1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.
3 Copyright 2000,2001 The Linux Kernel Team
4 Written/copyright 1994-2001 by Donald Becker.
6 This software may be used and distributed according to the terms
7 of the GNU General Public License, incorporated herein by reference.
9 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
10 for more information on this driver.
12 Please submit bugs to http://bugzilla.kernel.org/ .
16 #define DRV_NAME "tulip"
17 #ifdef CONFIG_TULIP_NAPI
18 #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
20 #define DRV_VERSION "1.1.15"
22 #define DRV_RELDATE "Feb 27, 2007"
25 #include <linux/module.h>
26 #include <linux/pci.h>
28 #include <linux/init.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/crc32.h>
34 #include <asm/unaligned.h>
35 #include <asm/uaccess.h>
41 static char version[] __devinitdata =
42 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
45 /* A few user-configurable values. */
47 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
48 static unsigned int max_interrupt_work = 25;
51 /* Used to pass the full-duplex flag, etc. */
52 static int full_duplex[MAX_UNITS];
53 static int options[MAX_UNITS];
54 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
56 /* The possible media types that can be set in options[] are: */
57 const char * const medianame[32] = {
58 "10baseT", "10base2", "AUI", "100baseTx",
59 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
60 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
61 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
62 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
63 "","","","", "","","","", "","","","Transceiver reset",
66 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
67 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
68 || defined(CONFIG_SPARC) || defined(__ia64__) \
69 || defined(__sh__) || defined(__mips__)
70 static int rx_copybreak = 1518;
72 static int rx_copybreak = 100;
76 Set the bus performance register.
77 Typical: Set 16 longword cache alignment, no burst limit.
78 Cache alignment bits 15:14 Burst length 13:8
79 0000 No alignment 0x00000000 unlimited 0800 8 longwords
80 4000 8 longwords 0100 1 longword 1000 16 longwords
81 8000 16 longwords 0200 2 longwords 2000 32 longwords
82 C000 32 longwords 0400 4 longwords
83 Warning: many older 486 systems are broken and require setting 0x00A04800
84 8 longword cache alignment, 8 longword burst.
85 ToDo: Non-Intel setting could be better.
88 #if defined(__alpha__) || defined(__ia64__)
89 static int csr0 = 0x01A00000 | 0xE000;
90 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
91 static int csr0 = 0x01A00000 | 0x8000;
92 #elif defined(CONFIG_SPARC) || defined(__hppa__)
93 /* The UltraSparc PCI controllers will disconnect at every 64-byte
94 * crossing anyways so it makes no sense to tell Tulip to burst
97 static int csr0 = 0x01A00000 | 0x9000;
98 #elif defined(__arm__) || defined(__sh__)
99 static int csr0 = 0x01A00000 | 0x4800;
100 #elif defined(__mips__)
101 static int csr0 = 0x00200000 | 0x4000;
103 #warning Processor architecture undefined!
104 static int csr0 = 0x00A00000 | 0x4800;
107 /* Operational parameters that usually are not changed. */
108 /* Time in jiffies before concluding the transmitter is hung. */
109 #define TX_TIMEOUT (4*HZ)
112 MODULE_AUTHOR("The Linux Kernel Team");
113 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
114 MODULE_LICENSE("GPL");
115 MODULE_VERSION(DRV_VERSION);
116 module_param(tulip_debug, int, 0);
117 module_param(max_interrupt_work, int, 0);
118 module_param(rx_copybreak, int, 0);
119 module_param(csr0, int, 0);
120 module_param_array(options, int, NULL, 0);
121 module_param_array(full_duplex, int, NULL, 0);
123 #define PFX DRV_NAME ": "
126 int tulip_debug = TULIP_DEBUG;
131 static void tulip_timer(unsigned long data)
133 struct net_device *dev = (struct net_device *)data;
134 struct tulip_private *tp = netdev_priv(dev);
136 if (netif_running(dev))
137 schedule_work(&tp->media_work);
141 * This table use during operation for capabilities and media timer.
143 * It is indexed via the values in 'enum chips'
146 struct tulip_chip_table tulip_tbl[] = {
147 { }, /* placeholder for array, slot unused currently */
148 { }, /* placeholder for array, slot unused currently */
151 { "Digital DS21140 Tulip", 128, 0x0001ebef,
152 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
155 /* DC21142, DC21143 */
156 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
157 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
158 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
161 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
162 HAS_MII | HAS_PNICNWAY, pnic_timer, },
165 { "Macronix 98713 PMAC", 128, 0x0001ebef,
166 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
169 { "Macronix 98715 PMAC", 256, 0x0001ebef,
170 HAS_MEDIA_TABLE, mxic_timer, },
173 { "Macronix 98725 PMAC", 256, 0x0001ebef,
174 HAS_MEDIA_TABLE, mxic_timer, },
177 { "ASIX AX88140", 128, 0x0001fbff,
178 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
179 | IS_ASIX, tulip_timer, tulip_media_task },
182 { "Lite-On PNIC-II", 256, 0x0801fbff,
183 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
186 { "ADMtek Comet", 256, 0x0001abef,
187 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
190 { "Compex 9881 PMAC", 128, 0x0001ebef,
191 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
194 { "Intel DS21145 Tulip", 128, 0x0801fbff,
195 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
196 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
199 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
200 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
201 tulip_timer, tulip_media_task },
204 { "Conexant LANfinity", 256, 0x0001ebef,
205 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
210 static struct pci_device_id tulip_pci_tbl[] = {
211 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
212 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
213 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
214 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
215 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
216 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
217 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
218 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
219 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
220 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
221 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
230 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
231 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
232 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
233 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
234 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
235 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
237 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
240 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
242 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
245 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
246 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
247 { } /* terminate list */
249 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
252 /* A full-duplex map for media types. */
253 const char tulip_media_cap[32] =
254 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
256 static void tulip_tx_timeout(struct net_device *dev);
257 static void tulip_init_ring(struct net_device *dev);
258 static void tulip_free_ring(struct net_device *dev);
259 static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
260 static int tulip_open(struct net_device *dev);
261 static int tulip_close(struct net_device *dev);
262 static void tulip_up(struct net_device *dev);
263 static void tulip_down(struct net_device *dev);
264 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
265 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
266 static void set_rx_mode(struct net_device *dev);
267 #ifdef CONFIG_NET_POLL_CONTROLLER
268 static void poll_tulip(struct net_device *dev);
271 static void tulip_set_power_state (struct tulip_private *tp,
272 int sleep, int snooze)
274 if (tp->flags & HAS_ACPI) {
276 pci_read_config_dword (tp->pdev, CFDD, &tmp);
277 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
279 newtmp |= CFDD_Sleep;
281 newtmp |= CFDD_Snooze;
283 pci_write_config_dword (tp->pdev, CFDD, newtmp);
289 static void tulip_up(struct net_device *dev)
291 struct tulip_private *tp = netdev_priv(dev);
292 void __iomem *ioaddr = tp->base_addr;
293 int next_tick = 3*HZ;
297 #ifdef CONFIG_TULIP_NAPI
298 napi_enable(&tp->napi);
301 /* Wake the chip from sleep/snooze mode. */
302 tulip_set_power_state (tp, 0, 0);
304 /* On some chip revs we must set the MII/SYM port before the reset!? */
305 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
306 iowrite32(0x00040000, ioaddr + CSR6);
308 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
309 iowrite32(0x00000001, ioaddr + CSR0);
310 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
314 Wait the specified 50 PCI cycles after a reset by initializing
315 Tx and Rx queues and the address filter list. */
316 iowrite32(tp->csr0, ioaddr + CSR0);
317 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
321 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
323 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
324 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
325 tp->cur_rx = tp->cur_tx = 0;
326 tp->dirty_rx = tp->dirty_tx = 0;
328 if (tp->flags & MC_HASH_ONLY) {
329 u32 addr_low = get_unaligned_le32(dev->dev_addr);
330 u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
331 if (tp->chip_id == AX88140) {
332 iowrite32(0, ioaddr + CSR13);
333 iowrite32(addr_low, ioaddr + CSR14);
334 iowrite32(1, ioaddr + CSR13);
335 iowrite32(addr_high, ioaddr + CSR14);
336 } else if (tp->flags & COMET_MAC_ADDR) {
337 iowrite32(addr_low, ioaddr + 0xA4);
338 iowrite32(addr_high, ioaddr + 0xA8);
339 iowrite32(0, ioaddr + 0xAC);
340 iowrite32(0, ioaddr + 0xB0);
343 /* This is set_rx_mode(), but without starting the transmitter. */
344 u16 *eaddrs = (u16 *)dev->dev_addr;
345 u16 *setup_frm = &tp->setup_frame[15*6];
348 /* 21140 bug: you must add the broadcast address. */
349 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
350 /* Fill the final entry of the table with our physical address. */
351 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
352 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
353 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
355 mapping = pci_map_single(tp->pdev, tp->setup_frame,
356 sizeof(tp->setup_frame),
358 tp->tx_buffers[tp->cur_tx].skb = NULL;
359 tp->tx_buffers[tp->cur_tx].mapping = mapping;
361 /* Put the setup frame on the Tx list. */
362 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
363 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
364 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
369 tp->saved_if_port = dev->if_port;
370 if (dev->if_port == 0)
371 dev->if_port = tp->default_port;
373 /* Allow selecting a default media. */
375 if (tp->mtable == NULL)
378 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
379 (dev->if_port == 12 ? 0 : dev->if_port);
380 for (i = 0; i < tp->mtable->leafcount; i++)
381 if (tp->mtable->mleaf[i].media == looking_for) {
382 printk(KERN_INFO "%s: Using user-specified media %s.\n",
383 dev->name, medianame[dev->if_port]);
387 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
388 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
389 for (i = 0; i < tp->mtable->leafcount; i++)
390 if (tp->mtable->mleaf[i].media == looking_for) {
391 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
392 dev->name, medianame[looking_for]);
396 /* Start sensing first non-full-duplex media. */
397 for (i = tp->mtable->leafcount - 1;
398 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
407 if (tp->chip_id == DC21143 &&
408 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
409 /* We must reset the media CSRs when we force-select MII mode. */
410 iowrite32(0x0000, ioaddr + CSR13);
411 iowrite32(0x0000, ioaddr + CSR14);
412 iowrite32(0x0008, ioaddr + CSR15);
414 tulip_select_media(dev, 1);
415 } else if (tp->chip_id == DC21142) {
417 tulip_select_media(dev, 1);
419 printk(KERN_INFO "%s: Using MII transceiver %d, status "
421 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
422 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
423 tp->csr6 = csr6_mask_hdcap;
425 iowrite32(0x0000, ioaddr + CSR13);
426 iowrite32(0x0000, ioaddr + CSR14);
428 t21142_start_nway(dev);
429 } else if (tp->chip_id == PNIC2) {
430 /* for initial startup advertise 10/100 Full and Half */
431 tp->sym_advertise = 0x01E0;
432 /* enable autonegotiate end interrupt */
433 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
434 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
435 pnic2_start_nway(dev);
436 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
439 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
440 iowrite32(0x0001, ioaddr + CSR15);
441 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
444 /* Start with 10mbps to do autonegotiation. */
445 iowrite32(0x32, ioaddr + CSR12);
446 tp->csr6 = 0x00420000;
447 iowrite32(0x0001B078, ioaddr + 0xB8);
448 iowrite32(0x0201B078, ioaddr + 0xB8);
451 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
452 && ! tp->medialock) {
454 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
455 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
456 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
457 /* Provided by BOLO, Macronix - 12/10/1998. */
459 tp->csr6 = 0x01a80200;
460 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
461 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
462 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
463 /* Enable automatic Tx underrun recovery. */
464 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
465 dev->if_port = tp->mii_cnt ? 11 : 0;
466 tp->csr6 = 0x00040000;
467 } else if (tp->chip_id == AX88140) {
468 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
470 tulip_select_media(dev, 1);
472 /* Start the chip's Tx to process setup frame. */
476 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
478 /* Enable interrupts by setting the interrupt mask. */
479 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
480 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
481 tulip_start_rxtx(tp);
482 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
484 if (tulip_debug > 2) {
485 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
486 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
487 ioread32(ioaddr + CSR6));
490 /* Set the timer to switch to check for link beat and perhaps switch
491 to an alternate media type. */
492 tp->timer.expires = RUN_AT(next_tick);
493 add_timer(&tp->timer);
494 #ifdef CONFIG_TULIP_NAPI
495 init_timer(&tp->oom_timer);
496 tp->oom_timer.data = (unsigned long)dev;
497 tp->oom_timer.function = oom_timer;
502 tulip_open(struct net_device *dev)
506 tulip_init_ring (dev);
508 retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev);
514 netif_start_queue (dev);
519 tulip_free_ring (dev);
524 static void tulip_tx_timeout(struct net_device *dev)
526 struct tulip_private *tp = netdev_priv(dev);
527 void __iomem *ioaddr = tp->base_addr;
530 spin_lock_irqsave (&tp->lock, flags);
532 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
533 /* Do nothing -- the media monitor should handle this. */
535 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
537 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
538 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
539 || tp->chip_id == DM910X) {
540 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
541 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
542 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
543 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
544 tp->timeout_recovery = 1;
545 schedule_work(&tp->media_work);
547 } else if (tp->chip_id == PNIC2) {
548 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
549 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
550 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
551 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
553 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
554 "%8.8x, resetting...\n",
555 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
559 #if defined(way_too_many_messages)
560 if (tulip_debug > 3) {
562 for (i = 0; i < RX_RING_SIZE; i++) {
563 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
565 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
566 "%2.2x %2.2x %2.2x.\n",
567 i, (unsigned int)tp->rx_ring[i].status,
568 (unsigned int)tp->rx_ring[i].length,
569 (unsigned int)tp->rx_ring[i].buffer1,
570 (unsigned int)tp->rx_ring[i].buffer2,
571 buf[0], buf[1], buf[2]);
572 for (j = 0; buf[j] != 0xee && j < 1600; j++)
573 if (j < 100) printk(" %2.2x", buf[j]);
574 printk(" j=%d.\n", j);
576 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
577 for (i = 0; i < RX_RING_SIZE; i++)
578 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
579 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
580 for (i = 0; i < TX_RING_SIZE; i++)
581 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
586 tulip_tx_timeout_complete(tp, ioaddr);
589 spin_unlock_irqrestore (&tp->lock, flags);
590 dev->trans_start = jiffies;
591 netif_wake_queue (dev);
595 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
596 static void tulip_init_ring(struct net_device *dev)
598 struct tulip_private *tp = netdev_priv(dev);
605 for (i = 0; i < RX_RING_SIZE; i++) {
606 tp->rx_ring[i].status = 0x00000000;
607 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
608 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
609 tp->rx_buffers[i].skb = NULL;
610 tp->rx_buffers[i].mapping = 0;
612 /* Mark the last entry as wrapping the ring. */
613 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
614 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
616 for (i = 0; i < RX_RING_SIZE; i++) {
619 /* Note the receive buffer must be longword aligned.
620 dev_alloc_skb() provides 16 byte alignment. But do *not*
621 use skb_reserve() to align the IP header! */
622 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
623 tp->rx_buffers[i].skb = skb;
626 mapping = pci_map_single(tp->pdev, skb->data,
627 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
628 tp->rx_buffers[i].mapping = mapping;
629 skb->dev = dev; /* Mark as being used by this device. */
630 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
631 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
633 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
635 /* The Tx buffer descriptor is filled in as needed, but we
636 do need to clear the ownership bit. */
637 for (i = 0; i < TX_RING_SIZE; i++) {
638 tp->tx_buffers[i].skb = NULL;
639 tp->tx_buffers[i].mapping = 0;
640 tp->tx_ring[i].status = 0x00000000;
641 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
643 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
647 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
649 struct tulip_private *tp = netdev_priv(dev);
654 spin_lock_irq(&tp->lock);
656 /* Calculate the next Tx descriptor entry. */
657 entry = tp->cur_tx % TX_RING_SIZE;
659 tp->tx_buffers[entry].skb = skb;
660 mapping = pci_map_single(tp->pdev, skb->data,
661 skb->len, PCI_DMA_TODEVICE);
662 tp->tx_buffers[entry].mapping = mapping;
663 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
665 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
666 flag = 0x60000000; /* No interrupt */
667 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
668 flag = 0xe0000000; /* Tx-done intr. */
669 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
670 flag = 0x60000000; /* No Tx-done intr. */
671 } else { /* Leave room for set_rx_mode() to fill entries. */
672 flag = 0xe0000000; /* Tx-done intr. */
673 netif_stop_queue(dev);
675 if (entry == TX_RING_SIZE-1)
676 flag = 0xe0000000 | DESC_RING_WRAP;
678 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
679 /* if we were using Transmit Automatic Polling, we would need a
681 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
686 /* Trigger an immediate transmit demand. */
687 iowrite32(0, tp->base_addr + CSR1);
689 spin_unlock_irq(&tp->lock);
691 dev->trans_start = jiffies;
696 static void tulip_clean_tx_ring(struct tulip_private *tp)
698 unsigned int dirty_tx;
700 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
702 int entry = dirty_tx % TX_RING_SIZE;
703 int status = le32_to_cpu(tp->tx_ring[entry].status);
706 tp->stats.tx_errors++; /* It wasn't Txed */
707 tp->tx_ring[entry].status = 0;
710 /* Check for Tx filter setup frames. */
711 if (tp->tx_buffers[entry].skb == NULL) {
712 /* test because dummy frames not mapped */
713 if (tp->tx_buffers[entry].mapping)
714 pci_unmap_single(tp->pdev,
715 tp->tx_buffers[entry].mapping,
716 sizeof(tp->setup_frame),
721 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
722 tp->tx_buffers[entry].skb->len,
725 /* Free the original skb. */
726 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
727 tp->tx_buffers[entry].skb = NULL;
728 tp->tx_buffers[entry].mapping = 0;
732 static void tulip_down (struct net_device *dev)
734 struct tulip_private *tp = netdev_priv(dev);
735 void __iomem *ioaddr = tp->base_addr;
738 cancel_work_sync(&tp->media_work);
740 #ifdef CONFIG_TULIP_NAPI
741 napi_disable(&tp->napi);
744 del_timer_sync (&tp->timer);
745 #ifdef CONFIG_TULIP_NAPI
746 del_timer_sync (&tp->oom_timer);
748 spin_lock_irqsave (&tp->lock, flags);
750 /* Disable interrupts by clearing the interrupt mask. */
751 iowrite32 (0x00000000, ioaddr + CSR7);
753 /* Stop the Tx and Rx processes. */
756 /* prepare receive buffers */
757 tulip_refill_rx(dev);
759 /* release any unconsumed transmit buffers */
760 tulip_clean_tx_ring(tp);
762 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
763 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
765 spin_unlock_irqrestore (&tp->lock, flags);
767 init_timer(&tp->timer);
768 tp->timer.data = (unsigned long)dev;
769 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
771 dev->if_port = tp->saved_if_port;
773 /* Leave the driver in snooze, not sleep, mode. */
774 tulip_set_power_state (tp, 0, 1);
777 static void tulip_free_ring (struct net_device *dev)
779 struct tulip_private *tp = netdev_priv(dev);
782 /* Free all the skbuffs in the Rx queue. */
783 for (i = 0; i < RX_RING_SIZE; i++) {
784 struct sk_buff *skb = tp->rx_buffers[i].skb;
785 dma_addr_t mapping = tp->rx_buffers[i].mapping;
787 tp->rx_buffers[i].skb = NULL;
788 tp->rx_buffers[i].mapping = 0;
790 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
791 tp->rx_ring[i].length = 0;
792 /* An invalid address. */
793 tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
795 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
801 for (i = 0; i < TX_RING_SIZE; i++) {
802 struct sk_buff *skb = tp->tx_buffers[i].skb;
805 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
806 skb->len, PCI_DMA_TODEVICE);
809 tp->tx_buffers[i].skb = NULL;
810 tp->tx_buffers[i].mapping = 0;
814 static int tulip_close (struct net_device *dev)
816 struct tulip_private *tp = netdev_priv(dev);
817 void __iomem *ioaddr = tp->base_addr;
819 netif_stop_queue (dev);
824 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
825 dev->name, ioread32 (ioaddr + CSR5));
827 free_irq (dev->irq, dev);
829 tulip_free_ring (dev);
834 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
836 struct tulip_private *tp = netdev_priv(dev);
837 void __iomem *ioaddr = tp->base_addr;
839 if (netif_running(dev)) {
842 spin_lock_irqsave (&tp->lock, flags);
844 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
846 spin_unlock_irqrestore(&tp->lock, flags);
853 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
855 struct tulip_private *np = netdev_priv(dev);
856 strcpy(info->driver, DRV_NAME);
857 strcpy(info->version, DRV_VERSION);
858 strcpy(info->bus_info, pci_name(np->pdev));
861 static const struct ethtool_ops ops = {
862 .get_drvinfo = tulip_get_drvinfo
865 /* Provide ioctl() calls to examine the MII xcvr state. */
866 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
868 struct tulip_private *tp = netdev_priv(dev);
869 void __iomem *ioaddr = tp->base_addr;
870 struct mii_ioctl_data *data = if_mii(rq);
871 const unsigned int phy_idx = 0;
872 int phy = tp->phys[phy_idx] & 0x1f;
873 unsigned int regnum = data->reg_num;
876 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
879 else if (tp->flags & HAS_NWAY)
881 else if (tp->chip_id == COMET)
886 case SIOCGMIIREG: /* Read MII PHY register. */
887 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
888 int csr12 = ioread32 (ioaddr + CSR12);
889 int csr14 = ioread32 (ioaddr + CSR14);
892 if (((csr14<<5) & 0x1000) ||
893 (dev->if_port == 5 && tp->nwayset))
894 data->val_out = 0x1000;
896 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
897 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
902 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
903 ((csr12&0x06) == 6 ? 0 : 4);
904 data->val_out |= 0x6048;
907 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
909 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
910 ((csr14 >> 1) & 0x20) + 1;
911 data->val_out |= ((csr14 >> 9) & 0x03C0);
913 case 5: data->val_out = tp->lpar; break;
914 default: data->val_out = 0; break;
917 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
921 case SIOCSMIIREG: /* Write MII PHY register. */
922 if (!capable (CAP_NET_ADMIN))
926 if (data->phy_id == phy) {
927 u16 value = data->val_in;
929 case 0: /* Check for autonegotiation on or reset. */
930 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
931 if (tp->full_duplex_lock)
932 tp->full_duplex = (value & 0x0100) ? 1 : 0;
935 tp->advertising[phy_idx] =
936 tp->mii_advertise = data->val_in;
940 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
941 u16 value = data->val_in;
943 if ((value & 0x1200) == 0x1200) {
944 if (tp->chip_id == PNIC2) {
945 pnic2_start_nway (dev);
947 t21142_start_nway (dev);
950 } else if (regnum == 4)
951 tp->sym_advertise = value;
953 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
964 /* Set or clear the multicast filter for this adaptor.
965 Note that we only use exclusion around actually queueing the
966 new frame, not around filling tp->setup_frame. This is non-deterministic
967 when re-entered but still correct. */
970 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
972 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
974 struct tulip_private *tp = netdev_priv(dev);
976 struct dev_mc_list *mclist;
980 memset(hash_table, 0, sizeof(hash_table));
981 set_bit_le(255, hash_table); /* Broadcast entry */
982 /* This should work on big-endian machines as well. */
983 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
984 i++, mclist = mclist->next) {
985 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
987 set_bit_le(index, hash_table);
990 for (i = 0; i < 32; i++) {
991 *setup_frm++ = hash_table[i];
992 *setup_frm++ = hash_table[i];
994 setup_frm = &tp->setup_frame[13*6];
996 /* Fill the final entry with our physical address. */
997 eaddrs = (u16 *)dev->dev_addr;
998 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
999 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1000 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1003 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
1005 struct tulip_private *tp = netdev_priv(dev);
1006 struct dev_mc_list *mclist;
1010 /* We have <= 14 addresses so we can use the wonderful
1011 16 address perfect filtering of the Tulip. */
1012 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
1013 i++, mclist = mclist->next) {
1014 eaddrs = (u16 *)mclist->dmi_addr;
1015 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1016 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1017 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1019 /* Fill the unused entries with the broadcast address. */
1020 memset(setup_frm, 0xff, (15-i)*12);
1021 setup_frm = &tp->setup_frame[15*6];
1023 /* Fill the final entry with our physical address. */
1024 eaddrs = (u16 *)dev->dev_addr;
1025 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1026 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1027 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1031 static void set_rx_mode(struct net_device *dev)
1033 struct tulip_private *tp = netdev_priv(dev);
1034 void __iomem *ioaddr = tp->base_addr;
1037 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1039 tp->csr6 &= ~0x00D5;
1040 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1041 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1042 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1043 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1044 /* Too many to filter well -- accept all multicasts. */
1045 tp->csr6 |= AcceptAllMulticast;
1046 csr6 |= AcceptAllMulticast;
1047 } else if (tp->flags & MC_HASH_ONLY) {
1048 /* Some work-alikes have only a 64-entry hash filter table. */
1049 /* Should verify correctness on big-endian/__powerpc__ */
1050 struct dev_mc_list *mclist;
1052 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1053 tp->csr6 |= AcceptAllMulticast;
1054 csr6 |= AcceptAllMulticast;
1056 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1058 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1059 i++, mclist = mclist->next) {
1060 if (tp->flags & COMET_MAC_ADDR)
1061 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1063 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1065 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1066 if (tulip_debug > 2)
1067 printk(KERN_INFO "%s: Added filter for %pM"
1069 dev->name, mclist->dmi_addr,
1070 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1072 if (mc_filter[0] == tp->mc_filter[0] &&
1073 mc_filter[1] == tp->mc_filter[1])
1075 else if (tp->flags & IS_ASIX) {
1076 iowrite32(2, ioaddr + CSR13);
1077 iowrite32(mc_filter[0], ioaddr + CSR14);
1078 iowrite32(3, ioaddr + CSR13);
1079 iowrite32(mc_filter[1], ioaddr + CSR14);
1080 } else if (tp->flags & COMET_MAC_ADDR) {
1081 iowrite32(mc_filter[0], ioaddr + 0xAC);
1082 iowrite32(mc_filter[1], ioaddr + 0xB0);
1084 tp->mc_filter[0] = mc_filter[0];
1085 tp->mc_filter[1] = mc_filter[1];
1088 unsigned long flags;
1089 u32 tx_flags = 0x08000000 | 192;
1091 /* Note that only the low-address shortword of setup_frame is valid!
1092 The values are doubled for big-endian architectures. */
1093 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1094 build_setup_frame_hash(tp->setup_frame, dev);
1095 tx_flags = 0x08400000 | 192;
1097 build_setup_frame_perfect(tp->setup_frame, dev);
1100 spin_lock_irqsave(&tp->lock, flags);
1102 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1103 /* Same setup recently queued, we need not add it. */
1108 /* Now add this frame to the Tx list. */
1110 entry = tp->cur_tx++ % TX_RING_SIZE;
1113 /* Avoid a chip errata by prefixing a dummy entry. */
1114 tp->tx_buffers[entry].skb = NULL;
1115 tp->tx_buffers[entry].mapping = 0;
1116 tp->tx_ring[entry].length =
1117 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1118 tp->tx_ring[entry].buffer1 = 0;
1119 /* Must set DescOwned later to avoid race with chip */
1121 entry = tp->cur_tx++ % TX_RING_SIZE;
1125 tp->tx_buffers[entry].skb = NULL;
1126 tp->tx_buffers[entry].mapping =
1127 pci_map_single(tp->pdev, tp->setup_frame,
1128 sizeof(tp->setup_frame),
1130 /* Put the setup frame on the Tx list. */
1131 if (entry == TX_RING_SIZE-1)
1132 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1133 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1134 tp->tx_ring[entry].buffer1 =
1135 cpu_to_le32(tp->tx_buffers[entry].mapping);
1136 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1138 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1139 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1140 netif_stop_queue(dev);
1142 /* Trigger an immediate transmit demand. */
1143 iowrite32(0, ioaddr + CSR1);
1146 spin_unlock_irqrestore(&tp->lock, flags);
1149 iowrite32(csr6, ioaddr + CSR6);
1152 #ifdef CONFIG_TULIP_MWI
1153 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1154 struct net_device *dev)
1156 struct tulip_private *tp = netdev_priv(dev);
1161 if (tulip_debug > 3)
1162 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1164 tp->csr0 = csr0 = 0;
1166 /* if we have any cache line size at all, we can do MRM and MWI */
1169 /* Enable MWI in the standard PCI command bit.
1170 * Check for the case where MWI is desired but not available
1172 pci_try_set_mwi(pdev);
1174 /* read result from hardware (in case bit refused to enable) */
1175 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1176 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1179 /* if cache line size hardwired to zero, no MWI */
1180 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1181 if ((csr0 & MWI) && (cache == 0)) {
1183 pci_clear_mwi(pdev);
1186 /* assign per-cacheline-size cache alignment and
1187 * burst length values
1191 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1194 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1197 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1204 /* if we have a good cache line size, we by now have a good
1205 * csr0, so save it and exit
1210 /* we don't have a good csr0 or cache line size, disable MWI */
1212 pci_clear_mwi(pdev);
1216 /* sane defaults for burst length and cache alignment
1217 * originally from de4x5 driver
1219 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1223 if (tulip_debug > 2)
1224 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1225 pci_name(pdev), cache, csr0);
1230 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1231 * is the DM910X and the on chip ULi devices
1234 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1236 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1241 static const struct net_device_ops tulip_netdev_ops = {
1242 .ndo_open = tulip_open,
1243 .ndo_start_xmit = tulip_start_xmit,
1244 .ndo_tx_timeout = tulip_tx_timeout,
1245 .ndo_stop = tulip_close,
1246 .ndo_get_stats = tulip_get_stats,
1247 .ndo_do_ioctl = private_ioctl,
1248 .ndo_set_multicast_list = set_rx_mode,
1249 .ndo_change_mtu = eth_change_mtu,
1250 .ndo_set_mac_address = eth_mac_addr,
1251 .ndo_validate_addr = eth_validate_addr,
1252 #ifdef CONFIG_NET_POLL_CONTROLLER
1253 .ndo_poll_controller = poll_tulip,
1257 static int __devinit tulip_init_one (struct pci_dev *pdev,
1258 const struct pci_device_id *ent)
1260 struct tulip_private *tp;
1261 /* See note below on the multiport cards. */
1262 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1263 static struct pci_device_id early_486_chipsets[] = {
1264 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1265 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1268 static int last_irq;
1269 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1272 unsigned char *ee_data;
1273 struct net_device *dev;
1274 void __iomem *ioaddr;
1275 static int board_idx = -1;
1276 int chip_idx = ent->driver_data;
1277 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1278 unsigned int eeprom_missing = 0;
1279 unsigned int force_csr0 = 0;
1282 static int did_version; /* Already printed version info. */
1283 if (tulip_debug > 0 && did_version++ == 0)
1284 printk (KERN_INFO "%s", version);
1290 * Lan media wire a tulip chip to a wan interface. Needs a very
1291 * different driver (lmc driver)
1294 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1295 printk (KERN_ERR PFX "skipping LMC card.\n");
1300 * Early DM9100's need software CRC and the DMFE driver
1303 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1305 /* Read Chip revision */
1306 if (pdev->revision < 0x30)
1308 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1314 * Looks for early PCI chipsets where people report hangs
1315 * without the workarounds being on.
1318 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1319 aligned. Aries might need this too. The Saturn errata are not
1320 pretty reading but thankfully it's an old 486 chipset.
1322 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1326 if (pci_dev_present(early_486_chipsets)) {
1327 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1331 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1332 if (chip_idx == AX88140) {
1333 if ((csr0 & 0x3f00) == 0)
1337 /* PNIC doesn't have MWI/MRL/MRM... */
1338 if (chip_idx == LC82C168)
1339 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1341 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1342 if (tulip_uli_dm_quirk(pdev)) {
1343 csr0 &= ~0x01f100ff;
1344 #if defined(CONFIG_SPARC)
1345 csr0 = (csr0 & ~0xff00) | 0xe000;
1349 * And back to business
1352 i = pci_enable_device(pdev);
1354 printk (KERN_ERR PFX
1355 "Cannot enable tulip board #%d, aborting\n",
1362 /* alloc_etherdev ensures aligned and zeroed private structures */
1363 dev = alloc_etherdev (sizeof (*tp));
1365 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1369 SET_NETDEV_DEV(dev, &pdev->dev);
1370 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1371 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1372 "aborting\n", pci_name(pdev),
1373 (unsigned long long)pci_resource_len (pdev, 0),
1374 (unsigned long long)pci_resource_start (pdev, 0));
1375 goto err_out_free_netdev;
1378 /* grab all resources from both PIO and MMIO regions, as we
1379 * don't want anyone else messing around with our hardware */
1380 if (pci_request_regions (pdev, "tulip"))
1381 goto err_out_free_netdev;
1383 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1386 goto err_out_free_res;
1389 * initialize private data structure 'tp'
1390 * it is zeroed and aligned in alloc_etherdev
1392 tp = netdev_priv(dev);
1395 tp->rx_ring = pci_alloc_consistent(pdev,
1396 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1397 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1400 goto err_out_mtable;
1401 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1402 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1404 tp->chip_id = chip_idx;
1405 tp->flags = tulip_tbl[chip_idx].flags;
1407 tp->base_addr = ioaddr;
1408 tp->revision = pdev->revision;
1410 spin_lock_init(&tp->lock);
1411 spin_lock_init(&tp->mii_lock);
1412 init_timer(&tp->timer);
1413 tp->timer.data = (unsigned long)dev;
1414 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1416 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1418 dev->base_addr = (unsigned long)ioaddr;
1420 #ifdef CONFIG_TULIP_MWI
1421 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1422 tulip_mwi_config (pdev, dev);
1425 /* Stop the chip's Tx and Rx processes. */
1426 tulip_stop_rxtx(tp);
1428 pci_set_master(pdev);
1431 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1432 switch (pdev->subsystem_device) {
1441 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1442 chip_name = "GSC DS21140 Tulip";
1447 /* Clear the missed-packet counter. */
1448 ioread32(ioaddr + CSR8);
1450 /* The station address ROM is read byte serially. The register must
1451 be polled, waiting for the value to be read bit serially from the
1454 ee_data = tp->eeprom;
1455 memset(ee_data, 0, sizeof(tp->eeprom));
1457 if (chip_idx == LC82C168) {
1458 for (i = 0; i < 3; i++) {
1459 int value, boguscnt = 100000;
1460 iowrite32(0x600 | i, ioaddr + 0x98);
1462 value = ioread32(ioaddr + CSR9);
1463 } while (value < 0 && --boguscnt > 0);
1464 put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
1465 sum += value & 0xffff;
1467 } else if (chip_idx == COMET) {
1468 /* No need to read the EEPROM. */
1469 put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
1470 put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
1471 for (i = 0; i < 6; i ++)
1472 sum += dev->dev_addr[i];
1474 /* A serial EEPROM interface, we read now and sort it out later. */
1476 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1477 int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
1479 if (ee_max_addr > sizeof(tp->eeprom))
1480 ee_max_addr = sizeof(tp->eeprom);
1482 for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
1483 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1484 ee_data[i] = data & 0xff;
1485 ee_data[i + 1] = data >> 8;
1488 /* DEC now has a specification (see Notes) but early board makers
1489 just put the address in the first EEPROM locations. */
1490 /* This does memcmp(ee_data, ee_data+16, 8) */
1491 for (i = 0; i < 8; i ++)
1492 if (ee_data[i] != ee_data[16+i])
1494 if (chip_idx == CONEXANT) {
1495 /* Check that the tuple type and length is correct. */
1496 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1498 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1500 sa_offset = 2; /* Grrr, damn Matrox boards. */
1503 #ifdef CONFIG_MIPS_COBALT
1504 if ((pdev->bus->number == 0) &&
1505 ((PCI_SLOT(pdev->devfn) == 7) ||
1506 (PCI_SLOT(pdev->devfn) == 12))) {
1507 /* Cobalt MAC address in first EEPROM locations. */
1509 /* Ensure our media table fixup get's applied */
1510 memcpy(ee_data + 16, ee_data, 8);
1514 /* Check to see if we have a broken srom */
1515 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1516 /* pci_vendor_id and subsystem_id are swapped */
1517 ee_data[0] = ee_data[2];
1518 ee_data[1] = ee_data[3];
1522 /* HSC-PCI boards need to be byte-swaped and shifted
1523 * up 1 word. This shift needs to happen at the end
1524 * of the MAC first because of the 2 byte overlap.
1526 for (i = 4; i >= 0; i -= 2) {
1527 ee_data[17 + i + 3] = ee_data[17 + i];
1528 ee_data[16 + i + 5] = ee_data[16 + i];
1533 for (i = 0; i < 6; i ++) {
1534 dev->dev_addr[i] = ee_data[i + sa_offset];
1535 sum += ee_data[i + sa_offset];
1538 /* Lite-On boards have the address byte-swapped. */
1539 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1540 && dev->dev_addr[1] == 0x00)
1541 for (i = 0; i < 6; i+=2) {
1542 char tmp = dev->dev_addr[i];
1543 dev->dev_addr[i] = dev->dev_addr[i+1];
1544 dev->dev_addr[i+1] = tmp;
1546 /* On the Zynx 315 Etherarray and other multiport boards only the
1547 first Tulip has an EEPROM.
1548 On Sparc systems the mac address is held in the OBP property
1549 "local-mac-address".
1550 The addresses of the subsequent ports are derived from the first.
1551 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1552 that here as well. */
1553 if (sum == 0 || sum == 6*0xff) {
1554 #if defined(CONFIG_SPARC)
1555 struct device_node *dp = pci_device_to_OF_node(pdev);
1556 const unsigned char *addr;
1560 for (i = 0; i < 5; i++)
1561 dev->dev_addr[i] = last_phys_addr[i];
1562 dev->dev_addr[i] = last_phys_addr[i] + 1;
1563 #if defined(CONFIG_SPARC)
1564 addr = of_get_property(dp, "local-mac-address", &len);
1565 if (addr && len == 6)
1566 memcpy(dev->dev_addr, addr, 6);
1568 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1574 for (i = 0; i < 6; i++)
1575 last_phys_addr[i] = dev->dev_addr[i];
1579 /* The lower four bits are the media type. */
1580 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1581 if (options[board_idx] & MEDIA_MASK)
1582 tp->default_port = options[board_idx] & MEDIA_MASK;
1583 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1584 tp->full_duplex = 1;
1585 if (mtu[board_idx] > 0)
1586 dev->mtu = mtu[board_idx];
1588 if (dev->mem_start & MEDIA_MASK)
1589 tp->default_port = dev->mem_start & MEDIA_MASK;
1590 if (tp->default_port) {
1591 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1592 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1594 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1595 tp->full_duplex = 1;
1597 if (tp->full_duplex)
1598 tp->full_duplex_lock = 1;
1600 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1601 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1602 tp->mii_advertise = media2advert[tp->default_port - 9];
1603 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1606 if (tp->flags & HAS_MEDIA_TABLE) {
1607 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1608 tulip_parse_eeprom(dev);
1609 strcpy(dev->name, "eth%d"); /* un-hack */
1612 if ((tp->flags & ALWAYS_CHECK_MII) ||
1613 (tp->mtable && tp->mtable->has_mii) ||
1614 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1615 if (tp->mtable && tp->mtable->has_mii) {
1616 for (i = 0; i < tp->mtable->leafcount; i++)
1617 if (tp->mtable->mleaf[i].media == 11) {
1619 tp->saved_if_port = dev->if_port;
1620 tulip_select_media(dev, 2);
1621 dev->if_port = tp->saved_if_port;
1626 /* Find the connected MII xcvrs.
1627 Doing this in open() would allow detecting external xcvrs
1628 later, but takes much time. */
1629 tulip_find_mii (dev, board_idx);
1632 /* The Tulip-specific entries in the device structure. */
1633 dev->netdev_ops = &tulip_netdev_ops;
1634 dev->watchdog_timeo = TX_TIMEOUT;
1635 #ifdef CONFIG_TULIP_NAPI
1636 netif_napi_add(dev, &tp->napi, tulip_poll, 16);
1638 SET_ETHTOOL_OPS(dev, &ops);
1640 if (register_netdev(dev))
1641 goto err_out_free_ring;
1643 printk(KERN_INFO "%s: %s rev %d at "
1644 #ifdef CONFIG_TULIP_MMIO
1649 " %#llx,", dev->name, chip_name, pdev->revision,
1650 (unsigned long long) pci_resource_start(pdev, TULIP_BAR));
1651 pci_set_drvdata(pdev, dev);
1654 printk(" EEPROM not present,");
1655 printk(" %pM", dev->dev_addr);
1656 printk(", IRQ %d.\n", irq);
1658 if (tp->chip_id == PNIC2)
1659 tp->link_change = pnic2_lnk_change;
1660 else if (tp->flags & HAS_NWAY)
1661 tp->link_change = t21142_lnk_change;
1662 else if (tp->flags & HAS_PNICNWAY)
1663 tp->link_change = pnic_lnk_change;
1665 /* Reset the xcvr interface and turn on heartbeat. */
1671 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1674 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1675 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1676 iowrite32(0x0000, ioaddr + CSR13);
1677 iowrite32(0x0000, ioaddr + CSR14);
1678 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1680 t21142_start_nway(dev);
1683 /* just do a reset for sanity sake */
1684 iowrite32(0x0000, ioaddr + CSR13);
1685 iowrite32(0x0000, ioaddr + CSR14);
1688 if ( ! tp->mii_cnt) {
1691 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1692 iowrite32(0x30, ioaddr + CSR12);
1693 iowrite32(0x0001F078, ioaddr + CSR6);
1694 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1699 iowrite32(0x00000000, ioaddr + CSR6);
1700 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1701 iowrite32(0x00000001, ioaddr + CSR13);
1705 iowrite32(0x01a80000, ioaddr + CSR6);
1706 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1707 iowrite32(0x00001000, ioaddr + CSR12);
1710 /* No initialization necessary. */
1714 /* put the chip in snooze mode until opened */
1715 tulip_set_power_state (tp, 0, 1);
1720 pci_free_consistent (pdev,
1721 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1722 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1723 tp->rx_ring, tp->rx_ring_dma);
1727 pci_iounmap(pdev, ioaddr);
1730 pci_release_regions (pdev);
1732 err_out_free_netdev:
1740 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1742 struct net_device *dev = pci_get_drvdata(pdev);
1747 if (!netif_running(dev))
1752 netif_device_detach(dev);
1753 free_irq(dev->irq, dev);
1756 pci_save_state(pdev);
1757 pci_disable_device(pdev);
1758 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1764 static int tulip_resume(struct pci_dev *pdev)
1766 struct net_device *dev = pci_get_drvdata(pdev);
1772 pci_set_power_state(pdev, PCI_D0);
1773 pci_restore_state(pdev);
1775 if (!netif_running(dev))
1778 if ((retval = pci_enable_device(pdev))) {
1779 printk (KERN_ERR "tulip: pci_enable_device failed in resume\n");
1783 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1784 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1788 netif_device_attach(dev);
1790 if (netif_running(dev))
1796 #endif /* CONFIG_PM */
1799 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1801 struct net_device *dev = pci_get_drvdata (pdev);
1802 struct tulip_private *tp;
1807 tp = netdev_priv(dev);
1808 unregister_netdev(dev);
1809 pci_free_consistent (pdev,
1810 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1811 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1812 tp->rx_ring, tp->rx_ring_dma);
1814 pci_iounmap(pdev, tp->base_addr);
1816 pci_release_regions (pdev);
1817 pci_set_drvdata (pdev, NULL);
1819 /* pci_power_off (pdev, -1); */
1822 #ifdef CONFIG_NET_POLL_CONTROLLER
1824 * Polling 'interrupt' - used by things like netconsole to send skbs
1825 * without having to re-enable interrupts. It's not called while
1826 * the interrupt routine is executing.
1829 static void poll_tulip (struct net_device *dev)
1831 /* disable_irq here is not very nice, but with the lockless
1832 interrupt handler we have no other choice. */
1833 disable_irq(dev->irq);
1834 tulip_interrupt (dev->irq, dev);
1835 enable_irq(dev->irq);
1839 static struct pci_driver tulip_driver = {
1841 .id_table = tulip_pci_tbl,
1842 .probe = tulip_init_one,
1843 .remove = __devexit_p(tulip_remove_one),
1845 .suspend = tulip_suspend,
1846 .resume = tulip_resume,
1847 #endif /* CONFIG_PM */
1851 static int __init tulip_init (void)
1854 printk (KERN_INFO "%s", version);
1857 /* copy module parms into globals */
1858 tulip_rx_copybreak = rx_copybreak;
1859 tulip_max_interrupt_work = max_interrupt_work;
1861 /* probe for and init boards */
1862 return pci_register_driver(&tulip_driver);
1866 static void __exit tulip_cleanup (void)
1868 pci_unregister_driver (&tulip_driver);
1872 module_init(tulip_init);
1873 module_exit(tulip_cleanup);