2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
49 #include "xfs_utils.h"
51 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
54 xlog_recover_item_t *item);
56 STATIC void xlog_recover_check_summary(xlog_t *);
57 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
59 #define xlog_recover_check_summary(log)
60 #define xlog_recover_check_ail(mp, lip, gen)
65 * Sector aligned buffer routines for buffer create/read/write/access
68 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
69 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
70 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
71 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
78 ASSERT(num_bblks > 0);
80 if (log->l_sectbb_log) {
82 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
83 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
85 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
97 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
108 if (log->l_sectbb_log) {
109 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
110 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
114 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
117 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
120 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
121 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
123 xfsbdstrat(log->l_mp, bp);
124 error = xfs_iowait(bp);
126 xfs_ioerror_alert("xlog_bread", log->l_mp,
127 bp, XFS_BUF_ADDR(bp));
132 * Write out the buffer at the given block for the given number of blocks.
133 * The buffer is kept locked across the write and is returned locked.
134 * This can only be used for synchronous log writes.
145 if (log->l_sectbb_log) {
146 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
147 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
151 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
153 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
154 XFS_BUF_ZEROFLAGS(bp);
157 XFS_BUF_PSEMA(bp, PRIBIO);
158 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
159 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
161 if ((error = xfs_bwrite(log->l_mp, bp)))
162 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
163 bp, XFS_BUF_ADDR(bp));
176 if (!log->l_sectbb_log)
177 return XFS_BUF_PTR(bp);
179 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
180 ASSERT(XFS_BUF_SIZE(bp) >=
181 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
187 * dump debug superblock and log record information
190 xlog_header_check_dump(
192 xlog_rec_header_t *head)
196 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
197 for (b = 0; b < 16; b++)
198 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
199 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
200 cmn_err(CE_DEBUG, " log : uuid = ");
201 for (b = 0; b < 16; b++)
202 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
203 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
206 #define xlog_header_check_dump(mp, head)
210 * check log record header for recovery
213 xlog_header_check_recover(
215 xlog_rec_header_t *head)
217 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
220 * IRIX doesn't write the h_fmt field and leaves it zeroed
221 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
222 * a dirty log created in IRIX.
224 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
226 "XFS: dirty log written in incompatible format - can't recover");
227 xlog_header_check_dump(mp, head);
228 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
229 XFS_ERRLEVEL_HIGH, mp);
230 return XFS_ERROR(EFSCORRUPTED);
231 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
233 "XFS: dirty log entry has mismatched uuid - can't recover");
234 xlog_header_check_dump(mp, head);
235 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
236 XFS_ERRLEVEL_HIGH, mp);
237 return XFS_ERROR(EFSCORRUPTED);
243 * read the head block of the log and check the header
246 xlog_header_check_mount(
248 xlog_rec_header_t *head)
250 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
252 if (uuid_is_nil(&head->h_fs_uuid)) {
254 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255 * h_fs_uuid is nil, we assume this log was last mounted
256 * by IRIX and continue.
258 xlog_warn("XFS: nil uuid in log - IRIX style log");
259 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
260 xlog_warn("XFS: log has mismatched uuid - can't recover");
261 xlog_header_check_dump(mp, head);
262 XFS_ERROR_REPORT("xlog_header_check_mount",
263 XFS_ERRLEVEL_HIGH, mp);
264 return XFS_ERROR(EFSCORRUPTED);
275 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
277 if (XFS_BUF_GETERROR(bp)) {
279 * We're not going to bother about retrying
280 * this during recovery. One strike!
282 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
283 xfs_ioerror_alert("xlog_recover_iodone",
284 mp, bp, XFS_BUF_ADDR(bp));
285 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
287 XFS_BUF_SET_FSPRIVATE(bp, NULL);
288 XFS_BUF_CLR_IODONE_FUNC(bp);
293 * This routine finds (to an approximation) the first block in the physical
294 * log which contains the given cycle. It uses a binary search algorithm.
295 * Note that the algorithm can not be perfect because the disk will not
296 * necessarily be perfect.
299 xlog_find_cycle_start(
302 xfs_daddr_t first_blk,
303 xfs_daddr_t *last_blk,
311 mid_blk = BLK_AVG(first_blk, *last_blk);
312 while (mid_blk != first_blk && mid_blk != *last_blk) {
313 if ((error = xlog_bread(log, mid_blk, 1, bp)))
315 offset = xlog_align(log, mid_blk, 1, bp);
316 mid_cycle = xlog_get_cycle(offset);
317 if (mid_cycle == cycle) {
319 /* last_half_cycle == mid_cycle */
322 /* first_half_cycle == mid_cycle */
324 mid_blk = BLK_AVG(first_blk, *last_blk);
326 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
327 (mid_blk == *last_blk && mid_blk-1 == first_blk));
333 * Check that the range of blocks does not contain the cycle number
334 * given. The scan needs to occur from front to back and the ptr into the
335 * region must be updated since a later routine will need to perform another
336 * test. If the region is completely good, we end up returning the same
339 * Set blkno to -1 if we encounter no errors. This is an invalid block number
340 * since we don't ever expect logs to get this large.
343 xlog_find_verify_cycle(
345 xfs_daddr_t start_blk,
347 uint stop_on_cycle_no,
348 xfs_daddr_t *new_blk)
354 xfs_caddr_t buf = NULL;
357 bufblks = 1 << ffs(nbblks);
359 while (!(bp = xlog_get_bp(log, bufblks))) {
360 /* can't get enough memory to do everything in one big buffer */
362 if (bufblks <= log->l_sectbb_log)
366 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
369 bcount = min(bufblks, (start_blk + nbblks - i));
371 if ((error = xlog_bread(log, i, bcount, bp)))
374 buf = xlog_align(log, i, bcount, bp);
375 for (j = 0; j < bcount; j++) {
376 cycle = xlog_get_cycle(buf);
377 if (cycle == stop_on_cycle_no) {
394 * Potentially backup over partial log record write.
396 * In the typical case, last_blk is the number of the block directly after
397 * a good log record. Therefore, we subtract one to get the block number
398 * of the last block in the given buffer. extra_bblks contains the number
399 * of blocks we would have read on a previous read. This happens when the
400 * last log record is split over the end of the physical log.
402 * extra_bblks is the number of blocks potentially verified on a previous
403 * call to this routine.
406 xlog_find_verify_log_record(
408 xfs_daddr_t start_blk,
409 xfs_daddr_t *last_blk,
414 xfs_caddr_t offset = NULL;
415 xlog_rec_header_t *head = NULL;
418 int num_blks = *last_blk - start_blk;
421 ASSERT(start_blk != 0 || *last_blk != start_blk);
423 if (!(bp = xlog_get_bp(log, num_blks))) {
424 if (!(bp = xlog_get_bp(log, 1)))
428 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
430 offset = xlog_align(log, start_blk, num_blks, bp);
431 offset += ((num_blks - 1) << BBSHIFT);
434 for (i = (*last_blk) - 1; i >= 0; i--) {
436 /* valid log record not found */
438 "XFS: Log inconsistent (didn't find previous header)");
440 error = XFS_ERROR(EIO);
445 if ((error = xlog_bread(log, i, 1, bp)))
447 offset = xlog_align(log, i, 1, bp);
450 head = (xlog_rec_header_t *)offset;
452 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
460 * We hit the beginning of the physical log & still no header. Return
461 * to caller. If caller can handle a return of -1, then this routine
462 * will be called again for the end of the physical log.
470 * We have the final block of the good log (the first block
471 * of the log record _before_ the head. So we check the uuid.
473 if ((error = xlog_header_check_mount(log->l_mp, head)))
477 * We may have found a log record header before we expected one.
478 * last_blk will be the 1st block # with a given cycle #. We may end
479 * up reading an entire log record. In this case, we don't want to
480 * reset last_blk. Only when last_blk points in the middle of a log
481 * record do we update last_blk.
483 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
484 uint h_size = be32_to_cpu(head->h_size);
486 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
487 if (h_size % XLOG_HEADER_CYCLE_SIZE)
493 if (*last_blk - i + extra_bblks !=
494 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
503 * Head is defined to be the point of the log where the next log write
504 * write could go. This means that incomplete LR writes at the end are
505 * eliminated when calculating the head. We aren't guaranteed that previous
506 * LR have complete transactions. We only know that a cycle number of
507 * current cycle number -1 won't be present in the log if we start writing
508 * from our current block number.
510 * last_blk contains the block number of the first block with a given
513 * Return: zero if normal, non-zero if error.
518 xfs_daddr_t *return_head_blk)
522 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
524 uint first_half_cycle, last_half_cycle;
526 int error, log_bbnum = log->l_logBBsize;
528 /* Is the end of the log device zeroed? */
529 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
530 *return_head_blk = first_blk;
532 /* Is the whole lot zeroed? */
534 /* Linux XFS shouldn't generate totally zeroed logs -
535 * mkfs etc write a dummy unmount record to a fresh
536 * log so we can store the uuid in there
538 xlog_warn("XFS: totally zeroed log");
543 xlog_warn("XFS: empty log check failed");
547 first_blk = 0; /* get cycle # of 1st block */
548 bp = xlog_get_bp(log, 1);
551 if ((error = xlog_bread(log, 0, 1, bp)))
553 offset = xlog_align(log, 0, 1, bp);
554 first_half_cycle = xlog_get_cycle(offset);
556 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
557 if ((error = xlog_bread(log, last_blk, 1, bp)))
559 offset = xlog_align(log, last_blk, 1, bp);
560 last_half_cycle = xlog_get_cycle(offset);
561 ASSERT(last_half_cycle != 0);
564 * If the 1st half cycle number is equal to the last half cycle number,
565 * then the entire log is stamped with the same cycle number. In this
566 * case, head_blk can't be set to zero (which makes sense). The below
567 * math doesn't work out properly with head_blk equal to zero. Instead,
568 * we set it to log_bbnum which is an invalid block number, but this
569 * value makes the math correct. If head_blk doesn't changed through
570 * all the tests below, *head_blk is set to zero at the very end rather
571 * than log_bbnum. In a sense, log_bbnum and zero are the same block
572 * in a circular file.
574 if (first_half_cycle == last_half_cycle) {
576 * In this case we believe that the entire log should have
577 * cycle number last_half_cycle. We need to scan backwards
578 * from the end verifying that there are no holes still
579 * containing last_half_cycle - 1. If we find such a hole,
580 * then the start of that hole will be the new head. The
581 * simple case looks like
582 * x | x ... | x - 1 | x
583 * Another case that fits this picture would be
584 * x | x + 1 | x ... | x
585 * In this case the head really is somewhere at the end of the
586 * log, as one of the latest writes at the beginning was
589 * x | x + 1 | x ... | x - 1 | x
590 * This is really the combination of the above two cases, and
591 * the head has to end up at the start of the x-1 hole at the
594 * In the 256k log case, we will read from the beginning to the
595 * end of the log and search for cycle numbers equal to x-1.
596 * We don't worry about the x+1 blocks that we encounter,
597 * because we know that they cannot be the head since the log
600 head_blk = log_bbnum;
601 stop_on_cycle = last_half_cycle - 1;
604 * In this case we want to find the first block with cycle
605 * number matching last_half_cycle. We expect the log to be
608 * The first block with cycle number x (last_half_cycle) will
609 * be where the new head belongs. First we do a binary search
610 * for the first occurrence of last_half_cycle. The binary
611 * search may not be totally accurate, so then we scan back
612 * from there looking for occurrences of last_half_cycle before
613 * us. If that backwards scan wraps around the beginning of
614 * the log, then we look for occurrences of last_half_cycle - 1
615 * at the end of the log. The cases we're looking for look
617 * x + 1 ... | x | x + 1 | x ...
618 * ^ binary search stopped here
620 * x + 1 ... | x ... | x - 1 | x
621 * <---------> less than scan distance
623 stop_on_cycle = last_half_cycle;
624 if ((error = xlog_find_cycle_start(log, bp, first_blk,
625 &head_blk, last_half_cycle)))
630 * Now validate the answer. Scan back some number of maximum possible
631 * blocks and make sure each one has the expected cycle number. The
632 * maximum is determined by the total possible amount of buffering
633 * in the in-core log. The following number can be made tighter if
634 * we actually look at the block size of the filesystem.
636 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
637 if (head_blk >= num_scan_bblks) {
639 * We are guaranteed that the entire check can be performed
642 start_blk = head_blk - num_scan_bblks;
643 if ((error = xlog_find_verify_cycle(log,
644 start_blk, num_scan_bblks,
645 stop_on_cycle, &new_blk)))
649 } else { /* need to read 2 parts of log */
651 * We are going to scan backwards in the log in two parts.
652 * First we scan the physical end of the log. In this part
653 * of the log, we are looking for blocks with cycle number
654 * last_half_cycle - 1.
655 * If we find one, then we know that the log starts there, as
656 * we've found a hole that didn't get written in going around
657 * the end of the physical log. The simple case for this is
658 * x + 1 ... | x ... | x - 1 | x
659 * <---------> less than scan distance
660 * If all of the blocks at the end of the log have cycle number
661 * last_half_cycle, then we check the blocks at the start of
662 * the log looking for occurrences of last_half_cycle. If we
663 * find one, then our current estimate for the location of the
664 * first occurrence of last_half_cycle is wrong and we move
665 * back to the hole we've found. This case looks like
666 * x + 1 ... | x | x + 1 | x ...
667 * ^ binary search stopped here
668 * Another case we need to handle that only occurs in 256k
670 * x + 1 ... | x ... | x+1 | x ...
671 * ^ binary search stops here
672 * In a 256k log, the scan at the end of the log will see the
673 * x + 1 blocks. We need to skip past those since that is
674 * certainly not the head of the log. By searching for
675 * last_half_cycle-1 we accomplish that.
677 start_blk = log_bbnum - num_scan_bblks + head_blk;
678 ASSERT(head_blk <= INT_MAX &&
679 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
680 if ((error = xlog_find_verify_cycle(log, start_blk,
681 num_scan_bblks - (int)head_blk,
682 (stop_on_cycle - 1), &new_blk)))
690 * Scan beginning of log now. The last part of the physical
691 * log is good. This scan needs to verify that it doesn't find
692 * the last_half_cycle.
695 ASSERT(head_blk <= INT_MAX);
696 if ((error = xlog_find_verify_cycle(log,
697 start_blk, (int)head_blk,
698 stop_on_cycle, &new_blk)))
706 * Now we need to make sure head_blk is not pointing to a block in
707 * the middle of a log record.
709 num_scan_bblks = XLOG_REC_SHIFT(log);
710 if (head_blk >= num_scan_bblks) {
711 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
713 /* start ptr at last block ptr before head_blk */
714 if ((error = xlog_find_verify_log_record(log, start_blk,
715 &head_blk, 0)) == -1) {
716 error = XFS_ERROR(EIO);
722 ASSERT(head_blk <= INT_MAX);
723 if ((error = xlog_find_verify_log_record(log, start_blk,
724 &head_blk, 0)) == -1) {
725 /* We hit the beginning of the log during our search */
726 start_blk = log_bbnum - num_scan_bblks + head_blk;
728 ASSERT(start_blk <= INT_MAX &&
729 (xfs_daddr_t) log_bbnum-start_blk >= 0);
730 ASSERT(head_blk <= INT_MAX);
731 if ((error = xlog_find_verify_log_record(log,
733 (int)head_blk)) == -1) {
734 error = XFS_ERROR(EIO);
738 if (new_blk != log_bbnum)
745 if (head_blk == log_bbnum)
746 *return_head_blk = 0;
748 *return_head_blk = head_blk;
750 * When returning here, we have a good block number. Bad block
751 * means that during a previous crash, we didn't have a clean break
752 * from cycle number N to cycle number N-1. In this case, we need
753 * to find the first block with cycle number N-1.
761 xlog_warn("XFS: failed to find log head");
766 * Find the sync block number or the tail of the log.
768 * This will be the block number of the last record to have its
769 * associated buffers synced to disk. Every log record header has
770 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
771 * to get a sync block number. The only concern is to figure out which
772 * log record header to believe.
774 * The following algorithm uses the log record header with the largest
775 * lsn. The entire log record does not need to be valid. We only care
776 * that the header is valid.
778 * We could speed up search by using current head_blk buffer, but it is not
784 xfs_daddr_t *head_blk,
785 xfs_daddr_t *tail_blk)
787 xlog_rec_header_t *rhead;
788 xlog_op_header_t *op_head;
789 xfs_caddr_t offset = NULL;
792 xfs_daddr_t umount_data_blk;
793 xfs_daddr_t after_umount_blk;
800 * Find previous log record
802 if ((error = xlog_find_head(log, head_blk)))
805 bp = xlog_get_bp(log, 1);
808 if (*head_blk == 0) { /* special case */
809 if ((error = xlog_bread(log, 0, 1, bp)))
811 offset = xlog_align(log, 0, 1, bp);
812 if (xlog_get_cycle(offset) == 0) {
814 /* leave all other log inited values alone */
820 * Search backwards looking for log record header block
822 ASSERT(*head_blk < INT_MAX);
823 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
824 if ((error = xlog_bread(log, i, 1, bp)))
826 offset = xlog_align(log, i, 1, bp);
827 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
833 * If we haven't found the log record header block, start looking
834 * again from the end of the physical log. XXXmiken: There should be
835 * a check here to make sure we didn't search more than N blocks in
839 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840 if ((error = xlog_bread(log, i, 1, bp)))
842 offset = xlog_align(log, i, 1, bp);
843 if (XLOG_HEADER_MAGIC_NUM ==
844 be32_to_cpu(*(__be32 *)offset)) {
851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
853 return XFS_ERROR(EIO);
856 /* find blk_no of tail of log */
857 rhead = (xlog_rec_header_t *)offset;
858 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
861 * Reset log values according to the state of the log when we
862 * crashed. In the case where head_blk == 0, we bump curr_cycle
863 * one because the next write starts a new cycle rather than
864 * continuing the cycle of the last good log record. At this
865 * point we have guaranteed that all partial log records have been
866 * accounted for. Therefore, we know that the last good log record
867 * written was complete and ended exactly on the end boundary
868 * of the physical log.
870 log->l_prev_block = i;
871 log->l_curr_block = (int)*head_blk;
872 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
875 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
876 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
877 log->l_grant_reserve_cycle = log->l_curr_cycle;
878 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879 log->l_grant_write_cycle = log->l_curr_cycle;
880 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
883 * Look for unmount record. If we find it, then we know there
884 * was a clean unmount. Since 'i' could be the last block in
885 * the physical log, we convert to a log block before comparing
888 * Save the current tail lsn to use to pass to
889 * xlog_clear_stale_blocks() below. We won't want to clear the
890 * unmount record if there is one, so we pass the lsn of the
891 * unmount record rather than the block after it.
893 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
894 int h_size = be32_to_cpu(rhead->h_size);
895 int h_version = be32_to_cpu(rhead->h_version);
897 if ((h_version & XLOG_VERSION_2) &&
898 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900 if (h_size % XLOG_HEADER_CYCLE_SIZE)
908 after_umount_blk = (i + hblks + (int)
909 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
910 tail_lsn = log->l_tail_lsn;
911 if (*head_blk == after_umount_blk &&
912 be32_to_cpu(rhead->h_num_logops) == 1) {
913 umount_data_blk = (i + hblks) % log->l_logBBsize;
914 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
917 offset = xlog_align(log, umount_data_blk, 1, bp);
918 op_head = (xlog_op_header_t *)offset;
919 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
921 * Set tail and last sync so that newly written
922 * log records will point recovery to after the
923 * current unmount record.
926 xlog_assign_lsn(log->l_curr_cycle,
928 log->l_last_sync_lsn =
929 xlog_assign_lsn(log->l_curr_cycle,
931 *tail_blk = after_umount_blk;
934 * Note that the unmount was clean. If the unmount
935 * was not clean, we need to know this to rebuild the
936 * superblock counters from the perag headers if we
937 * have a filesystem using non-persistent counters.
939 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
944 * Make sure that there are no blocks in front of the head
945 * with the same cycle number as the head. This can happen
946 * because we allow multiple outstanding log writes concurrently,
947 * and the later writes might make it out before earlier ones.
949 * We use the lsn from before modifying it so that we'll never
950 * overwrite the unmount record after a clean unmount.
952 * Do this only if we are going to recover the filesystem
954 * NOTE: This used to say "if (!readonly)"
955 * However on Linux, we can & do recover a read-only filesystem.
956 * We only skip recovery if NORECOVERY is specified on mount,
957 * in which case we would not be here.
959 * But... if the -device- itself is readonly, just skip this.
960 * We can't recover this device anyway, so it won't matter.
962 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
963 error = xlog_clear_stale_blocks(log, tail_lsn);
971 xlog_warn("XFS: failed to locate log tail");
976 * Is the log zeroed at all?
978 * The last binary search should be changed to perform an X block read
979 * once X becomes small enough. You can then search linearly through
980 * the X blocks. This will cut down on the number of reads we need to do.
982 * If the log is partially zeroed, this routine will pass back the blkno
983 * of the first block with cycle number 0. It won't have a complete LR
987 * 0 => the log is completely written to
988 * -1 => use *blk_no as the first block of the log
989 * >0 => error has occurred
998 uint first_cycle, last_cycle;
999 xfs_daddr_t new_blk, last_blk, start_blk;
1000 xfs_daddr_t num_scan_bblks;
1001 int error, log_bbnum = log->l_logBBsize;
1005 /* check totally zeroed log */
1006 bp = xlog_get_bp(log, 1);
1009 if ((error = xlog_bread(log, 0, 1, bp)))
1011 offset = xlog_align(log, 0, 1, bp);
1012 first_cycle = xlog_get_cycle(offset);
1013 if (first_cycle == 0) { /* completely zeroed log */
1019 /* check partially zeroed log */
1020 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1022 offset = xlog_align(log, log_bbnum-1, 1, bp);
1023 last_cycle = xlog_get_cycle(offset);
1024 if (last_cycle != 0) { /* log completely written to */
1027 } else if (first_cycle != 1) {
1029 * If the cycle of the last block is zero, the cycle of
1030 * the first block must be 1. If it's not, maybe we're
1031 * not looking at a log... Bail out.
1033 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1034 return XFS_ERROR(EINVAL);
1037 /* we have a partially zeroed log */
1038 last_blk = log_bbnum-1;
1039 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1043 * Validate the answer. Because there is no way to guarantee that
1044 * the entire log is made up of log records which are the same size,
1045 * we scan over the defined maximum blocks. At this point, the maximum
1046 * is not chosen to mean anything special. XXXmiken
1048 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1049 ASSERT(num_scan_bblks <= INT_MAX);
1051 if (last_blk < num_scan_bblks)
1052 num_scan_bblks = last_blk;
1053 start_blk = last_blk - num_scan_bblks;
1056 * We search for any instances of cycle number 0 that occur before
1057 * our current estimate of the head. What we're trying to detect is
1058 * 1 ... | 0 | 1 | 0...
1059 * ^ binary search ends here
1061 if ((error = xlog_find_verify_cycle(log, start_blk,
1062 (int)num_scan_bblks, 0, &new_blk)))
1068 * Potentially backup over partial log record write. We don't need
1069 * to search the end of the log because we know it is zero.
1071 if ((error = xlog_find_verify_log_record(log, start_blk,
1072 &last_blk, 0)) == -1) {
1073 error = XFS_ERROR(EIO);
1087 * These are simple subroutines used by xlog_clear_stale_blocks() below
1088 * to initialize a buffer full of empty log record headers and write
1089 * them into the log.
1100 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1102 memset(buf, 0, BBSIZE);
1103 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1104 recp->h_cycle = cpu_to_be32(cycle);
1105 recp->h_version = cpu_to_be32(
1106 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1107 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1108 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1109 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1110 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1114 xlog_write_log_records(
1125 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1126 int end_block = start_block + blocks;
1131 bufblks = 1 << ffs(blocks);
1132 while (!(bp = xlog_get_bp(log, bufblks))) {
1134 if (bufblks <= log->l_sectbb_log)
1138 /* We may need to do a read at the start to fill in part of
1139 * the buffer in the starting sector not covered by the first
1142 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1143 if (balign != start_block) {
1144 if ((error = xlog_bread(log, start_block, 1, bp))) {
1148 j = start_block - balign;
1151 for (i = start_block; i < end_block; i += bufblks) {
1152 int bcount, endcount;
1154 bcount = min(bufblks, end_block - start_block);
1155 endcount = bcount - j;
1157 /* We may need to do a read at the end to fill in part of
1158 * the buffer in the final sector not covered by the write.
1159 * If this is the same sector as the above read, skip it.
1161 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1162 if (j == 0 && (start_block + endcount > ealign)) {
1163 offset = XFS_BUF_PTR(bp);
1164 balign = BBTOB(ealign - start_block);
1165 error = XFS_BUF_SET_PTR(bp, offset + balign,
1168 error = xlog_bread(log, ealign, sectbb, bp);
1170 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1175 offset = xlog_align(log, start_block, endcount, bp);
1176 for (; j < endcount; j++) {
1177 xlog_add_record(log, offset, cycle, i+j,
1178 tail_cycle, tail_block);
1181 error = xlog_bwrite(log, start_block, endcount, bp);
1184 start_block += endcount;
1192 * This routine is called to blow away any incomplete log writes out
1193 * in front of the log head. We do this so that we won't become confused
1194 * if we come up, write only a little bit more, and then crash again.
1195 * If we leave the partial log records out there, this situation could
1196 * cause us to think those partial writes are valid blocks since they
1197 * have the current cycle number. We get rid of them by overwriting them
1198 * with empty log records with the old cycle number rather than the
1201 * The tail lsn is passed in rather than taken from
1202 * the log so that we will not write over the unmount record after a
1203 * clean unmount in a 512 block log. Doing so would leave the log without
1204 * any valid log records in it until a new one was written. If we crashed
1205 * during that time we would not be able to recover.
1208 xlog_clear_stale_blocks(
1212 int tail_cycle, head_cycle;
1213 int tail_block, head_block;
1214 int tail_distance, max_distance;
1218 tail_cycle = CYCLE_LSN(tail_lsn);
1219 tail_block = BLOCK_LSN(tail_lsn);
1220 head_cycle = log->l_curr_cycle;
1221 head_block = log->l_curr_block;
1224 * Figure out the distance between the new head of the log
1225 * and the tail. We want to write over any blocks beyond the
1226 * head that we may have written just before the crash, but
1227 * we don't want to overwrite the tail of the log.
1229 if (head_cycle == tail_cycle) {
1231 * The tail is behind the head in the physical log,
1232 * so the distance from the head to the tail is the
1233 * distance from the head to the end of the log plus
1234 * the distance from the beginning of the log to the
1237 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1238 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1239 XFS_ERRLEVEL_LOW, log->l_mp);
1240 return XFS_ERROR(EFSCORRUPTED);
1242 tail_distance = tail_block + (log->l_logBBsize - head_block);
1245 * The head is behind the tail in the physical log,
1246 * so the distance from the head to the tail is just
1247 * the tail block minus the head block.
1249 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1250 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1251 XFS_ERRLEVEL_LOW, log->l_mp);
1252 return XFS_ERROR(EFSCORRUPTED);
1254 tail_distance = tail_block - head_block;
1258 * If the head is right up against the tail, we can't clear
1261 if (tail_distance <= 0) {
1262 ASSERT(tail_distance == 0);
1266 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1268 * Take the smaller of the maximum amount of outstanding I/O
1269 * we could have and the distance to the tail to clear out.
1270 * We take the smaller so that we don't overwrite the tail and
1271 * we don't waste all day writing from the head to the tail
1274 max_distance = MIN(max_distance, tail_distance);
1276 if ((head_block + max_distance) <= log->l_logBBsize) {
1278 * We can stomp all the blocks we need to without
1279 * wrapping around the end of the log. Just do it
1280 * in a single write. Use the cycle number of the
1281 * current cycle minus one so that the log will look like:
1284 error = xlog_write_log_records(log, (head_cycle - 1),
1285 head_block, max_distance, tail_cycle,
1291 * We need to wrap around the end of the physical log in
1292 * order to clear all the blocks. Do it in two separate
1293 * I/Os. The first write should be from the head to the
1294 * end of the physical log, and it should use the current
1295 * cycle number minus one just like above.
1297 distance = log->l_logBBsize - head_block;
1298 error = xlog_write_log_records(log, (head_cycle - 1),
1299 head_block, distance, tail_cycle,
1306 * Now write the blocks at the start of the physical log.
1307 * This writes the remainder of the blocks we want to clear.
1308 * It uses the current cycle number since we're now on the
1309 * same cycle as the head so that we get:
1310 * n ... n ... | n - 1 ...
1311 * ^^^^^ blocks we're writing
1313 distance = max_distance - (log->l_logBBsize - head_block);
1314 error = xlog_write_log_records(log, head_cycle, 0, distance,
1315 tail_cycle, tail_block);
1323 /******************************************************************************
1325 * Log recover routines
1327 ******************************************************************************
1330 STATIC xlog_recover_t *
1331 xlog_recover_find_tid(
1335 xlog_recover_t *p = q;
1338 if (p->r_log_tid == tid)
1346 xlog_recover_put_hashq(
1348 xlog_recover_t *trans)
1355 xlog_recover_add_item(
1356 xlog_recover_item_t **itemq)
1358 xlog_recover_item_t *item;
1360 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1361 xlog_recover_insert_item_backq(itemq, item);
1365 xlog_recover_add_to_cont_trans(
1366 xlog_recover_t *trans,
1370 xlog_recover_item_t *item;
1371 xfs_caddr_t ptr, old_ptr;
1374 item = trans->r_itemq;
1376 /* finish copying rest of trans header */
1377 xlog_recover_add_item(&trans->r_itemq);
1378 ptr = (xfs_caddr_t) &trans->r_theader +
1379 sizeof(xfs_trans_header_t) - len;
1380 memcpy(ptr, dp, len); /* d, s, l */
1383 item = item->ri_prev;
1385 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1386 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1388 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1389 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1390 item->ri_buf[item->ri_cnt-1].i_len += len;
1391 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1396 * The next region to add is the start of a new region. It could be
1397 * a whole region or it could be the first part of a new region. Because
1398 * of this, the assumption here is that the type and size fields of all
1399 * format structures fit into the first 32 bits of the structure.
1401 * This works because all regions must be 32 bit aligned. Therefore, we
1402 * either have both fields or we have neither field. In the case we have
1403 * neither field, the data part of the region is zero length. We only have
1404 * a log_op_header and can throw away the header since a new one will appear
1405 * later. If we have at least 4 bytes, then we can determine how many regions
1406 * will appear in the current log item.
1409 xlog_recover_add_to_trans(
1410 xlog_recover_t *trans,
1414 xfs_inode_log_format_t *in_f; /* any will do */
1415 xlog_recover_item_t *item;
1420 item = trans->r_itemq;
1422 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1423 if (len == sizeof(xfs_trans_header_t))
1424 xlog_recover_add_item(&trans->r_itemq);
1425 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1429 ptr = kmem_alloc(len, KM_SLEEP);
1430 memcpy(ptr, dp, len);
1431 in_f = (xfs_inode_log_format_t *)ptr;
1433 if (item->ri_prev->ri_total != 0 &&
1434 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1435 xlog_recover_add_item(&trans->r_itemq);
1437 item = trans->r_itemq;
1438 item = item->ri_prev;
1440 if (item->ri_total == 0) { /* first region to be added */
1441 item->ri_total = in_f->ilf_size;
1442 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1443 item->ri_buf = kmem_zalloc((item->ri_total *
1444 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1446 ASSERT(item->ri_total > item->ri_cnt);
1447 /* Description region is ri_buf[0] */
1448 item->ri_buf[item->ri_cnt].i_addr = ptr;
1449 item->ri_buf[item->ri_cnt].i_len = len;
1455 xlog_recover_new_tid(
1460 xlog_recover_t *trans;
1462 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1463 trans->r_log_tid = tid;
1465 xlog_recover_put_hashq(q, trans);
1469 xlog_recover_unlink_tid(
1471 xlog_recover_t *trans)
1476 ASSERT(trans != NULL);
1482 if (tp->r_next == trans) {
1490 "XFS: xlog_recover_unlink_tid: trans not found");
1492 return XFS_ERROR(EIO);
1494 tp->r_next = tp->r_next->r_next;
1500 xlog_recover_insert_item_backq(
1501 xlog_recover_item_t **q,
1502 xlog_recover_item_t *item)
1505 item->ri_prev = item->ri_next = item;
1509 item->ri_prev = (*q)->ri_prev;
1510 (*q)->ri_prev = item;
1511 item->ri_prev->ri_next = item;
1516 xlog_recover_insert_item_frontq(
1517 xlog_recover_item_t **q,
1518 xlog_recover_item_t *item)
1520 xlog_recover_insert_item_backq(q, item);
1525 xlog_recover_reorder_trans(
1526 xlog_recover_t *trans)
1528 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1529 xfs_buf_log_format_t *buf_f;
1532 first_item = itemq = trans->r_itemq;
1533 trans->r_itemq = NULL;
1535 itemq_next = itemq->ri_next;
1536 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1538 switch (ITEM_TYPE(itemq)) {
1540 flags = buf_f->blf_flags;
1541 if (!(flags & XFS_BLI_CANCEL)) {
1542 xlog_recover_insert_item_frontq(&trans->r_itemq,
1548 case XFS_LI_QUOTAOFF:
1551 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1555 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1557 return XFS_ERROR(EIO);
1560 } while (first_item != itemq);
1565 * Build up the table of buf cancel records so that we don't replay
1566 * cancelled data in the second pass. For buffer records that are
1567 * not cancel records, there is nothing to do here so we just return.
1569 * If we get a cancel record which is already in the table, this indicates
1570 * that the buffer was cancelled multiple times. In order to ensure
1571 * that during pass 2 we keep the record in the table until we reach its
1572 * last occurrence in the log, we keep a reference count in the cancel
1573 * record in the table to tell us how many times we expect to see this
1574 * record during the second pass.
1577 xlog_recover_do_buffer_pass1(
1579 xfs_buf_log_format_t *buf_f)
1581 xfs_buf_cancel_t *bcp;
1582 xfs_buf_cancel_t *nextp;
1583 xfs_buf_cancel_t *prevp;
1584 xfs_buf_cancel_t **bucket;
1585 xfs_daddr_t blkno = 0;
1589 switch (buf_f->blf_type) {
1591 blkno = buf_f->blf_blkno;
1592 len = buf_f->blf_len;
1593 flags = buf_f->blf_flags;
1598 * If this isn't a cancel buffer item, then just return.
1600 if (!(flags & XFS_BLI_CANCEL))
1604 * Insert an xfs_buf_cancel record into the hash table of
1605 * them. If there is already an identical record, bump
1606 * its reference count.
1608 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1609 XLOG_BC_TABLE_SIZE];
1611 * If the hash bucket is empty then just insert a new record into
1614 if (*bucket == NULL) {
1615 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1617 bcp->bc_blkno = blkno;
1619 bcp->bc_refcount = 1;
1620 bcp->bc_next = NULL;
1626 * The hash bucket is not empty, so search for duplicates of our
1627 * record. If we find one them just bump its refcount. If not
1628 * then add us at the end of the list.
1632 while (nextp != NULL) {
1633 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1634 nextp->bc_refcount++;
1638 nextp = nextp->bc_next;
1640 ASSERT(prevp != NULL);
1641 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1643 bcp->bc_blkno = blkno;
1645 bcp->bc_refcount = 1;
1646 bcp->bc_next = NULL;
1647 prevp->bc_next = bcp;
1651 * Check to see whether the buffer being recovered has a corresponding
1652 * entry in the buffer cancel record table. If it does then return 1
1653 * so that it will be cancelled, otherwise return 0. If the buffer is
1654 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1655 * the refcount on the entry in the table and remove it from the table
1656 * if this is the last reference.
1658 * We remove the cancel record from the table when we encounter its
1659 * last occurrence in the log so that if the same buffer is re-used
1660 * again after its last cancellation we actually replay the changes
1661 * made at that point.
1664 xlog_check_buffer_cancelled(
1670 xfs_buf_cancel_t *bcp;
1671 xfs_buf_cancel_t *prevp;
1672 xfs_buf_cancel_t **bucket;
1674 if (log->l_buf_cancel_table == NULL) {
1676 * There is nothing in the table built in pass one,
1677 * so this buffer must not be cancelled.
1679 ASSERT(!(flags & XFS_BLI_CANCEL));
1683 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1684 XLOG_BC_TABLE_SIZE];
1688 * There is no corresponding entry in the table built
1689 * in pass one, so this buffer has not been cancelled.
1691 ASSERT(!(flags & XFS_BLI_CANCEL));
1696 * Search for an entry in the buffer cancel table that
1697 * matches our buffer.
1700 while (bcp != NULL) {
1701 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1703 * We've go a match, so return 1 so that the
1704 * recovery of this buffer is cancelled.
1705 * If this buffer is actually a buffer cancel
1706 * log item, then decrement the refcount on the
1707 * one in the table and remove it if this is the
1710 if (flags & XFS_BLI_CANCEL) {
1712 if (bcp->bc_refcount == 0) {
1713 if (prevp == NULL) {
1714 *bucket = bcp->bc_next;
1716 prevp->bc_next = bcp->bc_next;
1727 * We didn't find a corresponding entry in the table, so
1728 * return 0 so that the buffer is NOT cancelled.
1730 ASSERT(!(flags & XFS_BLI_CANCEL));
1735 xlog_recover_do_buffer_pass2(
1737 xfs_buf_log_format_t *buf_f)
1739 xfs_daddr_t blkno = 0;
1743 switch (buf_f->blf_type) {
1745 blkno = buf_f->blf_blkno;
1746 flags = buf_f->blf_flags;
1747 len = buf_f->blf_len;
1751 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1755 * Perform recovery for a buffer full of inodes. In these buffers,
1756 * the only data which should be recovered is that which corresponds
1757 * to the di_next_unlinked pointers in the on disk inode structures.
1758 * The rest of the data for the inodes is always logged through the
1759 * inodes themselves rather than the inode buffer and is recovered
1760 * in xlog_recover_do_inode_trans().
1762 * The only time when buffers full of inodes are fully recovered is
1763 * when the buffer is full of newly allocated inodes. In this case
1764 * the buffer will not be marked as an inode buffer and so will be
1765 * sent to xlog_recover_do_reg_buffer() below during recovery.
1768 xlog_recover_do_inode_buffer(
1770 xlog_recover_item_t *item,
1772 xfs_buf_log_format_t *buf_f)
1780 int next_unlinked_offset;
1782 xfs_agino_t *logged_nextp;
1783 xfs_agino_t *buffer_nextp;
1784 unsigned int *data_map = NULL;
1785 unsigned int map_size = 0;
1787 switch (buf_f->blf_type) {
1789 data_map = buf_f->blf_data_map;
1790 map_size = buf_f->blf_map_size;
1794 * Set the variables corresponding to the current region to
1795 * 0 so that we'll initialize them on the first pass through
1803 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1804 for (i = 0; i < inodes_per_buf; i++) {
1805 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1806 offsetof(xfs_dinode_t, di_next_unlinked);
1808 while (next_unlinked_offset >=
1809 (reg_buf_offset + reg_buf_bytes)) {
1811 * The next di_next_unlinked field is beyond
1812 * the current logged region. Find the next
1813 * logged region that contains or is beyond
1814 * the current di_next_unlinked field.
1817 bit = xfs_next_bit(data_map, map_size, bit);
1820 * If there are no more logged regions in the
1821 * buffer, then we're done.
1827 nbits = xfs_contig_bits(data_map, map_size,
1830 reg_buf_offset = bit << XFS_BLI_SHIFT;
1831 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1836 * If the current logged region starts after the current
1837 * di_next_unlinked field, then move on to the next
1838 * di_next_unlinked field.
1840 if (next_unlinked_offset < reg_buf_offset) {
1844 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1845 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1846 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1849 * The current logged region contains a copy of the
1850 * current di_next_unlinked field. Extract its value
1851 * and copy it to the buffer copy.
1853 logged_nextp = (xfs_agino_t *)
1854 ((char *)(item->ri_buf[item_index].i_addr) +
1855 (next_unlinked_offset - reg_buf_offset));
1856 if (unlikely(*logged_nextp == 0)) {
1857 xfs_fs_cmn_err(CE_ALERT, mp,
1858 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1860 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1861 XFS_ERRLEVEL_LOW, mp);
1862 return XFS_ERROR(EFSCORRUPTED);
1865 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1866 next_unlinked_offset);
1867 *buffer_nextp = *logged_nextp;
1874 * Perform a 'normal' buffer recovery. Each logged region of the
1875 * buffer should be copied over the corresponding region in the
1876 * given buffer. The bitmap in the buf log format structure indicates
1877 * where to place the logged data.
1881 xlog_recover_do_reg_buffer(
1882 xlog_recover_item_t *item,
1884 xfs_buf_log_format_t *buf_f)
1889 unsigned int *data_map = NULL;
1890 unsigned int map_size = 0;
1893 switch (buf_f->blf_type) {
1895 data_map = buf_f->blf_data_map;
1896 map_size = buf_f->blf_map_size;
1900 i = 1; /* 0 is the buf format structure */
1902 bit = xfs_next_bit(data_map, map_size, bit);
1905 nbits = xfs_contig_bits(data_map, map_size, bit);
1907 ASSERT(item->ri_buf[i].i_addr != NULL);
1908 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1909 ASSERT(XFS_BUF_COUNT(bp) >=
1910 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1913 * Do a sanity check if this is a dquot buffer. Just checking
1914 * the first dquot in the buffer should do. XXXThis is
1915 * probably a good thing to do for other buf types also.
1918 if (buf_f->blf_flags &
1919 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1920 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1921 item->ri_buf[i].i_addr,
1922 -1, 0, XFS_QMOPT_DOWARN,
1923 "dquot_buf_recover");
1926 memcpy(xfs_buf_offset(bp,
1927 (uint)bit << XFS_BLI_SHIFT), /* dest */
1928 item->ri_buf[i].i_addr, /* source */
1929 nbits<<XFS_BLI_SHIFT); /* length */
1934 /* Shouldn't be any more regions */
1935 ASSERT(i == item->ri_total);
1939 * Do some primitive error checking on ondisk dquot data structures.
1943 xfs_disk_dquot_t *ddq,
1945 uint type, /* used only when IO_dorepair is true */
1949 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1953 * We can encounter an uninitialized dquot buffer for 2 reasons:
1954 * 1. If we crash while deleting the quotainode(s), and those blks got
1955 * used for user data. This is because we take the path of regular
1956 * file deletion; however, the size field of quotainodes is never
1957 * updated, so all the tricks that we play in itruncate_finish
1958 * don't quite matter.
1960 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1961 * But the allocation will be replayed so we'll end up with an
1962 * uninitialized quota block.
1964 * This is all fine; things are still consistent, and we haven't lost
1965 * any quota information. Just don't complain about bad dquot blks.
1967 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1968 if (flags & XFS_QMOPT_DOWARN)
1970 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1971 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1974 if (ddq->d_version != XFS_DQUOT_VERSION) {
1975 if (flags & XFS_QMOPT_DOWARN)
1977 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1978 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1982 if (ddq->d_flags != XFS_DQ_USER &&
1983 ddq->d_flags != XFS_DQ_PROJ &&
1984 ddq->d_flags != XFS_DQ_GROUP) {
1985 if (flags & XFS_QMOPT_DOWARN)
1987 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1988 str, id, ddq->d_flags);
1992 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1993 if (flags & XFS_QMOPT_DOWARN)
1995 "%s : ondisk-dquot 0x%p, ID mismatch: "
1996 "0x%x expected, found id 0x%x",
1997 str, ddq, id, be32_to_cpu(ddq->d_id));
2001 if (!errs && ddq->d_id) {
2002 if (ddq->d_blk_softlimit &&
2003 be64_to_cpu(ddq->d_bcount) >=
2004 be64_to_cpu(ddq->d_blk_softlimit)) {
2005 if (!ddq->d_btimer) {
2006 if (flags & XFS_QMOPT_DOWARN)
2008 "%s : Dquot ID 0x%x (0x%p) "
2009 "BLK TIMER NOT STARTED",
2010 str, (int)be32_to_cpu(ddq->d_id), ddq);
2014 if (ddq->d_ino_softlimit &&
2015 be64_to_cpu(ddq->d_icount) >=
2016 be64_to_cpu(ddq->d_ino_softlimit)) {
2017 if (!ddq->d_itimer) {
2018 if (flags & XFS_QMOPT_DOWARN)
2020 "%s : Dquot ID 0x%x (0x%p) "
2021 "INODE TIMER NOT STARTED",
2022 str, (int)be32_to_cpu(ddq->d_id), ddq);
2026 if (ddq->d_rtb_softlimit &&
2027 be64_to_cpu(ddq->d_rtbcount) >=
2028 be64_to_cpu(ddq->d_rtb_softlimit)) {
2029 if (!ddq->d_rtbtimer) {
2030 if (flags & XFS_QMOPT_DOWARN)
2032 "%s : Dquot ID 0x%x (0x%p) "
2033 "RTBLK TIMER NOT STARTED",
2034 str, (int)be32_to_cpu(ddq->d_id), ddq);
2040 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2043 if (flags & XFS_QMOPT_DOWARN)
2044 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2047 * Typically, a repair is only requested by quotacheck.
2050 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2051 memset(d, 0, sizeof(xfs_dqblk_t));
2053 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2054 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2055 d->dd_diskdq.d_flags = type;
2056 d->dd_diskdq.d_id = cpu_to_be32(id);
2062 * Perform a dquot buffer recovery.
2063 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2064 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2065 * Else, treat it as a regular buffer and do recovery.
2068 xlog_recover_do_dquot_buffer(
2071 xlog_recover_item_t *item,
2073 xfs_buf_log_format_t *buf_f)
2078 * Filesystems are required to send in quota flags at mount time.
2080 if (mp->m_qflags == 0) {
2085 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2086 type |= XFS_DQ_USER;
2087 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2088 type |= XFS_DQ_PROJ;
2089 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2090 type |= XFS_DQ_GROUP;
2092 * This type of quotas was turned off, so ignore this buffer
2094 if (log->l_quotaoffs_flag & type)
2097 xlog_recover_do_reg_buffer(item, bp, buf_f);
2101 * This routine replays a modification made to a buffer at runtime.
2102 * There are actually two types of buffer, regular and inode, which
2103 * are handled differently. Inode buffers are handled differently
2104 * in that we only recover a specific set of data from them, namely
2105 * the inode di_next_unlinked fields. This is because all other inode
2106 * data is actually logged via inode records and any data we replay
2107 * here which overlaps that may be stale.
2109 * When meta-data buffers are freed at run time we log a buffer item
2110 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2111 * of the buffer in the log should not be replayed at recovery time.
2112 * This is so that if the blocks covered by the buffer are reused for
2113 * file data before we crash we don't end up replaying old, freed
2114 * meta-data into a user's file.
2116 * To handle the cancellation of buffer log items, we make two passes
2117 * over the log during recovery. During the first we build a table of
2118 * those buffers which have been cancelled, and during the second we
2119 * only replay those buffers which do not have corresponding cancel
2120 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2121 * for more details on the implementation of the table of cancel records.
2124 xlog_recover_do_buffer_trans(
2126 xlog_recover_item_t *item,
2129 xfs_buf_log_format_t *buf_f;
2138 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2140 if (pass == XLOG_RECOVER_PASS1) {
2142 * In this pass we're only looking for buf items
2143 * with the XFS_BLI_CANCEL bit set.
2145 xlog_recover_do_buffer_pass1(log, buf_f);
2149 * In this pass we want to recover all the buffers
2150 * which have not been cancelled and are not
2151 * cancellation buffers themselves. The routine
2152 * we call here will tell us whether or not to
2153 * continue with the replay of this buffer.
2155 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2160 switch (buf_f->blf_type) {
2162 blkno = buf_f->blf_blkno;
2163 len = buf_f->blf_len;
2164 flags = buf_f->blf_flags;
2167 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2168 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2169 buf_f->blf_type, log->l_mp->m_logname ?
2170 log->l_mp->m_logname : "internal");
2171 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2172 XFS_ERRLEVEL_LOW, log->l_mp);
2173 return XFS_ERROR(EFSCORRUPTED);
2177 if (flags & XFS_BLI_INODE_BUF) {
2178 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2181 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2183 if (XFS_BUF_ISERROR(bp)) {
2184 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2186 error = XFS_BUF_GETERROR(bp);
2192 if (flags & XFS_BLI_INODE_BUF) {
2193 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2195 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2196 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2198 xlog_recover_do_reg_buffer(item, bp, buf_f);
2201 return XFS_ERROR(error);
2204 * Perform delayed write on the buffer. Asynchronous writes will be
2205 * slower when taking into account all the buffers to be flushed.
2207 * Also make sure that only inode buffers with good sizes stay in
2208 * the buffer cache. The kernel moves inodes in buffers of 1 block
2209 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2210 * buffers in the log can be a different size if the log was generated
2211 * by an older kernel using unclustered inode buffers or a newer kernel
2212 * running with a different inode cluster size. Regardless, if the
2213 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2214 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2215 * the buffer out of the buffer cache so that the buffer won't
2216 * overlap with future reads of those inodes.
2218 if (XFS_DINODE_MAGIC ==
2219 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2220 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2221 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2223 error = xfs_bwrite(mp, bp);
2225 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2226 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2227 XFS_BUF_SET_FSPRIVATE(bp, mp);
2228 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2229 xfs_bdwrite(mp, bp);
2236 xlog_recover_do_inode_trans(
2238 xlog_recover_item_t *item,
2241 xfs_inode_log_format_t *in_f;
2253 xfs_icdinode_t *dicp;
2256 if (pass == XLOG_RECOVER_PASS1) {
2260 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2261 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2263 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2264 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2266 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2270 ino = in_f->ilf_ino;
2272 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2273 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2274 imap.im_len = in_f->ilf_len;
2275 imap.im_boffset = in_f->ilf_boffset;
2278 * It's an old inode format record. We don't know where
2279 * its cluster is located on disk, and we can't allow
2280 * xfs_imap() to figure it out because the inode btrees
2281 * are not ready to be used. Therefore do not pass the
2282 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2283 * us only the single block in which the inode lives
2284 * rather than its cluster, so we must make sure to
2285 * invalidate the buffer when we write it out below.
2288 error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2294 * Inode buffers can be freed, look out for it,
2295 * and do not replay the inode.
2297 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2302 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2304 if (XFS_BUF_ISERROR(bp)) {
2305 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2307 error = XFS_BUF_GETERROR(bp);
2312 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2313 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2316 * Make sure the place we're flushing out to really looks
2319 if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
2321 xfs_fs_cmn_err(CE_ALERT, mp,
2322 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2324 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2325 XFS_ERRLEVEL_LOW, mp);
2326 error = EFSCORRUPTED;
2329 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2330 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2332 xfs_fs_cmn_err(CE_ALERT, mp,
2333 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2335 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2336 XFS_ERRLEVEL_LOW, mp);
2337 error = EFSCORRUPTED;
2341 /* Skip replay when the on disk inode is newer than the log one */
2342 if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
2344 * Deal with the wrap case, DI_MAX_FLUSH is less
2345 * than smaller numbers
2347 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2348 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2356 /* Take the opportunity to reset the flush iteration count */
2357 dicp->di_flushiter = 0;
2359 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2360 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2361 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2362 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2363 XFS_ERRLEVEL_LOW, mp, dicp);
2365 xfs_fs_cmn_err(CE_ALERT, mp,
2366 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2367 item, dip, bp, ino);
2368 error = EFSCORRUPTED;
2371 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2372 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2373 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2374 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2375 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2376 XFS_ERRLEVEL_LOW, mp, dicp);
2378 xfs_fs_cmn_err(CE_ALERT, mp,
2379 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2380 item, dip, bp, ino);
2381 error = EFSCORRUPTED;
2385 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2386 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2387 XFS_ERRLEVEL_LOW, mp, dicp);
2389 xfs_fs_cmn_err(CE_ALERT, mp,
2390 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2392 dicp->di_nextents + dicp->di_anextents,
2394 error = EFSCORRUPTED;
2397 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2398 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2399 XFS_ERRLEVEL_LOW, mp, dicp);
2401 xfs_fs_cmn_err(CE_ALERT, mp,
2402 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2403 item, dip, bp, ino, dicp->di_forkoff);
2404 error = EFSCORRUPTED;
2407 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2408 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2409 XFS_ERRLEVEL_LOW, mp, dicp);
2411 xfs_fs_cmn_err(CE_ALERT, mp,
2412 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2413 item->ri_buf[1].i_len, item);
2414 error = EFSCORRUPTED;
2418 /* The core is in in-core format */
2419 xfs_dinode_to_disk(&dip->di_core,
2420 (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2422 /* the rest is in on-disk format */
2423 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2424 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2425 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2426 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2429 fields = in_f->ilf_fields;
2430 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2432 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
2435 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2439 if (in_f->ilf_size == 2)
2440 goto write_inode_buffer;
2441 len = item->ri_buf[2].i_len;
2442 src = item->ri_buf[2].i_addr;
2443 ASSERT(in_f->ilf_size <= 4);
2444 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2445 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2446 (len == in_f->ilf_dsize));
2448 switch (fields & XFS_ILOG_DFORK) {
2449 case XFS_ILOG_DDATA:
2451 memcpy(&dip->di_u, src, len);
2454 case XFS_ILOG_DBROOT:
2455 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2456 &(dip->di_u.di_bmbt),
2457 XFS_DFORK_DSIZE(dip, mp));
2462 * There are no data fork flags set.
2464 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2469 * If we logged any attribute data, recover it. There may or
2470 * may not have been any other non-core data logged in this
2473 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2474 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2479 len = item->ri_buf[attr_index].i_len;
2480 src = item->ri_buf[attr_index].i_addr;
2481 ASSERT(len == in_f->ilf_asize);
2483 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2484 case XFS_ILOG_ADATA:
2486 dest = XFS_DFORK_APTR(dip);
2487 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2488 memcpy(dest, src, len);
2491 case XFS_ILOG_ABROOT:
2492 dest = XFS_DFORK_APTR(dip);
2493 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2494 (xfs_bmdr_block_t*)dest,
2495 XFS_DFORK_ASIZE(dip, mp));
2499 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2508 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2509 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2510 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2511 XFS_BUF_SET_FSPRIVATE(bp, mp);
2512 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2513 xfs_bdwrite(mp, bp);
2516 error = xfs_bwrite(mp, bp);
2522 return XFS_ERROR(error);
2526 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2527 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2531 xlog_recover_do_quotaoff_trans(
2533 xlog_recover_item_t *item,
2536 xfs_qoff_logformat_t *qoff_f;
2538 if (pass == XLOG_RECOVER_PASS2) {
2542 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2546 * The logitem format's flag tells us if this was user quotaoff,
2547 * group/project quotaoff or both.
2549 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2550 log->l_quotaoffs_flag |= XFS_DQ_USER;
2551 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2552 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2553 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2554 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2560 * Recover a dquot record
2563 xlog_recover_do_dquot_trans(
2565 xlog_recover_item_t *item,
2570 struct xfs_disk_dquot *ddq, *recddq;
2572 xfs_dq_logformat_t *dq_f;
2575 if (pass == XLOG_RECOVER_PASS1) {
2581 * Filesystems are required to send in quota flags at mount time.
2583 if (mp->m_qflags == 0)
2586 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2589 * This type of quotas was turned off, so ignore this record.
2591 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2593 if (log->l_quotaoffs_flag & type)
2597 * At this point we know that quota was _not_ turned off.
2598 * Since the mount flags are not indicating to us otherwise, this
2599 * must mean that quota is on, and the dquot needs to be replayed.
2600 * Remember that we may not have fully recovered the superblock yet,
2601 * so we can't do the usual trick of looking at the SB quota bits.
2603 * The other possibility, of course, is that the quota subsystem was
2604 * removed since the last mount - ENOSYS.
2606 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2608 if ((error = xfs_qm_dqcheck(recddq,
2610 0, XFS_QMOPT_DOWARN,
2611 "xlog_recover_do_dquot_trans (log copy)"))) {
2612 return XFS_ERROR(EIO);
2614 ASSERT(dq_f->qlf_len == 1);
2616 error = xfs_read_buf(mp, mp->m_ddev_targp,
2618 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2621 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2622 bp, dq_f->qlf_blkno);
2626 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2629 * At least the magic num portion should be on disk because this
2630 * was among a chunk of dquots created earlier, and we did some
2631 * minimal initialization then.
2633 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2634 "xlog_recover_do_dquot_trans")) {
2636 return XFS_ERROR(EIO);
2639 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2641 ASSERT(dq_f->qlf_size == 2);
2642 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2643 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2644 XFS_BUF_SET_FSPRIVATE(bp, mp);
2645 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2646 xfs_bdwrite(mp, bp);
2652 * This routine is called to create an in-core extent free intent
2653 * item from the efi format structure which was logged on disk.
2654 * It allocates an in-core efi, copies the extents from the format
2655 * structure into it, and adds the efi to the AIL with the given
2659 xlog_recover_do_efi_trans(
2661 xlog_recover_item_t *item,
2667 xfs_efi_log_item_t *efip;
2668 xfs_efi_log_format_t *efi_formatp;
2670 if (pass == XLOG_RECOVER_PASS1) {
2674 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2677 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2678 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2679 &(efip->efi_format)))) {
2680 xfs_efi_item_free(efip);
2683 efip->efi_next_extent = efi_formatp->efi_nextents;
2684 efip->efi_flags |= XFS_EFI_COMMITTED;
2686 spin_lock(&mp->m_ail_lock);
2688 * xfs_trans_update_ail() drops the AIL lock.
2690 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn);
2696 * This routine is called when an efd format structure is found in
2697 * a committed transaction in the log. It's purpose is to cancel
2698 * the corresponding efi if it was still in the log. To do this
2699 * it searches the AIL for the efi with an id equal to that in the
2700 * efd format structure. If we find it, we remove the efi from the
2704 xlog_recover_do_efd_trans(
2706 xlog_recover_item_t *item,
2710 xfs_efd_log_format_t *efd_formatp;
2711 xfs_efi_log_item_t *efip = NULL;
2712 xfs_log_item_t *lip;
2716 if (pass == XLOG_RECOVER_PASS1) {
2720 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2721 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2722 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2723 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2724 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2725 efi_id = efd_formatp->efd_efi_id;
2728 * Search for the efi with the id in the efd format structure
2732 spin_lock(&mp->m_ail_lock);
2733 lip = xfs_trans_first_ail(mp, &gen);
2734 while (lip != NULL) {
2735 if (lip->li_type == XFS_LI_EFI) {
2736 efip = (xfs_efi_log_item_t *)lip;
2737 if (efip->efi_format.efi_id == efi_id) {
2739 * xfs_trans_delete_ail() drops the
2742 xfs_trans_delete_ail(mp, lip);
2743 xfs_efi_item_free(efip);
2747 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2749 spin_unlock(&mp->m_ail_lock);
2753 * Perform the transaction
2755 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2756 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2759 xlog_recover_do_trans(
2761 xlog_recover_t *trans,
2765 xlog_recover_item_t *item, *first_item;
2767 if ((error = xlog_recover_reorder_trans(trans)))
2769 first_item = item = trans->r_itemq;
2772 * we don't need to worry about the block number being
2773 * truncated in > 1 TB buffers because in user-land,
2774 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2775 * the blknos will get through the user-mode buffer
2776 * cache properly. The only bad case is o32 kernels
2777 * where xfs_daddr_t is 32-bits but mount will warn us
2778 * off a > 1 TB filesystem before we get here.
2780 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2781 if ((error = xlog_recover_do_buffer_trans(log, item,
2784 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2785 if ((error = xlog_recover_do_inode_trans(log, item,
2788 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2789 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2792 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2793 xlog_recover_do_efd_trans(log, item, pass);
2794 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2795 if ((error = xlog_recover_do_dquot_trans(log, item,
2798 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2799 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2803 xlog_warn("XFS: xlog_recover_do_trans");
2805 error = XFS_ERROR(EIO);
2808 item = item->ri_next;
2809 } while (first_item != item);
2815 * Free up any resources allocated by the transaction
2817 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2820 xlog_recover_free_trans(
2821 xlog_recover_t *trans)
2823 xlog_recover_item_t *first_item, *item, *free_item;
2826 item = first_item = trans->r_itemq;
2829 item = item->ri_next;
2830 /* Free the regions in the item. */
2831 for (i = 0; i < free_item->ri_cnt; i++) {
2832 kmem_free(free_item->ri_buf[i].i_addr);
2834 /* Free the item itself */
2835 kmem_free(free_item->ri_buf);
2836 kmem_free(free_item);
2837 } while (first_item != item);
2838 /* Free the transaction recover structure */
2843 xlog_recover_commit_trans(
2846 xlog_recover_t *trans,
2851 if ((error = xlog_recover_unlink_tid(q, trans)))
2853 if ((error = xlog_recover_do_trans(log, trans, pass)))
2855 xlog_recover_free_trans(trans); /* no error */
2860 xlog_recover_unmount_trans(
2861 xlog_recover_t *trans)
2863 /* Do nothing now */
2864 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2869 * There are two valid states of the r_state field. 0 indicates that the
2870 * transaction structure is in a normal state. We have either seen the
2871 * start of the transaction or the last operation we added was not a partial
2872 * operation. If the last operation we added to the transaction was a
2873 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2875 * NOTE: skip LRs with 0 data length.
2878 xlog_recover_process_data(
2880 xlog_recover_t *rhash[],
2881 xlog_rec_header_t *rhead,
2887 xlog_op_header_t *ohead;
2888 xlog_recover_t *trans;
2894 lp = dp + be32_to_cpu(rhead->h_len);
2895 num_logops = be32_to_cpu(rhead->h_num_logops);
2897 /* check the log format matches our own - else we can't recover */
2898 if (xlog_header_check_recover(log->l_mp, rhead))
2899 return (XFS_ERROR(EIO));
2901 while ((dp < lp) && num_logops) {
2902 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2903 ohead = (xlog_op_header_t *)dp;
2904 dp += sizeof(xlog_op_header_t);
2905 if (ohead->oh_clientid != XFS_TRANSACTION &&
2906 ohead->oh_clientid != XFS_LOG) {
2908 "XFS: xlog_recover_process_data: bad clientid");
2910 return (XFS_ERROR(EIO));
2912 tid = be32_to_cpu(ohead->oh_tid);
2913 hash = XLOG_RHASH(tid);
2914 trans = xlog_recover_find_tid(rhash[hash], tid);
2915 if (trans == NULL) { /* not found; add new tid */
2916 if (ohead->oh_flags & XLOG_START_TRANS)
2917 xlog_recover_new_tid(&rhash[hash], tid,
2918 be64_to_cpu(rhead->h_lsn));
2920 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2922 "XFS: xlog_recover_process_data: bad length");
2924 return (XFS_ERROR(EIO));
2926 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2927 if (flags & XLOG_WAS_CONT_TRANS)
2928 flags &= ~XLOG_CONTINUE_TRANS;
2930 case XLOG_COMMIT_TRANS:
2931 error = xlog_recover_commit_trans(log,
2932 &rhash[hash], trans, pass);
2934 case XLOG_UNMOUNT_TRANS:
2935 error = xlog_recover_unmount_trans(trans);
2937 case XLOG_WAS_CONT_TRANS:
2938 error = xlog_recover_add_to_cont_trans(trans,
2939 dp, be32_to_cpu(ohead->oh_len));
2941 case XLOG_START_TRANS:
2943 "XFS: xlog_recover_process_data: bad transaction");
2945 error = XFS_ERROR(EIO);
2948 case XLOG_CONTINUE_TRANS:
2949 error = xlog_recover_add_to_trans(trans,
2950 dp, be32_to_cpu(ohead->oh_len));
2954 "XFS: xlog_recover_process_data: bad flag");
2956 error = XFS_ERROR(EIO);
2962 dp += be32_to_cpu(ohead->oh_len);
2969 * Process an extent free intent item that was recovered from
2970 * the log. We need to free the extents that it describes.
2973 xlog_recover_process_efi(
2975 xfs_efi_log_item_t *efip)
2977 xfs_efd_log_item_t *efdp;
2982 xfs_fsblock_t startblock_fsb;
2984 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2987 * First check the validity of the extents described by the
2988 * EFI. If any are bad, then assume that all are bad and
2989 * just toss the EFI.
2991 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2992 extp = &(efip->efi_format.efi_extents[i]);
2993 startblock_fsb = XFS_BB_TO_FSB(mp,
2994 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2995 if ((startblock_fsb == 0) ||
2996 (extp->ext_len == 0) ||
2997 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2998 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3000 * This will pull the EFI from the AIL and
3001 * free the memory associated with it.
3003 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3004 return XFS_ERROR(EIO);
3008 tp = xfs_trans_alloc(mp, 0);
3009 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3012 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3014 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3015 extp = &(efip->efi_format.efi_extents[i]);
3016 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3019 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3023 efip->efi_flags |= XFS_EFI_RECOVERED;
3024 error = xfs_trans_commit(tp, 0);
3028 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3033 * Verify that once we've encountered something other than an EFI
3034 * in the AIL that there are no more EFIs in the AIL.
3038 xlog_recover_check_ail(
3040 xfs_log_item_t *lip,
3046 ASSERT(lip->li_type != XFS_LI_EFI);
3047 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3049 * The check will be bogus if we restart from the
3050 * beginning of the AIL, so ASSERT that we don't.
3051 * We never should since we're holding the AIL lock
3054 ASSERT(gen == orig_gen);
3055 } while (lip != NULL);
3060 * When this is called, all of the EFIs which did not have
3061 * corresponding EFDs should be in the AIL. What we do now
3062 * is free the extents associated with each one.
3064 * Since we process the EFIs in normal transactions, they
3065 * will be removed at some point after the commit. This prevents
3066 * us from just walking down the list processing each one.
3067 * We'll use a flag in the EFI to skip those that we've already
3068 * processed and use the AIL iteration mechanism's generation
3069 * count to try to speed this up at least a bit.
3071 * When we start, we know that the EFIs are the only things in
3072 * the AIL. As we process them, however, other items are added
3073 * to the AIL. Since everything added to the AIL must come after
3074 * everything already in the AIL, we stop processing as soon as
3075 * we see something other than an EFI in the AIL.
3078 xlog_recover_process_efis(
3081 xfs_log_item_t *lip;
3082 xfs_efi_log_item_t *efip;
3088 spin_lock(&mp->m_ail_lock);
3090 lip = xfs_trans_first_ail(mp, &gen);
3091 while (lip != NULL) {
3093 * We're done when we see something other than an EFI.
3095 if (lip->li_type != XFS_LI_EFI) {
3096 xlog_recover_check_ail(mp, lip, gen);
3101 * Skip EFIs that we've already processed.
3103 efip = (xfs_efi_log_item_t *)lip;
3104 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3105 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3109 spin_unlock(&mp->m_ail_lock);
3110 error = xlog_recover_process_efi(mp, efip);
3113 spin_lock(&mp->m_ail_lock);
3114 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3116 spin_unlock(&mp->m_ail_lock);
3121 * This routine performs a transaction to null out a bad inode pointer
3122 * in an agi unlinked inode hash bucket.
3125 xlog_recover_clear_agi_bucket(
3127 xfs_agnumber_t agno,
3136 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3137 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3139 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3140 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3141 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3146 agi = XFS_BUF_TO_AGI(agibp);
3147 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC)
3150 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3151 offset = offsetof(xfs_agi_t, agi_unlinked) +
3152 (sizeof(xfs_agino_t) * bucket);
3153 xfs_trans_log_buf(tp, agibp, offset,
3154 (offset + sizeof(xfs_agino_t) - 1));
3156 error = xfs_trans_commit(tp, 0);
3162 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3164 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3165 "failed to clear agi %d. Continuing.", agno);
3170 * xlog_iunlink_recover
3172 * This is called during recovery to process any inodes which
3173 * we unlinked but not freed when the system crashed. These
3174 * inodes will be on the lists in the AGI blocks. What we do
3175 * here is scan all the AGIs and fully truncate and free any
3176 * inodes found on the lists. Each inode is removed from the
3177 * lists when it has been fully truncated and is freed. The
3178 * freeing of the inode and its removal from the list must be
3182 xlog_recover_process_iunlinks(
3186 xfs_agnumber_t agno;
3201 * Prevent any DMAPI event from being sent while in this function.
3203 mp_dmevmask = mp->m_dmevmask;
3206 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3208 * Find the agi for this ag.
3210 agibp = xfs_buf_read(mp->m_ddev_targp,
3211 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3212 XFS_FSS_TO_BB(mp, 1), 0);
3213 if (XFS_BUF_ISERROR(agibp)) {
3214 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3216 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3218 agi = XFS_BUF_TO_AGI(agibp);
3219 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3221 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3223 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3224 while (agino != NULLAGINO) {
3227 * Release the agi buffer so that it can
3228 * be acquired in the normal course of the
3229 * transaction to truncate and free the inode.
3231 xfs_buf_relse(agibp);
3233 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3234 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3235 ASSERT(error || (ip != NULL));
3239 * Get the on disk inode to find the
3240 * next inode in the bucket.
3242 error = xfs_itobp(mp, NULL, ip, &dip,
3245 ASSERT(error || (dip != NULL));
3249 ASSERT(ip->i_d.di_nlink == 0);
3251 /* setup for the next pass */
3252 agino = be32_to_cpu(
3253 dip->di_next_unlinked);
3256 * Prevent any DMAPI event from
3257 * being sent when the
3258 * reference on the inode is
3261 ip->i_d.di_dmevmask = 0;
3264 * If this is a new inode, handle
3265 * it specially. Otherwise,
3266 * just drop our reference to the
3267 * inode. If there are no
3268 * other references, this will
3270 * xfs_inactive() which will
3271 * truncate the file and free
3274 if (ip->i_d.di_mode == 0)
3275 xfs_iput_new(ip, 0);
3280 * We can't read in the inode
3281 * this bucket points to, or
3282 * this inode is messed up. Just
3283 * ditch this bucket of inodes. We
3284 * will lose some inodes and space,
3285 * but at least we won't hang. Call
3286 * xlog_recover_clear_agi_bucket()
3287 * to perform a transaction to clear
3288 * the inode pointer in the bucket.
3290 xlog_recover_clear_agi_bucket(mp, agno,
3297 * Reacquire the agibuffer and continue around
3300 agibp = xfs_buf_read(mp->m_ddev_targp,
3301 XFS_AG_DADDR(mp, agno,
3303 XFS_FSS_TO_BB(mp, 1), 0);
3304 if (XFS_BUF_ISERROR(agibp)) {
3306 "xlog_recover_process_iunlinks(#2)",
3308 XFS_AG_DADDR(mp, agno,
3309 XFS_AGI_DADDR(mp)));
3311 agi = XFS_BUF_TO_AGI(agibp);
3312 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3313 agi->agi_magicnum));
3318 * Release the buffer for the current agi so we can
3319 * go on to the next one.
3321 xfs_buf_relse(agibp);
3324 mp->m_dmevmask = mp_dmevmask;
3330 xlog_pack_data_checksum(
3332 xlog_in_core_t *iclog,
3339 up = (__be32 *)iclog->ic_datap;
3340 /* divide length by 4 to get # words */
3341 for (i = 0; i < (size >> 2); i++) {
3342 chksum ^= be32_to_cpu(*up);
3345 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3348 #define xlog_pack_data_checksum(log, iclog, size)
3352 * Stamp cycle number in every block
3357 xlog_in_core_t *iclog,
3361 int size = iclog->ic_offset + roundoff;
3364 xlog_in_core_2_t *xhdr;
3366 xlog_pack_data_checksum(log, iclog, size);
3368 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3370 dp = iclog->ic_datap;
3371 for (i = 0; i < BTOBB(size) &&
3372 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3373 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3374 *(__be32 *)dp = cycle_lsn;
3378 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3379 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3380 for ( ; i < BTOBB(size); i++) {
3381 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3382 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3383 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3384 *(__be32 *)dp = cycle_lsn;
3388 for (i = 1; i < log->l_iclog_heads; i++) {
3389 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3394 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3396 xlog_unpack_data_checksum(
3397 xlog_rec_header_t *rhead,
3401 __be32 *up = (__be32 *)dp;
3405 /* divide length by 4 to get # words */
3406 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3407 chksum ^= be32_to_cpu(*up);
3410 if (chksum != be32_to_cpu(rhead->h_chksum)) {
3411 if (rhead->h_chksum ||
3412 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3414 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3415 be32_to_cpu(rhead->h_chksum), chksum);
3417 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3418 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3420 "XFS: LogR this is a LogV2 filesystem\n");
3422 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3427 #define xlog_unpack_data_checksum(rhead, dp, log)
3432 xlog_rec_header_t *rhead,
3437 xlog_in_core_2_t *xhdr;
3439 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3440 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3441 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3445 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3446 xhdr = (xlog_in_core_2_t *)rhead;
3447 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3448 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3449 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3450 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3455 xlog_unpack_data_checksum(rhead, dp, log);
3459 xlog_valid_rec_header(
3461 xlog_rec_header_t *rhead,
3466 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3467 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3468 XFS_ERRLEVEL_LOW, log->l_mp);
3469 return XFS_ERROR(EFSCORRUPTED);
3472 (!rhead->h_version ||
3473 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3474 xlog_warn("XFS: %s: unrecognised log version (%d).",
3475 __func__, be32_to_cpu(rhead->h_version));
3476 return XFS_ERROR(EIO);
3479 /* LR body must have data or it wouldn't have been written */
3480 hlen = be32_to_cpu(rhead->h_len);
3481 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3482 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3483 XFS_ERRLEVEL_LOW, log->l_mp);
3484 return XFS_ERROR(EFSCORRUPTED);
3486 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3487 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3488 XFS_ERRLEVEL_LOW, log->l_mp);
3489 return XFS_ERROR(EFSCORRUPTED);
3495 * Read the log from tail to head and process the log records found.
3496 * Handle the two cases where the tail and head are in the same cycle
3497 * and where the active portion of the log wraps around the end of
3498 * the physical log separately. The pass parameter is passed through
3499 * to the routines called to process the data and is not looked at
3503 xlog_do_recovery_pass(
3505 xfs_daddr_t head_blk,
3506 xfs_daddr_t tail_blk,
3509 xlog_rec_header_t *rhead;
3511 xfs_caddr_t bufaddr, offset;
3512 xfs_buf_t *hbp, *dbp;
3513 int error = 0, h_size;
3514 int bblks, split_bblks;
3515 int hblks, split_hblks, wrapped_hblks;
3516 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3518 ASSERT(head_blk != tail_blk);
3521 * Read the header of the tail block and get the iclog buffer size from
3522 * h_size. Use this to tell how many sectors make up the log header.
3524 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3526 * When using variable length iclogs, read first sector of
3527 * iclog header and extract the header size from it. Get a
3528 * new hbp that is the correct size.
3530 hbp = xlog_get_bp(log, 1);
3533 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3535 offset = xlog_align(log, tail_blk, 1, hbp);
3536 rhead = (xlog_rec_header_t *)offset;
3537 error = xlog_valid_rec_header(log, rhead, tail_blk);
3540 h_size = be32_to_cpu(rhead->h_size);
3541 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3542 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3543 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3544 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3547 hbp = xlog_get_bp(log, hblks);
3552 ASSERT(log->l_sectbb_log == 0);
3554 hbp = xlog_get_bp(log, 1);
3555 h_size = XLOG_BIG_RECORD_BSIZE;
3560 dbp = xlog_get_bp(log, BTOBB(h_size));
3566 memset(rhash, 0, sizeof(rhash));
3567 if (tail_blk <= head_blk) {
3568 for (blk_no = tail_blk; blk_no < head_blk; ) {
3569 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3571 offset = xlog_align(log, blk_no, hblks, hbp);
3572 rhead = (xlog_rec_header_t *)offset;
3573 error = xlog_valid_rec_header(log, rhead, blk_no);
3577 /* blocks in data section */
3578 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3579 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3582 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3583 xlog_unpack_data(rhead, offset, log);
3584 if ((error = xlog_recover_process_data(log,
3585 rhash, rhead, offset, pass)))
3587 blk_no += bblks + hblks;
3591 * Perform recovery around the end of the physical log.
3592 * When the head is not on the same cycle number as the tail,
3593 * we can't do a sequential recovery as above.
3596 while (blk_no < log->l_logBBsize) {
3598 * Check for header wrapping around physical end-of-log
3603 if (blk_no + hblks <= log->l_logBBsize) {
3604 /* Read header in one read */
3605 error = xlog_bread(log, blk_no, hblks, hbp);
3608 offset = xlog_align(log, blk_no, hblks, hbp);
3610 /* This LR is split across physical log end */
3611 if (blk_no != log->l_logBBsize) {
3612 /* some data before physical log end */
3613 ASSERT(blk_no <= INT_MAX);
3614 split_hblks = log->l_logBBsize - (int)blk_no;
3615 ASSERT(split_hblks > 0);
3616 if ((error = xlog_bread(log, blk_no,
3619 offset = xlog_align(log, blk_no,
3623 * Note: this black magic still works with
3624 * large sector sizes (non-512) only because:
3625 * - we increased the buffer size originally
3626 * by 1 sector giving us enough extra space
3627 * for the second read;
3628 * - the log start is guaranteed to be sector
3630 * - we read the log end (LR header start)
3631 * _first_, then the log start (LR header end)
3632 * - order is important.
3634 wrapped_hblks = hblks - split_hblks;
3635 bufaddr = XFS_BUF_PTR(hbp);
3636 error = XFS_BUF_SET_PTR(hbp,
3637 bufaddr + BBTOB(split_hblks),
3638 BBTOB(hblks - split_hblks));
3640 error = xlog_bread(log, 0,
3641 wrapped_hblks, hbp);
3643 error = XFS_BUF_SET_PTR(hbp, bufaddr,
3648 offset = xlog_align(log, 0,
3649 wrapped_hblks, hbp);
3651 rhead = (xlog_rec_header_t *)offset;
3652 error = xlog_valid_rec_header(log, rhead,
3653 split_hblks ? blk_no : 0);
3657 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3660 /* Read in data for log record */
3661 if (blk_no + bblks <= log->l_logBBsize) {
3662 error = xlog_bread(log, blk_no, bblks, dbp);
3665 offset = xlog_align(log, blk_no, bblks, dbp);
3667 /* This log record is split across the
3668 * physical end of log */
3671 if (blk_no != log->l_logBBsize) {
3672 /* some data is before the physical
3674 ASSERT(!wrapped_hblks);
3675 ASSERT(blk_no <= INT_MAX);
3677 log->l_logBBsize - (int)blk_no;
3678 ASSERT(split_bblks > 0);
3679 if ((error = xlog_bread(log, blk_no,
3682 offset = xlog_align(log, blk_no,
3686 * Note: this black magic still works with
3687 * large sector sizes (non-512) only because:
3688 * - we increased the buffer size originally
3689 * by 1 sector giving us enough extra space
3690 * for the second read;
3691 * - the log start is guaranteed to be sector
3693 * - we read the log end (LR header start)
3694 * _first_, then the log start (LR header end)
3695 * - order is important.
3697 bufaddr = XFS_BUF_PTR(dbp);
3698 error = XFS_BUF_SET_PTR(dbp,
3699 bufaddr + BBTOB(split_bblks),
3700 BBTOB(bblks - split_bblks));
3702 error = xlog_bread(log, wrapped_hblks,
3703 bblks - split_bblks,
3706 error = XFS_BUF_SET_PTR(dbp, bufaddr,
3711 offset = xlog_align(log, wrapped_hblks,
3712 bblks - split_bblks, dbp);
3714 xlog_unpack_data(rhead, offset, log);
3715 if ((error = xlog_recover_process_data(log, rhash,
3716 rhead, offset, pass)))
3721 ASSERT(blk_no >= log->l_logBBsize);
3722 blk_no -= log->l_logBBsize;
3724 /* read first part of physical log */
3725 while (blk_no < head_blk) {
3726 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3728 offset = xlog_align(log, blk_no, hblks, hbp);
3729 rhead = (xlog_rec_header_t *)offset;
3730 error = xlog_valid_rec_header(log, rhead, blk_no);
3733 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3734 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3736 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3737 xlog_unpack_data(rhead, offset, log);
3738 if ((error = xlog_recover_process_data(log, rhash,
3739 rhead, offset, pass)))
3741 blk_no += bblks + hblks;
3753 * Do the recovery of the log. We actually do this in two phases.
3754 * The two passes are necessary in order to implement the function
3755 * of cancelling a record written into the log. The first pass
3756 * determines those things which have been cancelled, and the
3757 * second pass replays log items normally except for those which
3758 * have been cancelled. The handling of the replay and cancellations
3759 * takes place in the log item type specific routines.
3761 * The table of items which have cancel records in the log is allocated
3762 * and freed at this level, since only here do we know when all of
3763 * the log recovery has been completed.
3766 xlog_do_log_recovery(
3768 xfs_daddr_t head_blk,
3769 xfs_daddr_t tail_blk)
3773 ASSERT(head_blk != tail_blk);
3776 * First do a pass to find all of the cancelled buf log items.
3777 * Store them in the buf_cancel_table for use in the second pass.
3779 log->l_buf_cancel_table =
3780 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3781 sizeof(xfs_buf_cancel_t*),
3783 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3784 XLOG_RECOVER_PASS1);
3786 kmem_free(log->l_buf_cancel_table);
3787 log->l_buf_cancel_table = NULL;
3791 * Then do a second pass to actually recover the items in the log.
3792 * When it is complete free the table of buf cancel items.
3794 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3795 XLOG_RECOVER_PASS2);
3800 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3801 ASSERT(log->l_buf_cancel_table[i] == NULL);
3805 kmem_free(log->l_buf_cancel_table);
3806 log->l_buf_cancel_table = NULL;
3812 * Do the actual recovery
3817 xfs_daddr_t head_blk,
3818 xfs_daddr_t tail_blk)
3825 * First replay the images in the log.
3827 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3832 XFS_bflush(log->l_mp->m_ddev_targp);
3835 * If IO errors happened during recovery, bail out.
3837 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3842 * We now update the tail_lsn since much of the recovery has completed
3843 * and there may be space available to use. If there were no extent
3844 * or iunlinks, we can free up the entire log and set the tail_lsn to
3845 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3846 * lsn of the last known good LR on disk. If there are extent frees
3847 * or iunlinks they will have some entries in the AIL; so we look at
3848 * the AIL to determine how to set the tail_lsn.
3850 xlog_assign_tail_lsn(log->l_mp);
3853 * Now that we've finished replaying all buffer and inode
3854 * updates, re-read in the superblock.
3856 bp = xfs_getsb(log->l_mp, 0);
3858 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3859 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3861 XFS_BUF_UNASYNC(bp);
3862 xfsbdstrat(log->l_mp, bp);
3863 error = xfs_iowait(bp);
3865 xfs_ioerror_alert("xlog_do_recover",
3866 log->l_mp, bp, XFS_BUF_ADDR(bp));
3872 /* Convert superblock from on-disk format */
3873 sbp = &log->l_mp->m_sb;
3874 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3875 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3876 ASSERT(xfs_sb_good_version(sbp));
3879 /* We've re-read the superblock so re-initialize per-cpu counters */
3880 xfs_icsb_reinit_counters(log->l_mp);
3882 xlog_recover_check_summary(log);
3884 /* Normal transactions can now occur */
3885 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3890 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3892 * Return error or zero.
3898 xfs_daddr_t head_blk, tail_blk;
3901 /* find the tail of the log */
3902 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3905 if (tail_blk != head_blk) {
3906 /* There used to be a comment here:
3908 * disallow recovery on read-only mounts. note -- mount
3909 * checks for ENOSPC and turns it into an intelligent
3911 * ...but this is no longer true. Now, unless you specify
3912 * NORECOVERY (in which case this function would never be
3913 * called), we just go ahead and recover. We do this all
3914 * under the vfs layer, so we can get away with it unless
3915 * the device itself is read-only, in which case we fail.
3917 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3922 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3923 log->l_mp->m_fsname, log->l_mp->m_logname ?
3924 log->l_mp->m_logname : "internal");
3926 error = xlog_do_recover(log, head_blk, tail_blk);
3927 log->l_flags |= XLOG_RECOVERY_NEEDED;
3933 * In the first part of recovery we replay inodes and buffers and build
3934 * up the list of extent free items which need to be processed. Here
3935 * we process the extent free items and clean up the on disk unlinked
3936 * inode lists. This is separated from the first part of recovery so
3937 * that the root and real-time bitmap inodes can be read in from disk in
3938 * between the two stages. This is necessary so that we can free space
3939 * in the real-time portion of the file system.
3942 xlog_recover_finish(
3946 * Now we're ready to do the transactions needed for the
3947 * rest of recovery. Start with completing all the extent
3948 * free intent records and then process the unlinked inode
3949 * lists. At this point, we essentially run in normal mode
3950 * except that we're still performing recovery actions
3951 * rather than accepting new requests.
3953 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3955 error = xlog_recover_process_efis(log);
3958 "Failed to recover EFIs on filesystem: %s",
3959 log->l_mp->m_fsname);
3963 * Sync the log to get all the EFIs out of the AIL.
3964 * This isn't absolutely necessary, but it helps in
3965 * case the unlink transactions would have problems
3966 * pushing the EFIs out of the way.
3968 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3969 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3971 xlog_recover_process_iunlinks(log);
3973 xlog_recover_check_summary(log);
3976 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3977 log->l_mp->m_fsname, log->l_mp->m_logname ?
3978 log->l_mp->m_logname : "internal");
3979 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3982 "!Ending clean XFS mount for filesystem: %s\n",
3983 log->l_mp->m_fsname);
3991 * Read all of the agf and agi counters and check that they
3992 * are consistent with the superblock counters.
3995 xlog_recover_check_summary(
4003 xfs_daddr_t agfdaddr;
4004 xfs_daddr_t agidaddr;
4006 #ifdef XFS_LOUD_RECOVERY
4009 xfs_agnumber_t agno;
4010 __uint64_t freeblks;
4019 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4020 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4021 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4022 XFS_FSS_TO_BB(mp, 1), 0);
4023 if (XFS_BUF_ISERROR(agfbp)) {
4024 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4025 mp, agfbp, agfdaddr);
4027 agfp = XFS_BUF_TO_AGF(agfbp);
4028 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4029 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4030 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4032 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4033 be32_to_cpu(agfp->agf_flcount);
4034 xfs_buf_relse(agfbp);
4036 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4037 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4038 XFS_FSS_TO_BB(mp, 1), 0);
4039 if (XFS_BUF_ISERROR(agibp)) {
4040 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4041 mp, agibp, agidaddr);
4043 agip = XFS_BUF_TO_AGI(agibp);
4044 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4045 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4046 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4048 itotal += be32_to_cpu(agip->agi_count);
4049 ifree += be32_to_cpu(agip->agi_freecount);
4050 xfs_buf_relse(agibp);
4053 sbbp = xfs_getsb(mp, 0);
4054 #ifdef XFS_LOUD_RECOVERY
4056 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4058 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4059 sbp->sb_icount, itotal);
4061 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4062 sbp->sb_ifree, ifree);
4064 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4065 sbp->sb_fdblocks, freeblks);
4068 * This is turned off until I account for the allocation
4069 * btree blocks which live in free space.
4071 ASSERT(sbp->sb_icount == itotal);
4072 ASSERT(sbp->sb_ifree == ifree);
4073 ASSERT(sbp->sb_fdblocks == freeblks);
4076 xfs_buf_relse(sbbp);