
1024         case KVM_CAP_SYNC_MMU:
1025         case KVM_CAP_REINJECT_CONTROL:
1026         case KVM_CAP_IRQ_INJECT_STATUS:
1027                 r = 1;
1028                 break;
1029         case KVM_CAP_COALESCED_MMIO:
1030                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1031                 break;
1032         case KVM_CAP_VAPIC:
1033                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1034                 break;
1035         case KVM_CAP_NR_VCPUS:
1036                 r = KVM_MAX_VCPUS;
1037                 break;
1038         case KVM_CAP_NR_MEMSLOTS:
1039                 r = KVM_MEMORY_SLOTS;
1040                 break;
1041         case KVM_CAP_PV_MMU:
1042                 r = !tdp_enabled;
1043                 break;
1044         case KVM_CAP_IOMMU:
1045                 r = iommu_found();
1046                 break;
1047         default:
1048                 r = 0;
1049                 break;
1050         }
1051         return r;
1052
1053 }
1054
1055 long kvm_arch_dev_ioctl(struct file *filp,
1056                         unsigned int ioctl, unsigned long arg)
1057 {
1058         void __user *argp = (void __user *)arg;
1059         long r;
1060
1061         switch (ioctl) {
1062         case KVM_GET_MSR_INDEX_LIST: {
1063                 struct kvm_msr_list __user *user_msr_list = argp;
1064                 struct kvm_msr_list msr_list;
1065                 unsigned n;
1066
1067                 r = -EFAULT;
1068                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1069                         goto out;
1070                 n = msr_list.nmsrs;
1071                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1072                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1073                         goto out;
1074                 r = -E2BIG;
1075                 if (n < num_msrs_to_save)
1076                         goto out;
1077                 r = -EFAULT;
1078                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1079                                  num_msrs_to_save * sizeof(u32)))
1080                         goto out;
1081                 if (copy_to_user(user_msr_list->indices
1082                                  + num_msrs_to_save * sizeof(u32),
1083                                  &emulated_msrs,
1084                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1085                         goto out;
1086                 r = 0;
1087                 break;
1088         }
1089         case KVM_GET_SUPPORTED_CPUID: {
1090                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1091                 struct kvm_cpuid2 cpuid;
1092
1093                 r = -EFAULT;
1094                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1095                         goto out;
1096                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1097                                                       cpuid_arg->entries);
1098                 if (r)
1099                         goto out;
1100
1101                 r = -EFAULT;
1102                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1103                         goto out;
1104                 r = 0;
1105                 break;
1106         }
1107         default:
1108                 r = -EINVAL;
1109         }
1110 out:
1111         return r;
1112 }
1113
1114 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1115 {
1116         kvm_x86_ops->vcpu_load(vcpu, cpu);
1117         kvm_request_guest_time_update(vcpu);
1118 }
1119
1120 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1121 {
1122         kvm_x86_ops->vcpu_put(vcpu);
1123         kvm_put_guest_fpu(vcpu);
1124 }
1125
1126 static int is_efer_nx(void)
1127 {
1128         unsigned long long efer = 0;
1129
1130         rdmsrl_safe(MSR_EFER, &efer);
1131         return efer & EFER_NX;
1132 }
1133
1134 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1135 {
1136         int i;
1137         struct kvm_cpuid_entry2 *e, *entry;
1138
1139         entry = NULL;
1140         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1141                 e = &vcpu->arch.cpuid_entries[i];
1142                 if (e->function == 0x80000001) {
1143                         entry = e;
1144                         break;
1145                 }
1146         }
1147         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1148                 entry->edx &= ~(1 << 20);
1149                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1150         }
1151 }
1152
1153 /* when an old userspace process fills a new kernel module */
1154 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1155                                     struct kvm_cpuid *cpuid,
1156                                     struct kvm_cpuid_entry __user *entries)
1157 {
1158         int r, i;
1159         struct kvm_cpuid_entry *cpuid_entries;
1160
1161         r = -E2BIG;
1162         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1163                 goto out;
1164         r = -ENOMEM;
1165         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1166         if (!cpuid_entries)
1167                 goto out;
1168         r = -EFAULT;
1169         if (copy_from_user(cpuid_entries, entries,
1170                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1171                 goto out_free;
1172         for (i = 0; i < cpuid->nent; i++) {
1173                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1174                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1175                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1176                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1177                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1178                 vcpu->arch.cpuid_entries[i].index = 0;
1179                 vcpu->arch.cpuid_entries[i].flags = 0;
1180                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1181                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1182                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1183         }
1184         vcpu->arch.cpuid_nent = cpuid->nent;
1185         cpuid_fix_nx_cap(vcpu);
1186         r = 0;
1187
1188 out_free:
1189         vfree(cpuid_entries);
1190 out:
1191         return r;
1192 }
1193
1194 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1195                                      struct kvm_cpuid2 *cpuid,
1196                                      struct kvm_cpuid_entry2 __user *entries)
1197 {
1198         int r;
1199
1200         r = -E2BIG;
1201         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1202                 goto out;
1203         r = -EFAULT;
1204         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1205                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1206                 goto out;
1207         vcpu->arch.cpuid_nent = cpuid->nent;
1208         return 0;
1209
1210 out:
1211         return r;
1212 }
1213
1214 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1215                                      struct kvm_cpuid2 *cpuid,
1216                                      struct kvm_cpuid_entry2 __user *entries)
1217 {
1218         int r;
1219
1220         r = -E2BIG;
1221         if (cpuid->nent < vcpu->arch.cpuid_nent)
1222                 goto out;
1223         r = -EFAULT;
1224         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1225                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1226                 goto out;
1227         return 0;
1228
1229 out:
1230         cpuid->nent = vcpu->arch.cpuid_nent;
1231         return r;
1232 }
1233
1234 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1235                            u32 index)
1236 {
1237         entry->function = function;
1238         entry->index = index;
1239         cpuid_count(entry->function, entry->index,
1240                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1241         entry->flags = 0;
1242 }
1243
1244 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1245                          u32 index, int *nent, int maxnent)
1246 {
1247         const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1248                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1249                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1250                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1251                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1252                 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1253                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1254                 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1255                 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1256                 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1257         const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1258                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1259                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1260                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1261                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1262                 bit(X86_FEATURE_PGE) |
1263                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1264                 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1265                 bit(X86_FEATURE_SYSCALL) |
1266                 (is_efer_nx() ? bit(X86_FEATURE_NX) : 0) |
1267 #ifdef CONFIG_X86_64
1268                 bit(X86_FEATURE_LM) |
1269 #endif
1270                 bit(X86_FEATURE_FXSR_OPT) |
1271                 bit(X86_FEATURE_MMXEXT) |
1272                 bit(X86_FEATURE_3DNOWEXT) |
1273                 bit(X86_FEATURE_3DNOW);
1274         const u32 kvm_supported_word3_x86_features =
1275                 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1276         const u32 kvm_supported_word6_x86_features =
1277                 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
1278                 bit(X86_FEATURE_SVM);
1279
1280         /* all calls to cpuid_count() should be made on the same cpu */
1281         get_cpu();
1282         do_cpuid_1_ent(entry, function, index);
1283         ++*nent;
1284
1285         switch (function) {
1286         case 0:
1287                 entry->eax = min(entry->eax, (u32)0xb);
1288                 break;
1289         case 1:
1290                 entry->edx &= kvm_supported_word0_x86_features;
1291                 entry->ecx &= kvm_supported_word3_x86_features;
1292                 break;
1293         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1294          * may return different values. This forces us to get_cpu() before
1295          * issuing the first command, and also to emulate this annoying behavior
1296          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1297         case 2: {
1298                 int t, times = entry->eax & 0xff;
1299
1300                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1301                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1302                 for (t = 1; t < times && *nent < maxnent; ++t) {
1303                         do_cpuid_1_ent(&entry[t], function, 0);
1304                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1305                         ++*nent;
1306                 }
1307                 break;
1308         }
1309         /* function 4 and 0xb have additional index. */
1310         case 4: {
1311                 int i, cache_type;
1312
1313                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1314                 /* read more entries until cache_type is zero */
1315                 for (i = 1; *nent < maxnent; ++i) {
1316                         cache_type = entry[i - 1].eax & 0x1f;
1317                         if (!cache_type)
1318                                 break;
1319                         do_cpuid_1_ent(&entry[i], function, i);
1320                         entry[i].flags |=
1321                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1322                         ++*nent;
1323                 }
1324                 break;
1325         }
1326         case 0xb: {
1327                 int i, level_type;
1328
1329                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1330                 /* read more entries until level_type is zero */
1331                 for (i = 1; *nent < maxnent; ++i) {
1332                         level_type = entry[i - 1].ecx & 0xff00;
1333                         if (!level_type)
1334                                 break;
1335                         do_cpuid_1_ent(&entry[i], function, i);
1336                         entry[i].flags |=
1337                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1338                         ++*nent;
1339                 }
1340                 break;
1341         }
1342         case 0x80000000:
1343                 entry->eax = min(entry->eax, 0x8000001a);
1344                 break;
1345         case 0x80000001:
1346                 entry->edx &= kvm_supported_word1_x86_features;
1347                 entry->ecx &= kvm_supported_word6_x86_features;
1348                 break;
1349         }
1350         put_cpu();
1351 }
1352
1353 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1354                                      struct kvm_cpuid_entry2 __user *entries)
1355 {
1356         struct kvm_cpuid_entry2 *cpuid_entries;
1357         int limit, nent = 0, r = -E2BIG;
1358         u32 func;
1359
1360         if (cpuid->nent < 1)
1361                 goto out;
1362         r = -ENOMEM;
1363         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1364         if (!cpuid_entries)
1365                 goto out;
1366
1367         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1368         limit = cpuid_entries[0].eax;
1369         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1370                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1371                              &nent, cpuid->nent);
1372         r = -E2BIG;
1373         if (nent >= cpuid->nent)
1374                 goto out_free;
1375
1376         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1377         limit = cpuid_entries[nent - 1].eax;
1378         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1379                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1380                              &nent, cpuid->nent);
1381         r = -EFAULT;
1382         if (copy_to_user(entries, cpuid_entries,
1383                          nent * sizeof(struct kvm_cpuid_entry2)))
1384                 goto out_free;
1385         cpuid->nent = nent;
1386         r = 0;
1387
1388 out_free:
1389         vfree(cpuid_entries);
1390 out:
1391         return r;
1392 }
1393
1394 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1395                                     struct kvm_lapic_state *s)
1396 {
1397         vcpu_load(vcpu);
1398         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1399         vcpu_put(vcpu);
1400
1401         return 0;
1402 }
1403
1404 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1405                                     struct kvm_lapic_state *s)
1406 {
1407         vcpu_load(vcpu);
1408         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1409         kvm_apic_post_state_restore(vcpu);
1410         vcpu_put(vcpu);
1411
1412         return 0;
1413 }
1414
1415 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1416                                     struct kvm_interrupt *irq)
1417 {
1418         if (irq->irq < 0 || irq->irq >= 256)
1419                 return -EINVAL;
1420         if (irqchip_in_kernel(vcpu->kvm))
1421                 return -ENXIO;
1422         vcpu_load(vcpu);
1423
1424         set_bit(irq->irq, vcpu->arch.irq_pending);
1425         set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1426
1427         vcpu_put(vcpu);
1428
1429         return 0;
1430 }
1431
1432 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1433 {
1434         vcpu_load(vcpu);
1435         kvm_inject_nmi(vcpu);
1436         vcpu_put(vcpu);
1437
1438         return 0;
1439 }
1440
1441 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1442                                            struct kvm_tpr_access_ctl *tac)
1443 {
1444         if (tac->flags)
1445                 return -EINVAL;
1446         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1447         return 0;
1448 }
1449
1450 long kvm_arch_vcpu_ioctl(struct file *filp,
1451                          unsigned int ioctl, unsigned long arg)
1452 {
1453         struct kvm_vcpu *vcpu = filp->private_data;
1454         void __user *argp = (void __user *)arg;
1455         int r;
1456         struct kvm_lapic_state *lapic = NULL;
1457
1458         switch (ioctl) {
1459         case KVM_GET_LAPIC: {
1460                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1461
1462                 r = -ENOMEM;
1463                 if (!lapic)
1464                         goto out;
1465                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1466                 if (r)
1467                         goto out;
1468                 r = -EFAULT;
1469                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1470                         goto out;
1471                 r = 0;
1472                 break;
1473         }
1474         case KVM_SET_LAPIC: {
1475                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1476                 r = -ENOMEM;
1477                 if (!lapic)
1478                         goto out;
1479                 r = -EFAULT;
1480                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1481                         goto out;
1482                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1483                 if (r)
1484                         goto out;
1485                 r = 0;
1486                 break;
1487         }
1488         case KVM_INTERRUPT: {
1489                 struct kvm_interrupt irq;
1490
1491                 r = -EFAULT;
1492                 if (copy_from_user(&irq, argp, sizeof irq))
1493                         goto out;
1494                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1495                 if (r)
1496                         goto out;
1497                 r = 0;
1498                 break;
1499         }
1500         case KVM_NMI: {
1501                 r = kvm_vcpu_ioctl_nmi(vcpu);
1502                 if (r)
1503                         goto out;
1504                 r = 0;
1505                 break;
1506         }
1507         case KVM_SET_CPUID: {
1508                 struct kvm_cpuid __user *cpuid_arg = argp;
1509                 struct kvm_cpuid cpuid;
1510
1511                 r = -EFAULT;
1512                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1513                         goto out;
1514                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1515                 if (r)
1516                         goto out;
1517                 break;
1518         }
1519         case KVM_SET_CPUID2: {
1520                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1521                 struct kvm_cpuid2 cpuid;
1522
1523                 r = -EFAULT;
1524                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1525                         goto out;
1526                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1527                                               cpuid_arg->entries);
1528                 if (r)
1529                         goto out;
1530                 break;
1531         }
1532         case KVM_GET_CPUID2: {
1533                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1534                 struct kvm_cpuid2 cpuid;
1535
1536                 r = -EFAULT;
1537                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1538                         goto out;
1539                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1540                                               cpuid_arg->entries);
1541                 if (r)
1542                         goto out;
1543                 r = -EFAULT;
1544                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1545                         goto out;
1546                 r = 0;
1547                 break;
1548         }
1549         case KVM_GET_MSRS:
1550                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1551                 break;
1552         case KVM_SET_MSRS:
1553                 r = msr_io(vcpu, argp, do_set_msr, 0);
1554                 break;
1555         case KVM_TPR_ACCESS_REPORTING: {
1556                 struct kvm_tpr_access_ctl tac;
1557
1558                 r = -EFAULT;
1559                 if (copy_from_user(&tac, argp, sizeof tac))
1560                         goto out;
1561                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1562                 if (r)
1563                         goto out;
1564                 r = -EFAULT;
1565                 if (copy_to_user(argp, &tac, sizeof tac))
1566                         goto out;
1567                 r = 0;
1568                 break;
1569         };
1570         case KVM_SET_VAPIC_ADDR: {
1571                 struct kvm_vapic_addr va;
1572
1573                 r = -EINVAL;
1574                 if (!irqchip_in_kernel(vcpu->kvm))
1575                         goto out;
1576                 r = -EFAULT;
1577                 if (copy_from_user(&va, argp, sizeof va))
1578                         goto out;
1579                 r = 0;
1580                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1581                 break;
1582         }
1583         default:
1584                 r = -EINVAL;
1585         }
1586 out:
1587         if (lapic)
1588                 kfree(lapic);
1589         return r;
1590 }
1591
1592 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1593 {
1594         int ret;
1595
1596         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1597                 return -1;
1598         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1599         return ret;
1600 }
1601
1602 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1603                                           u32 kvm_nr_mmu_pages)
1604 {
1605         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1606                 return -EINVAL;
1607
1608         down_write(&kvm->slots_lock);
1609
1610         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1611         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1612
1613         up_write(&kvm->slots_lock);
1614         return 0;
1615 }
1616
1617 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1618 {
1619         return kvm->arch.n_alloc_mmu_pages;
1620 }
1621
1622 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1623 {
1624         int i;
1625         struct kvm_mem_alias *alias;
1626
1627         for (i = 0; i < kvm->arch.naliases; ++i) {
1628                 alias = &kvm->arch.aliases[i];
1629                 if (gfn >= alias->base_gfn
1630                     && gfn < alias->base_gfn + alias->npages)
1631                         return alias->target_gfn + gfn - alias->base_gfn;
1632         }
1633         return gfn;
1634 }
1635
1636 /*
1637  * Set a new alias region.  Aliases map a portion of physical memory into
1638  * another portion.  This is useful for memory windows, for example the PC
1639  * VGA region.
1640  */
1641 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1642                                          struct kvm_memory_alias *alias)
1643 {
1644         int r, n;
1645         struct kvm_mem_alias *p;
1646
1647         r = -EINVAL;
1648         /* General sanity checks */
1649         if (alias->memory_size & (PAGE_SIZE - 1))
1650                 goto out;
1651         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1652                 goto out;
1653         if (alias->slot >= KVM_ALIAS_SLOTS)
1654                 goto out;
1655         if (alias->guest_phys_addr + alias->memory_size
1656             < alias->guest_phys_addr)
1657                 goto out;
1658         if (alias->target_phys_addr + alias->memory_size
1659             < alias->target_phys_addr)
1660                 goto out;
1661
1662         down_write(&kvm->slots_lock);
1663         spin_lock(&kvm->mmu_lock);
1664
1665         p = &kvm->arch.aliases[alias->slot];
1666         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1667         p->npages = alias->memory_size >> PAGE_SHIFT;
1668         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1669
1670         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1671                 if (kvm->arch.aliases[n - 1].npages)
1672                         break;
1673         kvm->arch.naliases = n;
1674
1675         spin_unlock(&kvm->mmu_lock);
1676         kvm_mmu_zap_all(kvm);
1677
1678         up_write(&kvm->slots_lock);
1679
1680         return 0;
1681
1682 out:
1683         return r;
1684 }
1685
1686 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1687 {
1688         int r;
1689
1690         r = 0;
1691         switch (chip->chip_id) {
1692         case KVM_IRQCHIP_PIC_MASTER:
1693                 memcpy(&chip->chip.pic,
1694                         &pic_irqchip(kvm)->pics[0],
1695                         sizeof(struct kvm_pic_state));
1696                 break;
1697         case KVM_IRQCHIP_PIC_SLAVE:
1698                 memcpy(&chip->chip.pic,
1699                         &pic_irqchip(kvm)->pics[1],
1700                         sizeof(struct kvm_pic_state));
1701                 break;
1702         case KVM_IRQCHIP_IOAPIC:
1703                 memcpy(&chip->chip.ioapic,
1704                         ioapic_irqchip(kvm),
1705                         sizeof(struct kvm_ioapic_state));
1706                 break;
1707         default:
1708                 r = -EINVAL;
1709                 break;
1710         }
1711         return r;
1712 }
1713
1714 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1715 {
1716         int r;
1717
1718         r = 0;
1719         switch (chip->chip_id) {
1720         case KVM_IRQCHIP_PIC_MASTER:
1721                 memcpy(&pic_irqchip(kvm)->pics[0],
1722                         &chip->chip.pic,
1723                         sizeof(struct kvm_pic_state));
1724                 break;
1725         case KVM_IRQCHIP_PIC_SLAVE:
1726                 memcpy(&pic_irqchip(kvm)->pics[1],
1727                         &chip->chip.pic,
1728                         sizeof(struct kvm_pic_state));
1729                 break;
1730         case KVM_IRQCHIP_IOAPIC:
1731                 memcpy(ioapic_irqchip(kvm),
1732                         &chip->chip.ioapic,
1733                         sizeof(struct kvm_ioapic_state));
1734                 break;
1735         default:
1736                 r = -EINVAL;
1737                 break;
1738         }
1739         kvm_pic_update_irq(pic_irqchip(kvm));
1740         return r;
1741 }
1742
1743 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1744 {
1745         int r = 0;
1746
1747         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1748         return r;
1749 }
1750
1751 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1752 {
1753         int r = 0;
1754
1755         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1756         kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1757         return r;
1758 }
1759
1760 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1761                                  struct kvm_reinject_control *control)
1762 {
1763         if (!kvm->arch.vpit)
1764                 return -ENXIO;
1765         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1766         return 0;
1767 }
1768
1769 /*
1770  * Get (and clear) the dirty memory log for a memory slot.
1771  */
1772 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1773                                       struct kvm_dirty_log *log)
1774 {
1775         int r;
1776         int n;
1777         struct kvm_memory_slot *memslot;
1778         int is_dirty = 0;
1779
1780         down_write(&kvm->slots_lock);
1781
1782         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1783         if (r)
1784                 goto out;
1785
1786         /* If nothing is dirty, don't bother messing with page tables. */
1787         if (is_dirty) {
1788                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1789                 kvm_flush_remote_tlbs(kvm);
1790                 memslot = &kvm->memslots[log->slot];
1791                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1792                 memset(memslot->dirty_bitmap, 0, n);
1793         }
1794         r = 0;
1795 out:
1796         up_write(&kvm->slots_lock);
1797         return r;
1798 }
1799
1800 long kvm_arch_vm_ioctl(struct file *filp,
1801                        unsigned int ioctl, unsigned long arg)
1802 {
1803         struct kvm *kvm = filp->private_data;
1804         void __user *argp = (void __user *)arg;
1805         int r = -EINVAL;
1806         /*
1807          * This union makes it completely explicit to gcc-3.x
1808          * that these two variables' stack usage should be
1809          * combined, not added together.
1810          */
1811         union {
1812                 struct kvm_pit_state ps;
1813                 struct kvm_memory_alias alias;
1814         } u;
1815
1816         switch (ioctl) {
1817         case KVM_SET_TSS_ADDR:
1818                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1819                 if (r < 0)
1820                         goto out;
1821                 break;
1822         case KVM_SET_MEMORY_REGION: {
1823                 struct kvm_memory_region kvm_mem;
1824                 struct kvm_userspace_memory_region kvm_userspace_mem;
1825
1826                 r = -EFAULT;
1827                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1828                         goto out;
1829                 kvm_userspace_mem.slot = kvm_mem.slot;
1830                 kvm_userspace_mem.flags = kvm_mem.flags;
1831                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1832                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1833                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1834                 if (r)
1835                         goto out;
1836                 break;
1837         }
1838         case KVM_SET_NR_MMU_PAGES:
1839                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1840                 if (r)
1841                         goto out;
1842                 break;
1843         case KVM_GET_NR_MMU_PAGES:
1844                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1845                 break;
1846         case KVM_SET_MEMORY_ALIAS:
1847                 r = -EFAULT;
1848                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1849                         goto out;
1850                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1851                 if (r)
1852                         goto out;
1853                 break;
1854         case KVM_CREATE_IRQCHIP:
1855                 r = -ENOMEM;
1856                 kvm->arch.vpic = kvm_create_pic(kvm);
1857                 if (kvm->arch.vpic) {
1858                         r = kvm_ioapic_init(kvm);
1859                         if (r) {
1860                                 kfree(kvm->arch.vpic);
1861                                 kvm->arch.vpic = NULL;
1862                                 goto out;
1863                         }
1864                 } else
1865                         goto out;
1866                 r = kvm_setup_default_irq_routing(kvm);
1867                 if (r) {
1868                         kfree(kvm->arch.vpic);
1869                         kfree(kvm->arch.vioapic);
1870                         goto out;
1871                 }
1872                 break;
1873         case KVM_CREATE_PIT:
1874                 mutex_lock(&kvm->lock);
1875                 r = -EEXIST;
1876                 if (kvm->arch.vpit)
1877                         goto create_pit_unlock;
1878                 r = -ENOMEM;
1879                 kvm->arch.vpit = kvm_create_pit(kvm);
1880                 if (kvm->arch.vpit)
1881                         r = 0;
1882         create_pit_unlock:
1883                 mutex_unlock(&kvm->lock);
1884                 break;
1885         case KVM_IRQ_LINE_STATUS:
1886         case KVM_IRQ_LINE: {
1887                 struct kvm_irq_level irq_event;
1888
1889                 r = -EFAULT;
1890                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1891                         goto out;
1892                 if (irqchip_in_kernel(kvm)) {
1893                         __s32 status;
1894                         mutex_lock(&kvm->lock);
1895                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1896                                         irq_event.irq, irq_event.level);
1897                         mutex_unlock(&kvm->lock);
1898                         if (ioctl == KVM_IRQ_LINE_STATUS) {
1899                                 irq_event.status = status;
1900                                 if (copy_to_user(argp, &irq_event,
1901                                                         sizeof irq_event))
1902                                         goto out;
1903                         }
1904                         r = 0;
1905                 }
1906                 break;
1907         }
1908         case KVM_GET_IRQCHIP: {
1909                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1910                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1911
1912                 r = -ENOMEM;
1913                 if (!chip)
1914                         goto out;
1915                 r = -EFAULT;
1916                 if (copy_from_user(chip, argp, sizeof *chip))
1917                         goto get_irqchip_out;
1918                 r = -ENXIO;
1919                 if (!irqchip_in_kernel(kvm))
1920                         goto get_irqchip_out;
1921                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1922                 if (r)
1923                         goto get_irqchip_out;
1924                 r = -EFAULT;
1925                 if (copy_to_user(argp, chip, sizeof *chip))
1926                         goto get_irqchip_out;
1927                 r = 0;
1928         get_irqchip_out:
1929                 kfree(chip);
1930                 if (r)
1931                         goto out;
1932                 break;
1933         }
1934         case KVM_SET_IRQCHIP: {
1935                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1936                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1937
1938                 r = -ENOMEM;
1939                 if (!chip)
1940                         goto out;
1941                 r = -EFAULT;
1942                 if (copy_from_user(chip, argp, sizeof *chip))
1943                         goto set_irqchip_out;
1944                 r = -ENXIO;
1945                 if (!irqchip_in_kernel(kvm))
1946                         goto set_irqchip_out;
1947                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1948                 if (r)
1949                         goto set_irqchip_out;
1950                 r = 0;
1951         set_irqchip_out:
1952                 kfree(chip);
1953                 if (r)
1954                         goto out;
1955                 break;
1956         }
1957         case KVM_GET_PIT: {
1958                 r = -EFAULT;
1959                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1960                         goto out;
1961                 r = -ENXIO;
1962                 if (!kvm->arch.vpit)
1963                         goto out;
1964                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1965                 if (r)
1966                         goto out;
1967                 r = -EFAULT;
1968                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1969                         goto out;
1970                 r = 0;
1971                 break;
1972         }
1973         case KVM_SET_PIT: {
1974                 r = -EFAULT;
1975                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1976                         goto out;
1977                 r = -ENXIO;
1978                 if (!kvm->arch.vpit)
1979                         goto out;
1980                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1981                 if (r)
1982                         goto out;
1983                 r = 0;
1984                 break;
1985         }
1986         case KVM_REINJECT_CONTROL: {
1987                 struct kvm_reinject_control control;
1988                 r =  -EFAULT;
1989                 if (copy_from_user(&control, argp, sizeof(control)))
1990                         goto out;
1991                 r = kvm_vm_ioctl_reinject(kvm, &control);
1992                 if (r)
1993                         goto out;
1994                 r = 0;
1995                 break;
1996         }
1997         default:
1998                 ;
1999         }
2000 out:
2001         return r;
2002 }
2003
2004 static void kvm_init_msr_list(void)
2005 {
2006         u32 dummy[2];
2007         unsigned i, j;
2008
2009         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2010                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2011                         continue;
2012                 if (j < i)
2013                         msrs_to_save[j] = msrs_to_save[i];
2014                 j++;
2015         }
2016         num_msrs_to_save = j;
2017 }
2018
2019 /*
2020  * Only apic need an MMIO device hook, so shortcut now..
2021  */
2022 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2023                                                 gpa_t addr, int len,
2024                                                 int is_write)
2025 {
2026         struct kvm_io_device *dev;
2027
2028         if (vcpu->arch.apic) {
2029                 dev = &vcpu->arch.apic->dev;
2030                 if (dev->in_range(dev, addr, len, is_write))
2031                         return dev;
2032         }
2033         return NULL;
2034 }
2035
2036
2037 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2038                                                 gpa_t addr, int len,
2039                                                 int is_write)
2040 {
2041         struct kvm_io_device *dev;
2042
2043         dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2044         if (dev == NULL)
2045                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2046                                           is_write);
2047         return dev;
2048 }
2049
2050 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2051                                struct kvm_vcpu *vcpu)
2052 {
2053         void *data = val;
2054         int r = X86EMUL_CONTINUE;
2055
2056         while (bytes) {
2057                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2058                 unsigned offset = addr & (PAGE_SIZE-1);
2059                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2060                 int ret;
2061
2062                 if (gpa == UNMAPPED_GVA) {
2063                         r = X86EMUL_PROPAGATE_FAULT;
2064                         goto out;
2065                 }
2066                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2067                 if (ret < 0) {
2068                         r = X86EMUL_UNHANDLEABLE;
2069                         goto out;
2070                 }
2071
2072                 bytes -= toread;
2073                 data += toread;
2074                 addr += toread;
2075         }
2076 out:
2077         return r;
2078 }
2079
2080 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2081                                 struct kvm_vcpu *vcpu)
2082 {
2083         void *data = val;
2084         int r = X86EMUL_CONTINUE;
2085
2086         while (bytes) {
2087                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2088                 unsigned offset = addr & (PAGE_SIZE-1);
2089                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2090                 int ret;
2091
2092                 if (gpa == UNMAPPED_GVA) {
2093                         r = X86EMUL_PROPAGATE_FAULT;
2094                         goto out;
2095                 }
2096                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2097                 if (ret < 0) {
2098                         r = X86EMUL_UNHANDLEABLE;
2099                         goto out;
2100                 }
2101
2102                 bytes -= towrite;
2103                 data += towrite;
2104                 addr += towrite;
2105         }
2106 out:
2107         return r;
2108 }
2109
2110
2111 static int emulator_read_emulated(unsigned long addr,
2112                                   void *val,
2113                                   unsigned int bytes,
2114                                   struct kvm_vcpu *vcpu)
2115 {
2116         struct kvm_io_device *mmio_dev;
2117         gpa_t                 gpa;
2118
2119         if (vcpu->mmio_read_completed) {
2120                 memcpy(val, vcpu->mmio_data, bytes);
2121                 vcpu->mmio_read_completed = 0;
2122                 return X86EMUL_CONTINUE;
2123         }
2124
2125         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2126
2127         /* For APIC access vmexit */
2128         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2129                 goto mmio;
2130
2131         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2132                                 == X86EMUL_CONTINUE)
2133                 return X86EMUL_CONTINUE;
2134         if (gpa == UNMAPPED_GVA)
2135                 return X86EMUL_PROPAGATE_FAULT;
2136
2137 mmio:
2138         /*
2139          * Is this MMIO handled locally?
2140          */
2141         mutex_lock(&vcpu->kvm->lock);
2142         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2143         if (mmio_dev) {
2144                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2145                 mutex_unlock(&vcpu->kvm->lock);
2146                 return X86EMUL_CONTINUE;
2147         }
2148         mutex_unlock(&vcpu->kvm->lock);
2149
2150         vcpu->mmio_needed = 1;
2151         vcpu->mmio_phys_addr = gpa;
2152         vcpu->mmio_size = bytes;
2153         vcpu->mmio_is_write = 0;
2154
2155         return X86EMUL_UNHANDLEABLE;
2156 }
2157
2158 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2159                           const void *val, int bytes)
2160 {
2161         int ret;
2162
2163         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2164         if (ret < 0)
2165                 return 0;
2166         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2167         return 1;
2168 }
2169
2170 static int emulator_write_emulated_onepage(unsigned long addr,
2171                                            const void *val,
2172                                            unsigned int bytes,
2173                                            struct kvm_vcpu *vcpu)
2174 {
2175         struct kvm_io_device *mmio_dev;
2176         gpa_t                 gpa;
2177
2178         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2179
2180         if (gpa == UNMAPPED_GVA) {
2181                 kvm_inject_page_fault(vcpu, addr, 2);
2182                 return X86EMUL_PROPAGATE_FAULT;
2183         }
2184
2185         /* For APIC access vmexit */
2186         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2187                 goto mmio;
2188
2189         if (emulator_write_phys(vcpu, gpa, val, bytes))
2190                 return X86EMUL_CONTINUE;
2191
2192 mmio:
2193         /*
2194          * Is this MMIO handled locally?
2195          */
2196         mutex_lock(&vcpu->kvm->lock);
2197         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2198         if (mmio_dev) {
2199                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2200                 mutex_unlock(&vcpu->kvm->lock);
2201                 return X86EMUL_CONTINUE;
2202         }
2203         mutex_unlock(&vcpu->kvm->lock);
2204
2205         vcpu->mmio_needed = 1;
2206         vcpu->mmio_phys_addr = gpa;
2207         vcpu->mmio_size = bytes;
2208         vcpu->mmio_is_write = 1;
2209         memcpy(vcpu->mmio_data, val, bytes);
2210
2211         return X86EMUL_CONTINUE;
2212 }
2213
2214 int emulator_write_emulated(unsigned long addr,
2215                                    const void *val,
2216                                    unsigned int bytes,
2217                                    struct kvm_vcpu *vcpu)
2218 {
2219         /* Crossing a page boundary? */
2220         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2221                 int rc, now;
2222
2223                 now = -addr & ~PAGE_MASK;
2224                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2225                 if (rc != X86EMUL_CONTINUE)
2226                         return rc;
2227                 addr += now;
2228                 val += now;
2229                 bytes -= now;
2230         }
2231         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2232 }
2233 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2234
2235 static int emulator_cmpxchg_emulated(unsigned long addr,
2236                                      const void *old,
2237                                      const void *new,
2238                                      unsigned int bytes,
2239                                      struct kvm_vcpu *vcpu)
2240 {
2241         static int reported;
2242
2243         if (!reported) {
2244                 reported = 1;
2245                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2246         }
2247 #ifndef CONFIG_X86_64
2248         /* guests cmpxchg8b have to be emulated atomically */
2249         if (bytes == 8) {
2250                 gpa_t gpa;
2251                 struct page *page;
2252                 char *kaddr;
2253                 u64 val;
2254
2255                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2256
2257                 if (gpa == UNMAPPED_GVA ||
2258                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2259                         goto emul_write;
2260
2261                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2262                         goto emul_write;
2263
2264                 val = *(u64 *)new;
2265
2266                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2267
2268                 kaddr = kmap_atomic(page, KM_USER0);
2269                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2270                 kunmap_atomic(kaddr, KM_USER0);
2271                 kvm_release_page_dirty(page);
2272         }
2273 emul_write:
2274 #endif
2275
2276         return emulator_write_emulated(addr, new, bytes, vcpu);
2277 }
2278
2279 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2280 {
2281         return kvm_x86_ops->get_segment_base(vcpu, seg);
2282 }
2283
2284 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2285 {
2286         kvm_mmu_invlpg(vcpu, address);
2287         return X86EMUL_CONTINUE;
2288 }
2289
2290 int emulate_clts(struct kvm_vcpu *vcpu)
2291 {
2292         KVMTRACE_0D(CLTS, vcpu, handler);
2293         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2294         return X86EMUL_CONTINUE;
2295 }
2296
2297 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2298 {
2299         struct kvm_vcpu *vcpu = ctxt->vcpu;
2300
2301         switch (dr) {
2302         case 0 ... 3:
2303                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2304                 return X86EMUL_CONTINUE;
2305         default:
2306                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2307                 return X86EMUL_UNHANDLEABLE;
2308         }
2309 }
2310
2311 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2312 {
2313         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2314         int exception;
2315
2316         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2317         if (exception) {
2318                 /* FIXME: better handling */
2319                 return X86EMUL_UNHANDLEABLE;
2320         }
2321         return X86EMUL_CONTINUE;
2322 }
2323
2324 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2325 {
2326         u8 opcodes[4];
2327         unsigned long rip = kvm_rip_read(vcpu);
2328         unsigned long rip_linear;
2329
2330         if (!printk_ratelimit())
2331                 return;
2332
2333         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2334
2335         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2336
2337         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2338                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2339 }
2340 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2341
2342 static struct x86_emulate_ops emulate_ops = {
2343         .read_std            = kvm_read_guest_virt,
2344         .read_emulated       = emulator_read_emulated,
2345         .write_emulated      = emulator_write_emulated,
2346         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2347 };
2348
2349 static void cache_all_regs(struct kvm_vcpu *vcpu)
2350 {
2351         kvm_register_read(vcpu, VCPU_REGS_RAX);
2352         kvm_register_read(vcpu, VCPU_REGS_RSP);
2353         kvm_register_read(vcpu, VCPU_REGS_RIP);
2354         vcpu->arch.regs_dirty = ~0;
2355 }
2356
2357 int emulate_instruction(struct kvm_vcpu *vcpu,
2358                         struct kvm_run *run,
2359                         unsigned long cr2,
2360                         u16 error_code,
2361                         int emulation_type)
2362 {
2363         int r;
2364         struct decode_cache *c;
2365
2366         kvm_clear_exception_queue(vcpu);
2367         vcpu->arch.mmio_fault_cr2 = cr2;
2368         /*
2369          * TODO: fix x86_emulate.c to use guest_read/write_register
2370          * instead of direct ->regs accesses, can save hundred cycles
2371          * on Intel for instructions that don't read/change RSP, for
2372          * for example.
2373          */
2374         cache_all_regs(vcpu);
2375
2376         vcpu->mmio_is_write = 0;
2377         vcpu->arch.pio.string = 0;
2378
2379         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2380                 int cs_db, cs_l;
2381                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2382
2383                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2384                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2385                 vcpu->arch.emulate_ctxt.mode =
2386                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2387                         ? X86EMUL_MODE_REAL : cs_l
2388                         ? X86EMUL_MODE_PROT64 : cs_db
2389                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2390
2391                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2392
2393                 /* Reject the instructions other than VMCALL/VMMCALL when
2394                  * try to emulate invalid opcode */
2395                 c = &vcpu->arch.emulate_ctxt.decode;
2396                 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2397                     (!(c->twobyte && c->b == 0x01 &&
2398                       (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2399                        c->modrm_mod == 3 && c->modrm_rm == 1)))
2400                         return EMULATE_FAIL;
2401
2402                 ++vcpu->stat.insn_emulation;
2403                 if (r)  {
2404                         ++vcpu->stat.insn_emulation_fail;
2405                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2406                                 return EMULATE_DONE;
2407                         return EMULATE_FAIL;
2408                 }
2409         }
2410
2411         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2412
2413         if (vcpu->arch.pio.string)
2414                 return EMULATE_DO_MMIO;
2415
2416         if ((r || vcpu->mmio_is_write) && run) {
2417                 run->exit_reason = KVM_EXIT_MMIO;
2418                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2419                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2420                 run->mmio.len = vcpu->mmio_size;
2421                 run->mmio.is_write = vcpu->mmio_is_write;
2422         }
2423
2424         if (r) {
2425                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2426                         return EMULATE_DONE;
2427                 if (!vcpu->mmio_needed) {
2428                         kvm_report_emulation_failure(vcpu, "mmio");
2429                         return EMULATE_FAIL;
2430                 }
2431                 return EMULATE_DO_MMIO;
2432         }
2433
2434         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2435
2436         if (vcpu->mmio_is_write) {
2437                 vcpu->mmio_needed = 0;
2438                 return EMULATE_DO_MMIO;
2439         }
2440
2441         return EMULATE_DONE;
2442 }
2443 EXPORT_SYMBOL_GPL(emulate_instruction);
2444
2445 static int pio_copy_data(struct kvm_vcpu *vcpu)
2446 {
2447         void *p = vcpu->arch.pio_data;
2448         gva_t q = vcpu->arch.pio.guest_gva;
2449         unsigned bytes;
2450         int ret;
2451
2452         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2453         if (vcpu->arch.pio.in)
2454                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2455         else
2456                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2457         return ret;
2458 }
2459
2460 int complete_pio(struct kvm_vcpu *vcpu)
2461 {
2462         struct kvm_pio_request *io = &vcpu->arch.pio;
2463         long delta;
2464         int r;
2465         unsigned long val;
2466
2467         if (!io->string) {
2468                 if (io->in) {
2469                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2470                         memcpy(&val, vcpu->arch.pio_data, io->size);
2471                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2472                 }
2473         } else {
2474                 if (io->in) {
2475                         r = pio_copy_data(vcpu);
2476                         if (r)
2477                                 return r;
2478                 }
2479
2480                 delta = 1;
2481                 if (io->rep) {
2482                         delta *= io->cur_count;
2483                         /*
2484                          * The size of the register should really depend on
2485                          * current address size.
2486                          */
2487                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2488                         val -= delta;
2489                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2490                 }
2491                 if (io->down)
2492                         delta = -delta;
2493                 delta *= io->size;
2494                 if (io->in) {
2495                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2496                         val += delta;
2497                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2498                 } else {
2499                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2500                         val += delta;
2501                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2502                 }
2503         }
2504
2505         io->count -= io->cur_count;
2506         io->cur_count = 0;
2507
2508         return 0;
2509 }
2510
2511 static void kernel_pio(struct kvm_io_device *pio_dev,
2512                        struct kvm_vcpu *vcpu,
2513                        void *pd)
2514 {
2515         /* TODO: String I/O for in kernel device */
2516
2517         mutex_lock(&vcpu->kvm->lock);
2518         if (vcpu->arch.pio.in)
2519                 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2520                                   vcpu->arch.pio.size,
2521                                   pd);
2522         else
2523                 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2524                                    vcpu->arch.pio.size,
2525                                    pd);
2526         mutex_unlock(&vcpu->kvm->lock);
2527 }
2528
2529 static void pio_string_write(struct kvm_io_device *pio_dev,
2530                              struct kvm_vcpu *vcpu)
2531 {
2532         struct kvm_pio_request *io = &vcpu->arch.pio;
2533         void *pd = vcpu->arch.pio_data;
2534         int i;
2535
2536         mutex_lock(&vcpu->kvm->lock);
2537         for (i = 0; i < io->cur_count; i++) {
2538                 kvm_iodevice_write(pio_dev, io->port,
2539                                    io->size,
2540                                    pd);
2541                 pd += io->size;
2542         }
2543         mutex_unlock(&vcpu->kvm->lock);
2544 }
2545
2546 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2547                                                gpa_t addr, int len,
2548                                                int is_write)
2549 {
2550         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2551 }
2552
2553 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2554                   int size, unsigned port)
2555 {
2556         struct kvm_io_device *pio_dev;
2557         unsigned long val;
2558
2559         vcpu->run->exit_reason = KVM_EXIT_IO;
2560         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2561         vcpu->run->io.size = vcpu->arch.pio.size = size;
2562         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2563         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2564         vcpu->run->io.port = vcpu->arch.pio.port = port;
2565         vcpu->arch.pio.in = in;
2566         vcpu->arch.pio.string = 0;
2567         vcpu->arch.pio.down = 0;
2568         vcpu->arch.pio.rep = 0;
2569
2570         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2571                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2572                             handler);
2573         else
2574                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2575                             handler);
2576
2577         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2578         memcpy(vcpu->arch.pio_data, &val, 4);
2579
2580         pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2581         if (pio_dev) {
2582                 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2583                 complete_pio(vcpu);
2584                 return 1;
2585         }
2586         return 0;
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2589
2590 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2591                   int size, unsigned long count, int down,
2592                   gva_t address, int rep, unsigned port)
2593 {
2594         unsigned now, in_page;
2595         int ret = 0;
2596         struct kvm_io_device *pio_dev;
2597
2598         vcpu->run->exit_reason = KVM_EXIT_IO;
2599         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2600         vcpu->run->io.size = vcpu->arch.pio.size = size;
2601         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2602         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2603         vcpu->run->io.port = vcpu->arch.pio.port = port;
2604         vcpu->arch.pio.in = in;
2605         vcpu->arch.pio.string = 1;
2606         vcpu->arch.pio.down = down;
2607         vcpu->arch.pio.rep = rep;
2608
2609         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2610                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2611                             handler);
2612         else
2613                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2614                             handler);
2615
2616         if (!count) {
2617                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2618                 return 1;
2619         }
2620
2621         if (!down)
2622                 in_page = PAGE_SIZE - offset_in_page(address);
2623         else
2624                 in_page = offset_in_page(address) + size;
2625         now = min(count, (unsigned long)in_page / size);
2626         if (!now)
2627                 now = 1;
2628         if (down) {
2629                 /*
2630                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2631                  */
2632                 pr_unimpl(vcpu, "guest string pio down\n");
2633                 kvm_inject_gp(vcpu, 0);
2634                 return 1;
2635         }
2636         vcpu->run->io.count = now;
2637         vcpu->arch.pio.cur_count = now;
2638
2639         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2640                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2641
2642         vcpu->arch.pio.guest_gva = address;
2643
2644         pio_dev = vcpu_find_pio_dev(vcpu, port,
2645                                     vcpu->arch.pio.cur_count,
2646                                     !vcpu->arch.pio.in);
2647         if (!vcpu->arch.pio.in) {
2648                 /* string PIO write */
2649                 ret = pio_copy_data(vcpu);
2650                 if (ret == X86EMUL_PROPAGATE_FAULT) {
2651                         kvm_inject_gp(vcpu, 0);
2652                         return 1;
2653                 }
2654                 if (ret == 0 && pio_dev) {
2655                         pio_string_write(pio_dev, vcpu);
2656                         complete_pio(vcpu);
2657                         if (vcpu->arch.pio.count == 0)
2658                                 ret = 1;
2659                 }
2660         } else if (pio_dev)
2661                 pr_unimpl(vcpu, "no string pio read support yet, "
2662                        "port %x size %d count %ld\n",
2663                         port, size, count);
2664
2665         return ret;
2666 }
2667 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2668
2669 static void bounce_off(void *info)
2670 {
2671         /* nothing */
2672 }
2673
2674 static unsigned int  ref_freq;
2675 static unsigned long tsc_khz_ref;
2676
2677 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2678                                      void *data)
2679 {
2680         struct cpufreq_freqs *freq = data;
2681         struct kvm *kvm;
2682         struct kvm_vcpu *vcpu;
2683         int i, send_ipi = 0;
2684
2685         if (!ref_freq)
2686                 ref_freq = freq->old;
2687
2688         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2689                 return 0;
2690         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2691                 return 0;
2692         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2693
2694         spin_lock(&kvm_lock);
2695         list_for_each_entry(kvm, &vm_list, vm_list) {
2696                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2697                         vcpu = kvm->vcpus[i];
2698                         if (!vcpu)
2699                                 continue;
2700                         if (vcpu->cpu != freq->cpu)
2701                                 continue;
2702                         if (!kvm_request_guest_time_update(vcpu))
2703                                 continue;
2704                         if (vcpu->cpu != smp_processor_id())
2705                                 send_ipi++;
2706                 }
2707         }
2708         spin_unlock(&kvm_lock);
2709
2710         if (freq->old < freq->new && send_ipi) {
2711                 /*
2712                  * We upscale the frequency.  Must make the guest
2713                  * doesn't see old kvmclock values while running with
2714                  * the new frequency, otherwise we risk the guest sees
2715                  * time go backwards.
2716                  *
2717                  * In case we update the frequency for another cpu
2718                  * (which might be in guest context) send an interrupt
2719                  * to kick the cpu out of guest context.  Next time
2720                  * guest context is entered kvmclock will be updated,
2721                  * so the guest will not see stale values.
2722                  */
2723                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2724         }
2725         return 0;
2726 }
2727
2728 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2729         .notifier_call  = kvmclock_cpufreq_notifier
2730 };
2731
2732 int kvm_arch_init(void *opaque)
2733 {
2734         int r, cpu;
2735         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2736
2737         if (kvm_x86_ops) {
2738                 printk(KERN_ERR "kvm: already loaded the other module\n");
2739                 r = -EEXIST;
2740                 goto out;
2741         }
2742
2743         if (!ops->cpu_has_kvm_support()) {
2744                 printk(KERN_ERR "kvm: no hardware support\n");
2745                 r = -EOPNOTSUPP;
2746                 goto out;
2747         }
2748         if (ops->disabled_by_bios()) {
2749                 printk(KERN_ERR "kvm: disabled by bios\n");
2750                 r = -EOPNOTSUPP;
2751                 goto out;
2752         }
2753
2754         r = kvm_mmu_module_init();
2755         if (r)
2756                 goto out;
2757
2758         kvm_init_msr_list();
2759
2760         kvm_x86_ops = ops;
2761         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2762         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2763         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2764                         PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2765
2766         for_each_possible_cpu(cpu)
2767                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2768         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2769                 tsc_khz_ref = tsc_khz;
2770                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2771                                           CPUFREQ_TRANSITION_NOTIFIER);
2772         }
2773
2774         return 0;
2775
2776 out:
2777         return r;
2778 }
2779
2780 void kvm_arch_exit(void)
2781 {
2782         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2783                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2784                                             CPUFREQ_TRANSITION_NOTIFIER);
2785         kvm_x86_ops = NULL;
2786         kvm_mmu_module_exit();
2787 }
2788
2789 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2790 {
2791         ++vcpu->stat.halt_exits;
2792         KVMTRACE_0D(HLT, vcpu, handler);
2793         if (irqchip_in_kernel(vcpu->kvm)) {
2794                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2795                 return 1;
2796         } else {
2797                 vcpu->run->exit_reason = KVM_EXIT_HLT;
2798                 return 0;
2799         }
2800 }
2801 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2802
2803 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2804                            unsigned long a1)
2805 {
2806         if (is_long_mode(vcpu))
2807                 return a0;
2808         else
2809                 return a0 | ((gpa_t)a1 << 32);
2810 }
2811
2812 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2813 {
2814         unsigned long nr, a0, a1, a2, a3, ret;
2815         int r = 1;
2816
2817         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2818         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2819         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2820         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2821         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2822
2823         KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2824
2825         if (!is_long_mode(vcpu)) {
2826                 nr &= 0xFFFFFFFF;
2827                 a0 &= 0xFFFFFFFF;
2828                 a1 &= 0xFFFFFFFF;
2829                 a2 &= 0xFFFFFFFF;
2830                 a3 &= 0xFFFFFFFF;
2831         }
2832
2833         switch (nr) {
2834         case KVM_HC_VAPIC_POLL_IRQ:
2835                 ret = 0;
2836                 break;
2837         case KVM_HC_MMU_OP:
2838                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2839                 break;
2840         default:
2841                 ret = -KVM_ENOSYS;
2842                 break;
2843         }
2844         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2845         ++vcpu->stat.hypercalls;
2846         return r;
2847 }
2848 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2849
2850 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2851 {
2852         char instruction[3];
2853         int ret = 0;
2854         unsigned long rip = kvm_rip_read(vcpu);
2855
2856
2857         /*
2858          * Blow out the MMU to ensure that no other VCPU has an active mapping
2859          * to ensure that the updated hypercall appears atomically across all
2860          * VCPUs.
2861          */
2862         kvm_mmu_zap_all(vcpu->kvm);
2863
2864         kvm_x86_ops->patch_hypercall(vcpu, instruction);
2865         if (emulator_write_emulated(rip, instruction, 3, vcpu)
2866             != X86EMUL_CONTINUE)
2867                 ret = -EFAULT;
2868
2869         return ret;
2870 }
2871
2872 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2873 {
2874         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2875 }
2876
2877 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2878 {
2879         struct descriptor_table dt = { limit, base };
2880
2881         kvm_x86_ops->set_gdt(vcpu, &dt);
2882 }
2883
2884 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2885 {
2886         struct descriptor_table dt = { limit, base };
2887
2888         kvm_x86_ops->set_idt(vcpu, &dt);
2889 }
2890
2891 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2892                    unsigned long *rflags)
2893 {
2894         kvm_lmsw(vcpu, msw);
2895         *rflags = kvm_x86_ops->get_rflags(vcpu);
2896 }
2897
2898 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2899 {
2900         unsigned long value;
2901
2902         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2903         switch (cr) {
2904         case 0:
2905                 value = vcpu->arch.cr0;
2906                 break;
2907         case 2:
2908                 value = vcpu->arch.cr2;
2909                 break;
2910         case 3:
2911                 value = vcpu->arch.cr3;
2912                 break;
2913         case 4:
2914                 value = vcpu->arch.cr4;
2915                 break;
2916         case 8:
2917                 value = kvm_get_cr8(vcpu);
2918                 break;
2919         default:
2920                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2921                 return 0;
2922         }
2923         KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2924                     (u32)((u64)value >> 32), handler);
2925
2926         return value;
2927 }
2928
2929 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2930                      unsigned long *rflags)
2931 {
2932         KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2933                     (u32)((u64)val >> 32), handler);
2934
2935         switch (cr) {
2936         case 0:
2937                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2938                 *rflags = kvm_x86_ops->get_rflags(vcpu);
2939                 break;
2940         case 2:
2941                 vcpu->arch.cr2 = val;
2942                 break;
2943         case 3:
2944                 kvm_set_cr3(vcpu, val);
2945                 break;
2946         case 4:
2947                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2948                 break;
2949         case 8:
2950                 kvm_set_cr8(vcpu, val & 0xfUL);
2951                 break;
2952         default:
2953                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2954         }
2955 }
2956
2957 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2958 {
2959         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2960         int j, nent = vcpu->arch.cpuid_nent;
2961
2962         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2963         /* when no next entry is found, the current entry[i] is reselected */
2964         for (j = i + 1; ; j = (j + 1) % nent) {
2965                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2966                 if (ej->function == e->function) {
2967                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2968                         return j;
2969                 }
2970         }
2971         return 0; /* silence gcc, even though control never reaches here */
2972 }
2973
2974 /* find an entry with matching function, matching index (if needed), and that
2975  * should be read next (if it's stateful) */
2976 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2977         u32 function, u32 index)
2978 {
2979         if (e->function != function)
2980                 return 0;
2981         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2982                 return 0;
2983         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2984             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2985                 return 0;
2986         return 1;
2987 }
2988
2989 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
2990                                               u32 function, u32 index)
2991 {
2992         int i;
2993         struct kvm_cpuid_entry2 *best = NULL;
2994
2995         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2996                 struct kvm_cpuid_entry2 *e;
2997
2998                 e = &vcpu->arch.cpuid_entries[i];
2999                 if (is_matching_cpuid_entry(e, function, index)) {
3000                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3001                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3002                         best = e;
3003                         break;
3004                 }
3005                 /*
3006                  * Both basic or both extended?
3007                  */
3008                 if (((e->function ^ function) & 0x80000000) == 0)
3009                         if (!best || e->function > best->function)
3010                                 best = e;
3011         }
3012         return best;
3013 }
3014
3015 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3016 {
3017         u32 function, index;
3018         struct kvm_cpuid_entry2 *best;
3019
3020         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3021         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3022         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3023         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3024         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3025         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3026         best = kvm_find_cpuid_entry(vcpu, function, index);
3027         if (best) {
3028                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3029                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3030                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3031                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3032         }
3033         kvm_x86_ops->skip_emulated_instruction(vcpu);
3034         KVMTRACE_5D(CPUID, vcpu, function,
3035                     (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3036                     (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3037                     (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3038                     (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3039 }
3040 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3041
3042 /*
3043  * Check if userspace requested an interrupt window, and that the
3044  * interrupt window is open.
3045  *
3046  * No need to exit to userspace if we already have an interrupt queued.
3047  */
3048 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3049                                           struct kvm_run *kvm_run)
3050 {
3051         return (!vcpu->arch.irq_summary &&
3052                 kvm_run->request_interrupt_window &&
3053                 vcpu->arch.interrupt_window_open &&
3054                 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
3055 }
3056
3057 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3058                               struct kvm_run *kvm_run)
3059 {
3060         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3061         kvm_run->cr8 = kvm_get_cr8(vcpu);
3062         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3063         if (irqchip_in_kernel(vcpu->kvm))
3064                 kvm_run->ready_for_interrupt_injection = 1;
3065         else
3066                 kvm_run->ready_for_interrupt_injection =
3067                                         (vcpu->arch.interrupt_window_open &&
3068                                          vcpu->arch.irq_summary == 0);
3069 }
3070
3071 static void vapic_enter(struct kvm_vcpu *vcpu)
3072 {
3073         struct kvm_lapic *apic = vcpu->arch.apic;
3074         struct page *page;
3075
3076         if (!apic || !apic->vapic_addr)
3077                 return;
3078
3079         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3080
3081         vcpu->arch.apic->vapic_page = page;
3082 }
3083
3084 static void vapic_exit(struct kvm_vcpu *vcpu)
3085 {
3086         struct kvm_lapic *apic = vcpu->arch.apic;
3087
3088         if (!apic || !apic->vapic_addr)
3089                 return;
3090
3091         down_read(&vcpu->kvm->slots_lock);
3092         kvm_release_page_dirty(apic->vapic_page);
3093         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3094         up_read(&vcpu->kvm->slots_lock);
3095 }
3096
3097 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3098 {
3099         int r;
3100
3101         if (vcpu->requests)
3102                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3103                         kvm_mmu_unload(vcpu);
3104
3105         r = kvm_mmu_reload(vcpu);
3106         if (unlikely(r))
3107                 goto out;
3108
3109         if (vcpu->requests) {
3110                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3111                         __kvm_migrate_timers(vcpu);
3112                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3113                         kvm_write_guest_time(vcpu);
3114                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3115                         kvm_mmu_sync_roots(vcpu);
3116                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3117                         kvm_x86_ops->tlb_flush(vcpu);
3118                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3119                                        &vcpu->requests)) {
3120                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3121                         r = 0;
3122                         goto out;
3123                 }
3124                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3125                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3126                         r = 0;
3127                         goto out;
3128                 }
3129         }
3130
3131         clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3132         kvm_inject_pending_timer_irqs(vcpu);
3133
3134         preempt_disable();
3135
3136         kvm_x86_ops->prepare_guest_switch(vcpu);
3137         kvm_load_guest_fpu(vcpu);
3138
3139         local_irq_disable();
3140
3141         if (vcpu->requests || need_resched() || signal_pending(current)) {
3142                 local_irq_enable();
3143                 preempt_enable();
3144                 r = 1;
3145                 goto out;
3146         }
3147
3148         vcpu->guest_mode = 1;
3149         /*
3150          * Make sure that guest_mode assignment won't happen after
3151          * testing the pending IRQ vector bitmap.
3152          */
3153         smp_wmb();
3154
3155         if (vcpu->arch.exception.pending)
3156                 __queue_exception(vcpu);
3157         else if (irqchip_in_kernel(vcpu->kvm))
3158                 kvm_x86_ops->inject_pending_irq(vcpu);
3159         else
3160                 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3161
3162         kvm_lapic_sync_to_vapic(vcpu);
3163
3164         up_read(&vcpu->kvm->slots_lock);
3165
3166         kvm_guest_enter();
3167
3168         get_debugreg(vcpu->arch.host_dr6, 6);
3169         get_debugreg(vcpu->arch.host_dr7, 7);
3170         if (unlikely(vcpu->arch.switch_db_regs)) {
3171                 get_debugreg(vcpu->arch.host_db[0], 0);
3172                 get_debugreg(vcpu->arch.host_db[1], 1);
3173                 get_debugreg(vcpu->arch.host_db[2], 2);
3174                 get_debugreg(vcpu->arch.host_db[3], 3);
3175
3176                 set_debugreg(0, 7);
3177                 set_debugreg(vcpu->arch.eff_db[0], 0);
3178                 set_debugreg(vcpu->arch.eff_db[1], 1);
3179                 set_debugreg(vcpu->arch.eff_db[2], 2);
3180                 set_debugreg(vcpu->arch.eff_db[3], 3);
3181         }
3182
3183         KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3184         kvm_x86_ops->run(vcpu, kvm_run);
3185
3186         if (unlikely(vcpu->arch.switch_db_regs)) {
3187                 set_debugreg(0, 7);
3188                 set_debugreg(vcpu->arch.host_db[0], 0);
3189                 set_debugreg(vcpu->arch.host_db[1], 1);
3190                 set_debugreg(vcpu->arch.host_db[2], 2);
3191                 set_debugreg(vcpu->arch.host_db[3], 3);
3192         }
3193         set_debugreg(vcpu->arch.host_dr6, 6);
3194         set_debugreg(vcpu->arch.host_dr7, 7);
3195
3196         vcpu->guest_mode = 0;
3197         local_irq_enable();
3198
3199         ++vcpu->stat.exits;
3200
3201         /*
3202          * We must have an instruction between local_irq_enable() and
3203          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3204          * the interrupt shadow.  The stat.exits increment will do nicely.
3205          * But we need to prevent reordering, hence this barrier():
3206          */
3207         barrier();
3208
3209         kvm_guest_exit();
3210
3211         preempt_enable();
3212
3213         down_read(&vcpu->kvm->slots_lock);
3214
3215         /*
3216          * Profile KVM exit RIPs:
3217          */
3218         if (unlikely(prof_on == KVM_PROFILING)) {
3219                 unsigned long rip = kvm_rip_read(vcpu);
3220                 profile_hit(KVM_PROFILING, (void *)rip);
3221         }
3222
3223         if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3224                 vcpu->arch.exception.pending = false;
3225
3226         kvm_lapic_sync_from_vapic(vcpu);
3227
3228         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3229 out:
3230         return r;
3231 }
3232
3233 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3234 {
3235         int r;
3236
3237         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3238                 pr_debug("vcpu %d received sipi with vector # %x\n",
3239                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3240                 kvm_lapic_reset(vcpu);
3241                 r = kvm_arch_vcpu_reset(vcpu);
3242                 if (r)
3243                         return r;
3244                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3245         }
3246
3247         down_read(&vcpu->kvm->slots_lock);
3248         vapic_enter(vcpu);
3249
3250         r = 1;
3251         while (r > 0) {
3252                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3253                         r = vcpu_enter_guest(vcpu, kvm_run);
3254                 else {
3255                         up_read(&vcpu->kvm->slots_lock);
3256                         kvm_vcpu_block(vcpu);
3257                         down_read(&vcpu->kvm->slots_lock);
3258                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3259                                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3260                                         vcpu->arch.mp_state =
3261                                                         KVM_MP_STATE_RUNNABLE;
3262                         if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3263                                 r = -EINTR;
3264                 }
3265
3266                 if (r > 0) {
3267                         if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3268                                 r = -EINTR;
3269                                 kvm_run->exit_reason = KVM_EXIT_INTR;
3270                                 ++vcpu->stat.request_irq_exits;
3271                         }
3272                         if (signal_pending(current)) {
3273                                 r = -EINTR;
3274                                 kvm_run->exit_reason = KVM_EXIT_INTR;
3275                                 ++vcpu->stat.signal_exits;
3276                         }
3277                         if (need_resched()) {
3278                                 up_read(&vcpu->kvm->slots_lock);
3279                                 kvm_resched(vcpu);
3280                                 down_read(&vcpu->kvm->slots_lock);
3281                         }
3282                 }
3283         }
3284
3285         up_read(&vcpu->kvm->slots_lock);
3286         post_kvm_run_save(vcpu, kvm_run);
3287
3288         vapic_exit(vcpu);
3289
3290         return r;
3291 }
3292
3293 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3294 {
3295         int r;
3296         sigset_t sigsaved;
3297
3298         vcpu_load(vcpu);
3299
3300         if (vcpu->sigset_active)
3301                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3302
3303         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3304                 kvm_vcpu_block(vcpu);
3305                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3306                 r = -EAGAIN;
3307                 goto out;
3308         }
3309
3310         /* re-sync apic's tpr */
3311         if (!irqchip_in_kernel(vcpu->kvm))
3312                 kvm_set_cr8(vcpu, kvm_run->cr8);
3313
3314         if (vcpu->arch.pio.cur_count) {
3315                 r = complete_pio(vcpu);
3316                 if (r)
3317                         goto out;
3318         }
3319 #if CONFIG_HAS_IOMEM
3320         if (vcpu->mmio_needed) {
3321                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3322                 vcpu->mmio_read_completed = 1;
3323                 vcpu->mmio_needed = 0;
3324
3325                 down_read(&vcpu->kvm->slots_lock);
3326                 r = emulate_instruction(vcpu, kvm_run,
3327                                         vcpu->arch.mmio_fault_cr2, 0,
3328                                         EMULTYPE_NO_DECODE);
3329                 up_read(&vcpu->kvm->slots_lock);
3330                 if (r == EMULATE_DO_MMIO) {
3331                         /*
3332                          * Read-modify-write.  Back to userspace.
3333                          */
3334                         r = 0;
3335                         goto out;
3336                 }
3337         }
3338 #endif
3339         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3340                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3341                                      kvm_run->hypercall.ret);
3342
3343         r = __vcpu_run(vcpu, kvm_run);
3344
3345 out:
3346         if (vcpu->sigset_active)
3347                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3348
3349         vcpu_put(vcpu);
3350         return r;
3351 }
3352
3353 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3354 {
3355         vcpu_load(vcpu);
3356
3357         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3358         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3359         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3360         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3361         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3362         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3363         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3364         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3365 #ifdef CONFIG_X86_64
3366         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3367         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3368         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3369         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3370         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3371         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3372         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3373         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3374 #endif
3375
3376         regs->rip = kvm_rip_read(vcpu);
3377         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3378
3379         /*
3380          * Don't leak debug flags in case they were set for guest debugging
3381          */
3382         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3383                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3384
3385         vcpu_put(vcpu);
3386
3387         return 0;
3388 }
3389
3390 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3391 {
3392         vcpu_load(vcpu);
3393
3394         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3395         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3396         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3397         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3398         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3399         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3400         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3401         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3402 #ifdef CONFIG_X86_64
3403         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3404         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3405         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3406         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3407         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3408         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3409         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3410         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3411
3412 #endif
3413
3414         kvm_rip_write(vcpu, regs->rip);
3415         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3416
3417
3418         vcpu->arch.exception.pending = false;
3419
3420         vcpu_put(vcpu);
3421
3422         return 0;
3423 }
3424
3425 void kvm_get_segment(struct kvm_vcpu *vcpu,
3426                      struct kvm_segment *var, int seg)
3427 {
3428         kvm_x86_ops->get_segment(vcpu, var, seg);
3429 }
3430
3431 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3432 {
3433         struct kvm_segment cs;
3434
3435         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3436         *db = cs.db;
3437         *l = cs.l;
3438 }
3439 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3440
3441 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3442                                   struct kvm_sregs *sregs)
3443 {
3444         struct descriptor_table dt;
3445         int pending_vec;
3446
3447         vcpu_load(vcpu);
3448
3449         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3450         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3451         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3452         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3453         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3454         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3455
3456         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3457         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3458
3459         kvm_x86_ops->get_idt(vcpu, &dt);
3460         sregs->idt.limit = dt.limit;
3461         sregs->idt.base = dt.base;
3462         kvm_x86_ops->get_gdt(vcpu, &dt);
3463         sregs->gdt.limit = dt.limit;
3464         sregs->gdt.base = dt.base;
3465
3466         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3467         sregs->cr0 = vcpu->arch.cr0;
3468         sregs->cr2 = vcpu->arch.cr2;
3469         sregs->cr3 = vcpu->arch.cr3;
3470         sregs->cr4 = vcpu->arch.cr4;
3471         sregs->cr8 = kvm_get_cr8(vcpu);
3472         sregs->efer = vcpu->arch.shadow_efer;
3473         sregs->apic_base = kvm_get_apic_base(vcpu);
3474
3475         if (irqchip_in_kernel(vcpu->kvm)) {
3476                 memset(sregs->interrupt_bitmap, 0,
3477                        sizeof sregs->interrupt_bitmap);
3478                 pending_vec = kvm_x86_ops->get_irq(vcpu);
3479                 if (pending_vec >= 0)
3480                         set_bit(pending_vec,
3481                                 (unsigned long *)sregs->interrupt_bitmap);
3482         } else
3483                 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3484                        sizeof sregs->interrupt_bitmap);
3485
3486         vcpu_put(vcpu);
3487
3488         return 0;
3489 }
3490
3491 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3492                                     struct kvm_mp_state *mp_state)
3493 {
3494         vcpu_load(vcpu);
3495         mp_state->mp_state = vcpu->arch.mp_state;
3496         vcpu_put(vcpu);
3497         return 0;
3498 }
3499
3500 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3501                                     struct kvm_mp_state *mp_state)
3502 {
3503         vcpu_load(vcpu);
3504         vcpu->arch.mp_state = mp_state->mp_state;
3505         vcpu_put(vcpu);
3506         return 0;
3507 }
3508
3509 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3510                         struct kvm_segment *var, int seg)
3511 {
3512         kvm_x86_ops->set_segment(vcpu, var, seg);
3513 }
3514
3515 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3516                                    struct kvm_segment *kvm_desct)
3517 {
3518         kvm_desct->base = seg_desc->base0;
3519         kvm_desct->base |= seg_desc->base1 << 16;
3520         kvm_desct->base |= seg_desc->base2 << 24;
3521         kvm_desct->limit = seg_desc->limit0;
3522         kvm_desct->limit |= seg_desc->limit << 16;
3523         if (seg_desc->g) {
3524                 kvm_desct->limit <<= 12;
3525                 kvm_desct->limit |= 0xfff;
3526         }
3527         kvm_desct->selector = selector;
3528         kvm_desct->type = seg_desc->type;
3529         kvm_desct->present = seg_desc->p;
3530         kvm_desct->dpl = seg_desc->dpl;
3531         kvm_desct->db = seg_desc->d;
3532         kvm_desct->s = seg_desc->s;
3533         kvm_desct->l = seg_desc->l;
3534         kvm_desct->g = seg_desc->g;
3535         kvm_desct->avl = seg_desc->avl;
3536         if (!selector)
3537                 kvm_desct->unusable = 1;
3538         else
3539                 kvm_desct->unusable = 0;
3540         kvm_desct->padding = 0;
3541 }
3542
3543 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3544                                           u16 selector,
3545                                           struct descriptor_table *dtable)
3546 {
3547         if (selector & 1 << 2) {
3548                 struct kvm_segment kvm_seg;
3549
3550                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3551
3552                 if (kvm_seg.unusable)
3553                         dtable->limit = 0;
3554                 else
3555                         dtable->limit = kvm_seg.limit;
3556                 dtable->base = kvm_seg.base;
3557         }
3558         else
3559                 kvm_x86_ops->get_gdt(vcpu, dtable);
3560 }
3561
3562 /* allowed just for 8 bytes segments */
3563 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3564                                          struct desc_struct *seg_desc)
3565 {
3566         gpa_t gpa;
3567         struct descriptor_table dtable;
3568         u16 index = selector >> 3;
3569
3570         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3571
3572         if (dtable.limit < index * 8 + 7) {
3573                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3574                 return 1;
3575         }
3576         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3577         gpa += index * 8;
3578         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3579 }
3580
3581 /* allowed just for 8 bytes segments */
3582 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3583                                          struct desc_struct *seg_desc)
3584 {
3585         gpa_t gpa;
3586         struct descriptor_table dtable;
3587         u16 index = selector >> 3;
3588
3589         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3590
3591         if (dtable.limit < index * 8 + 7)
3592                 return 1;
3593         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3594         gpa += index * 8;
3595         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3596 }
3597
3598 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3599                              struct desc_struct *seg_desc)
3600 {
3601         u32 base_addr;
3602
3603         base_addr = seg_desc->base0;
3604         base_addr |= (seg_desc->base1 << 16);
3605         base_addr |= (seg_desc->base2 << 24);
3606
3607         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3608 }
3609
3610 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3611 {
3612         struct kvm_segment kvm_seg;
3613
3614         kvm_get_segment(vcpu, &kvm_seg, seg);
3615         return kvm_seg.selector;
3616 }
3617
3618 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3619                                                 u16 selector,
3620                                                 struct kvm_segment *kvm_seg)
3621 {
3622         struct desc_struct seg_desc;
3623
3624         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3625                 return 1;
3626         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3627         return 0;
3628 }
3629
3630 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3631 {
3632         struct kvm_segment segvar = {
3633                 .base = selector << 4,
3634                 .limit = 0xffff,
3635                 .selector = selector,
3636                 .type = 3,
3637                 .present = 1,
3638                 .dpl = 3,
3639                 .db = 0,
3640                 .s = 1,
3641                 .l = 0,
3642                 .g = 0,
3643                 .avl = 0,
3644                 .unusable = 0,
3645         };
3646         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3647         return 0;
3648 }
3649
3650 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3651                                 int type_bits, int seg)
3652 {
3653         struct kvm_segment kvm_seg;
3654
3655         if (!(vcpu->arch.cr0 & X86_CR0_PE))
3656                 return kvm_load_realmode_segment(vcpu, selector, seg);
3657         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3658                 return 1;
3659         kvm_seg.type |= type_bits;
3660
3661         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3662             seg != VCPU_SREG_LDTR)
3663                 if (!kvm_seg.s)
3664                         kvm_seg.unusable = 1;
3665
3666         kvm_set_segment(vcpu, &kvm_seg, seg);
3667         return 0;
3668 }
3669
3670 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3671                                 struct tss_segment_32 *tss)
3672 {
3673         tss->cr3 = vcpu->arch.cr3;
3674         tss->eip = kvm_rip_read(vcpu);
3675         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3676         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3677         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3678         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3679         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3680         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3681         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3682         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3683         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3684         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3685         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3686         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3687         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3688         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3689         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3690         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3691         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3692 }
3693
3694 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3695                                   struct tss_segment_32 *tss)
3696 {
3697         kvm_set_cr3(vcpu, tss->cr3);
3698
3699         kvm_rip_write(vcpu, tss->eip);
3700         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3701
3702         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3703         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3704         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3705         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3706         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3707         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3708         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3709         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3710
3711         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3712                 return 1;
3713
3714         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3715                 return 1;
3716
3717         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3718                 return 1;
3719
3720         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3721                 return 1;
3722
3723         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3724                 return 1;
3725
3726         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3727                 return 1;
3728
3729         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3730                 return 1;
3731         return 0;
3732 }
3733
3734 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3735                                 struct tss_segment_16 *tss)
3736 {
3737         tss->ip = kvm_rip_read(vcpu);
3738         tss->flag = kvm_x86_ops->get_rflags(vcpu);
3739         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3740         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3741         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3742         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3743         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3744         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3745         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3746         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3747
3748         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3749         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3750         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3751         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3752         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3753         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3754 }
3755
3756 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3757                                  struct tss_segment_16 *tss)
3758 {
3759         kvm_rip_write(vcpu, tss->ip);
3760         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3761         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3762         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3763         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3764         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3765         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3766         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3767         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3768         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3769
3770         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3771                 return 1;
3772
3773         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3774                 return 1;
3775
3776         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3777                 return 1;
3778
3779         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3780                 return 1;
3781
3782         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3783                 return 1;
3784         return 0;
3785 }
3786
3787 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3788                        u32 old_tss_base,
3789                        struct desc_struct *nseg_desc)
3790 {
3791         struct tss_segment_16 tss_segment_16;
3792         int ret = 0;
3793
3794         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3795                            sizeof tss_segment_16))
3796                 goto out;
3797
3798         save_state_to_tss16(vcpu, &tss_segment_16);
3799
3800         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3801                             sizeof tss_segment_16))
3802                 goto out;
3803
3804         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3805                            &tss_segment_16, sizeof tss_segment_16))
3806                 goto out;
3807
3808         if (load_state_from_tss16(vcpu, &tss_segment_16))
3809                 goto out;
3810
3811         ret = 1;
3812 out:
3813         return ret;
3814 }
3815
3816 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3817                        u32 old_tss_base,
3818                        struct desc_struct *nseg_desc)
3819 {
3820         struct tss_segment_32 tss_segment_32;
3821         int ret = 0;
3822
3823         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3824                            sizeof tss_segment_32))
3825                 goto out;
3826
3827         save_state_to_tss32(vcpu, &tss_segment_32);
3828
3829         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3830                             sizeof tss_segment_32))
3831                 goto out;
3832
3833         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3834                            &tss_segment_32, sizeof tss_segment_32))
3835                 goto out;
3836
3837         if (load_state_from_tss32(vcpu, &tss_segment_32))
3838                 goto out;
3839
3840         ret = 1;
3841 out:
3842         return ret;
3843 }
3844
3845 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3846 {
3847         struct kvm_segment tr_seg;
3848         struct desc_struct cseg_desc;
3849         struct desc_struct nseg_desc;
3850         int ret = 0;
3851         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3852         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3853
3854         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3855
3856         /* FIXME: Handle errors. Failure to read either TSS or their
3857          * descriptors should generate a pagefault.
3858          */
3859         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3860                 goto out;
3861
3862         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3863                 goto out;
3864
3865         if (reason != TASK_SWITCH_IRET) {
3866                 int cpl;
3867
3868                 cpl = kvm_x86_ops->get_cpl(vcpu);
3869                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3870                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3871                         return 1;
3872                 }
3873         }
3874
3875         if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3876                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3877                 return 1;
3878         }
3879
3880         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3881                 cseg_desc.type &= ~(1 << 1); //clear the B flag
3882                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3883         }
3884
3885         if (reason == TASK_SWITCH_IRET) {
3886                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3887                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3888         }
3889
3890         kvm_x86_ops->skip_emulated_instruction(vcpu);
3891
3892         if (nseg_desc.type & 8)
3893                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3894                                          &nseg_desc);
3895         else
3896                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3897                                          &nseg_desc);
3898
3899         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3900                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3901                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3902         }
3903
3904         if (reason != TASK_SWITCH_IRET) {
3905                 nseg_desc.type |= (1 << 1);
3906                 save_guest_segment_descriptor(vcpu, tss_selector,
3907                                               &nseg_desc);
3908         }
3909
3910         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3911         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3912         tr_seg.type = 11;
3913         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3914 out:
3915         return ret;
3916 }
3917 EXPORT_SYMBOL_GPL(kvm_task_switch);
3918
3919 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3920                                   struct kvm_sregs *sregs)
3921 {
3922         int mmu_reset_needed = 0;
3923         int i, pending_vec, max_bits;
3924         struct descriptor_table dt;
3925
3926         vcpu_load(vcpu);
3927
3928         dt.limit = sregs->idt.limit;
3929         dt.base = sregs->idt.base;
3930         kvm_x86_ops->set_idt(vcpu, &dt);
3931         dt.limit = sregs->gdt.limit;
3932         dt.base = sregs->gdt.base;
3933         kvm_x86_ops->set_gdt(vcpu, &dt);
3934
3935         vcpu->arch.cr2 = sregs->cr2;
3936         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3937         vcpu->arch.cr3 = sregs->cr3;
3938
3939         kvm_set_cr8(vcpu, sregs->cr8);
3940
3941         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3942         kvm_x86_ops->set_efer(vcpu, sregs->efer);
3943         kvm_set_apic_base(vcpu, sregs->apic_base);
3944
3945         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3946
3947         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3948         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3949         vcpu->arch.cr0 = sregs->cr0;
3950
3951         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3952         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3953         if (!is_long_mode(vcpu) && is_pae(vcpu))
3954                 load_pdptrs(vcpu, vcpu->arch.cr3);
3955
3956         if (mmu_reset_needed)
3957                 kvm_mmu_reset_context(vcpu);
3958
3959         if (!irqchip_in_kernel(vcpu->kvm)) {
3960                 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3961                        sizeof vcpu->arch.irq_pending);
3962                 vcpu->arch.irq_summary = 0;
3963                 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3964                         if (vcpu->arch.irq_pending[i])
3965                                 __set_bit(i, &vcpu->arch.irq_summary);
3966         } else {
3967                 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3968                 pending_vec = find_first_bit(
3969                         (const unsigned long *)sregs->interrupt_bitmap,
3970                         max_bits);
3971                 /* Only pending external irq is handled here */
3972                 if (pending_vec < max_bits) {
3973                         kvm_x86_ops->set_irq(vcpu, pending_vec);
3974                         pr_debug("Set back pending irq %d\n",
3975                                  pending_vec);
3976                 }
3977                 kvm_pic_clear_isr_ack(vcpu->kvm);
3978         }
3979
3980         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3981         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3982         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3983         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3984         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3985         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3986
3987         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3988         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3989
3990         /* Older userspace won't unhalt the vcpu on reset. */
3991         if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3992             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3993             !(vcpu->arch.cr0 & X86_CR0_PE))
3994                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3995
3996         vcpu_put(vcpu);
3997
3998         return 0;
3999 }
4000
4001 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4002                                         struct kvm_guest_debug *dbg)
4003 {
4004         int i, r;
4005
4006         vcpu_load(vcpu);
4007
4008         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4009             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4010                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4011                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4012                 vcpu->arch.switch_db_regs =
4013                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4014         } else {
4015                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4016                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4017                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4018         }
4019
4020         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4021
4022         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4023                 kvm_queue_exception(vcpu, DB_VECTOR);
4024         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4025                 kvm_queue_exception(vcpu, BP_VECTOR);
4026
4027         vcpu_put(vcpu);
4028
4029         return r;
4030 }
4031
4032 /*
4033  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4034  * we have asm/x86/processor.h
4035  */
4036 struct fxsave {
4037         u16     cwd;
4038         u16     swd;
4039         u16     twd;
4040         u16     fop;
4041         u64     rip;
4042         u64     rdp;
4043         u32     mxcsr;
4044         u32     mxcsr_mask;
4045         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4046 #ifdef CONFIG_X86_64
4047         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4048 #else
4049         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4050 #endif
4051 };
4052
4053 /*
4054  * Translate a guest virtual address to a guest physical address.
4055  */
4056 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4057                                     struct kvm_translation *tr)
4058 {
4059         unsigned long vaddr = tr->linear_address;
4060         gpa_t gpa;
4061
4062         vcpu_load(vcpu);
4063         down_read(&vcpu->kvm->slots_lock);
4064         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4065         up_read(&vcpu->kvm->slots_lock);
4066         tr->physical_address = gpa;
4067         tr->valid = gpa != UNMAPPED_GVA;
4068         tr->writeable = 1;
4069         tr->usermode = 0;
4070         vcpu_put(vcpu);
4071
4072         return 0;
4073 }
4074
4075 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4076 {
4077         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4078
4079         vcpu_load(vcpu);
4080
4081         memcpy(fpu->fpr, fxsave->st_space, 128);
4082         fpu->fcw = fxsave->cwd;
4083         fpu->fsw = fxsave->swd;
4084         fpu->ftwx = fxsave->twd;
4085         fpu->last_opcode = fxsave->fop;
4086         fpu->last_ip = fxsave->rip;
4087         fpu->last_dp = fxsave->rdp;
4088         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4089
4090         vcpu_put(vcpu);
4091
4092         return 0;
4093 }
4094
4095 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4096 {
4097         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4098
4099         vcpu_load(vcpu);
4100
4101         memcpy(fxsave->st_space, fpu->fpr, 128);
4102         fxsave->cwd = fpu->fcw;
4103         fxsave->swd = fpu->fsw;
4104         fxsave->twd = fpu->ftwx;
4105         fxsave->fop = fpu->last_opcode;
4106         fxsave->rip = fpu->last_ip;
4107         fxsave->rdp = fpu->last_dp;
4108         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4109
4110         vcpu_put(vcpu);
4111
4112         return 0;
4113 }
4114
4115 void fx_init(struct kvm_vcpu *vcpu)
4116 {
4117         unsigned after_mxcsr_mask;
4118
4119         /*
4120          * Touch the fpu the first time in non atomic context as if
4121          * this is the first fpu instruction the exception handler
4122          * will fire before the instruction returns and it'll have to
4123          * allocate ram with GFP_KERNEL.
4124          */
4125         if (!used_math())
4126                 kvm_fx_save(&vcpu->arch.host_fx_image);
4127
4128         /* Initialize guest FPU by resetting ours and saving into guest's */
4129         preempt_disable();
4130         kvm_fx_save(&vcpu->arch.host_fx_image);
4131         kvm_fx_finit();
4132         kvm_fx_save(&vcpu->arch.guest_fx_image);
4133         kvm_fx_restore(&vcpu->arch.host_fx_image);
4134         preempt_enable();
4135
4136         vcpu->arch.cr0 |= X86_CR0_ET;
4137         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4138         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4139         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4140                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4141 }
4142 EXPORT_SYMBOL_GPL(fx_init);
4143
4144 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4145 {
4146         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4147                 return;
4148
4149         vcpu->guest_fpu_loaded = 1;
4150         kvm_fx_save(&vcpu->arch.host_fx_image);
4151         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4152 }
4153 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4154
4155 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4156 {
4157         if (!vcpu->guest_fpu_loaded)
4158                 return;
4159
4160         vcpu->guest_fpu_loaded = 0;
4161         kvm_fx_save(&vcpu->arch.guest_fx_image);
4162         kvm_fx_restore(&vcpu->arch.host_fx_image);
4163         ++vcpu->stat.fpu_reload;
4164 }
4165 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4166
4167 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4168 {
4169         if (vcpu->arch.time_page) {
4170                 kvm_release_page_dirty(vcpu->arch.time_page);
4171                 vcpu->arch.time_page = NULL;
4172         }
4173
4174         kvm_x86_ops->vcpu_free(vcpu);
4175 }
4176
4177 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4178                                                 unsigned int id)
4179 {
4180         return kvm_x86_ops->vcpu_create(kvm, id);
4181 }
4182
4183 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4184 {
4185         int r;
4186
4187         /* We do fxsave: this must be aligned. */
4188         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4189
4190         vcpu->arch.mtrr_state.have_fixed = 1;
4191         vcpu_load(vcpu);
4192         r = kvm_arch_vcpu_reset(vcpu);
4193         if (r == 0)
4194                 r = kvm_mmu_setup(vcpu);
4195         vcpu_put(vcpu);
4196         if (r < 0)
4197                 goto free_vcpu;
4198
4199         return 0;
4200 free_vcpu:
4201         kvm_x86_ops->vcpu_free(vcpu);
4202         return r;
4203 }
4204
4205 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4206 {
4207         vcpu_load(vcpu);
4208         kvm_mmu_unload(vcpu);
4209         vcpu_put(vcpu);
4210
4211         kvm_x86_ops->vcpu_free(vcpu);
4212 }
4213
4214 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4215 {
4216         vcpu->arch.nmi_pending = false;
4217         vcpu->arch.nmi_injected = false;
4218
4219         vcpu->arch.switch_db_regs = 0;
4220         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4221         vcpu->arch.dr6 = DR6_FIXED_1;
4222         vcpu->arch.dr7 = DR7_FIXED_1;
4223
4224         return kvm_x86_ops->vcpu_reset(vcpu);
4225 }
4226
4227 void kvm_arch_hardware_enable(void *garbage)
4228 {
4229         kvm_x86_ops->hardware_enable(garbage);
4230 }
4231
4232 void kvm_arch_hardware_disable(void *garbage)
4233 {
4234         kvm_x86_ops->hardware_disable(garbage);
4235 }
4236
4237 int kvm_arch_hardware_setup(void)
4238 {
4239         return kvm_x86_ops->hardware_setup();
4240 }
4241
4242 void kvm_arch_hardware_unsetup(void)
4243 {
4244         kvm_x86_ops->hardware_unsetup();
4245 }
4246
4247 void kvm_arch_check_processor_compat(void *rtn)
4248 {
4249         kvm_x86_ops->check_processor_compatibility(rtn);
4250 }
4251
4252 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4253 {
4254         struct page *page;
4255         struct kvm *kvm;
4256         int r;
4257
4258         BUG_ON(vcpu->kvm == NULL);
4259         kvm = vcpu->kvm;
4260
4261         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4262         if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4263                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4264         else
4265                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4266
4267         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4268         if (!page) {
4269                 r = -ENOMEM;
4270                 goto fail;
4271         }
4272         vcpu->arch.pio_data = page_address(page);
4273
4274         r = kvm_mmu_create(vcpu);
4275         if (r < 0)
4276                 goto fail_free_pio_data;
4277
4278         if (irqchip_in_kernel(kvm)) {
4279                 r = kvm_create_lapic(vcpu);
4280                 if (r < 0)
4281                         goto fail_mmu_destroy;
4282         }
4283
4284         return 0;
4285
4286 fail_mmu_destroy:
4287         kvm_mmu_destroy(vcpu);
4288 fail_free_pio_data:
4289         free_page((unsigned long)vcpu->arch.pio_data);
4290 fail:
4291         return r;
4292 }
4293
4294 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4295 {
4296         kvm_free_lapic(vcpu);
4297         down_read(&vcpu->kvm->slots_lock);
4298         kvm_mmu_destroy(vcpu);
4299         up_read(&vcpu->kvm->slots_lock);
4300         free_page((unsigned long)vcpu->arch.pio_data);
4301 }
4302
4303 struct  kvm *kvm_arch_create_vm(void)
4304 {
4305         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4306
4307         if (!kvm)
4308                 return ERR_PTR(-ENOMEM);
4309
4310         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4311         INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
4312         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4313
4314         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4315         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4316
4317         rdtscll(kvm->arch.vm_init_tsc);
4318
4319         return kvm;
4320 }
4321
4322 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4323 {
4324         vcpu_load(vcpu);
4325         kvm_mmu_unload(vcpu);
4326         vcpu_put(vcpu);
4327 }
4328
4329 static void kvm_free_vcpus(struct kvm *kvm)
4330 {
4331         unsigned int i;
4332
4333         /*
4334          * Unpin any mmu pages first.
4335          */
4336         for (i = 0; i < KVM_MAX_VCPUS; ++i)
4337                 if (kvm->vcpus[i])
4338                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4339         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4340                 if (kvm->vcpus[i]) {
4341                         kvm_arch_vcpu_free(kvm->vcpus[i]);
4342                         kvm->vcpus[i] = NULL;
4343                 }
4344         }
4345
4346 }
4347
4348 void kvm_arch_sync_events(struct kvm *kvm)
4349 {
4350         kvm_free_all_assigned_devices(kvm);
4351 }
4352
4353 void kvm_arch_destroy_vm(struct kvm *kvm)
4354 {
4355         kvm_iommu_unmap_guest(kvm);
4356         kvm_free_pit(kvm);
4357         kfree(kvm->arch.vpic);
4358         kfree(kvm->arch.vioapic);
4359         kvm_free_vcpus(kvm);
4360         kvm_free_physmem(kvm);
4361         if (kvm->arch.apic_access_page)
4362                 put_page(kvm->arch.apic_access_page);
4363         if (kvm->arch.ept_identity_pagetable)
4364                 put_page(kvm->arch.ept_identity_pagetable);
4365         kfree(kvm);
4366 }
4367
4368 int kvm_arch_set_memory_region(struct kvm *kvm,
4369                                 struct kvm_userspace_memory_region *mem,
4370                                 struct kvm_memory_slot old,
4371                                 int user_alloc)
4372 {
4373         int npages = mem->memory_size >> PAGE_SHIFT;
4374         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4375
4376         /*To keep backward compatibility with older userspace,
4377          *x86 needs to hanlde !user_alloc case.
4378          */
4379         if (!user_alloc) {
4380                 if (npages && !old.rmap) {
4381                         unsigned long userspace_addr;
4382
4383                         down_write(&current->mm->mmap_sem);
4384                         userspace_addr = do_mmap(NULL, 0,
4385                                                  npages * PAGE_SIZE,
4386                                                  PROT_READ | PROT_WRITE,
4387                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4388                                                  0);
4389                         up_write(&current->mm->mmap_sem);
4390
4391                         if (IS_ERR((void *)userspace_addr))
4392                                 return PTR_ERR((void *)userspace_addr);
4393
4394                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4395                         spin_lock(&kvm->mmu_lock);
4396                         memslot->userspace_addr = userspace_addr;
4397                         spin_unlock(&kvm->mmu_lock);
4398                 } else {
4399                         if (!old.user_alloc && old.rmap) {
4400                                 int ret;
4401
4402                                 down_write(&current->mm->mmap_sem);
4403                                 ret = do_munmap(current->mm, old.userspace_addr,
4404                                                 old.npages * PAGE_SIZE);
4405                                 up_write(&current->mm->mmap_sem);
4406                                 if (ret < 0)
4407                                         printk(KERN_WARNING
4408                                        "kvm_vm_ioctl_set_memory_region: "
4409                                        "failed to munmap memory\n");
4410                         }
4411                 }
4412         }
4413
4414         if (!kvm->arch.n_requested_mmu_pages) {
4415                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4416                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4417         }
4418
4419         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4420         kvm_flush_remote_tlbs(kvm);
4421
4422         return 0;
4423 }
4424
4425 void kvm_arch_flush_shadow(struct kvm *kvm)
4426 {
4427         kvm_mmu_zap_all(kvm);
4428 }
4429
4430 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4431 {
4432         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4433                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4434                || vcpu->arch.nmi_pending;
4435 }
4436
4437 static void vcpu_kick_intr(void *info)
4438 {
4439 #ifdef DEBUG
4440         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4441         printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4442 #endif
4443 }
4444
4445 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4446 {
4447         int ipi_pcpu = vcpu->cpu;
4448         int cpu = get_cpu();
4449
4450         if (waitqueue_active(&vcpu->wq)) {
4451                 wake_up_interruptible(&vcpu->wq);
4452                 ++vcpu->stat.halt_wakeup;
4453         }
4454         /*
4455          * We may be called synchronously with irqs disabled in guest mode,
4456          * So need not to call smp_call_function_single() in that case.
4457          */
4458         if (vcpu->guest_mode && vcpu->cpu != cpu)
4459                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4460         put_cpu();
4461 }