2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
92 #include <net/compat.h>
96 #include <linux/netfilter.h>
98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
99 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
102 unsigned long nr_segs, loff_t pos);
103 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
105 static int sock_close(struct inode *inode, struct file *file);
106 static unsigned int sock_poll(struct file *file,
107 struct poll_table_struct *wait);
108 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
110 static long compat_sock_ioctl(struct file *file,
111 unsigned int cmd, unsigned long arg);
113 static int sock_fasync(int fd, struct file *filp, int on);
114 static ssize_t sock_sendpage(struct file *file, struct page *page,
115 int offset, size_t size, loff_t *ppos, int more);
116 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
117 struct pipe_inode_info *pipe, size_t len,
121 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
122 * in the operation structures but are done directly via the socketcall() multiplexor.
125 static const struct file_operations socket_file_ops = {
126 .owner = THIS_MODULE,
128 .aio_read = sock_aio_read,
129 .aio_write = sock_aio_write,
131 .unlocked_ioctl = sock_ioctl,
133 .compat_ioctl = compat_sock_ioctl,
136 .open = sock_no_open, /* special open code to disallow open via /proc */
137 .release = sock_close,
138 .fasync = sock_fasync,
139 .sendpage = sock_sendpage,
140 .splice_write = generic_splice_sendpage,
141 .splice_read = sock_splice_read,
145 * The protocol list. Each protocol is registered in here.
148 static DEFINE_SPINLOCK(net_family_lock);
149 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
152 * Statistics counters of the socket lists
155 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
159 * Move socket addresses back and forth across the kernel/user
160 * divide and look after the messy bits.
163 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
164 16 for IP, 16 for IPX,
167 must be at least one bigger than
168 the AF_UNIX size (see net/unix/af_unix.c
173 * move_addr_to_kernel - copy a socket address into kernel space
174 * @uaddr: Address in user space
175 * @kaddr: Address in kernel space
176 * @ulen: Length in user space
178 * The address is copied into kernel space. If the provided address is
179 * too long an error code of -EINVAL is returned. If the copy gives
180 * invalid addresses -EFAULT is returned. On a success 0 is returned.
183 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
185 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
189 if (copy_from_user(kaddr, uaddr, ulen))
191 return audit_sockaddr(ulen, kaddr);
195 * move_addr_to_user - copy an address to user space
196 * @kaddr: kernel space address
197 * @klen: length of address in kernel
198 * @uaddr: user space address
199 * @ulen: pointer to user length field
201 * The value pointed to by ulen on entry is the buffer length available.
202 * This is overwritten with the buffer space used. -EINVAL is returned
203 * if an overlong buffer is specified or a negative buffer size. -EFAULT
204 * is returned if either the buffer or the length field are not
206 * After copying the data up to the limit the user specifies, the true
207 * length of the data is written over the length limit the user
208 * specified. Zero is returned for a success.
211 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
217 err = get_user(len, ulen);
222 if (len < 0 || len > MAX_SOCK_ADDR)
225 if (audit_sockaddr(klen, kaddr))
227 if (copy_to_user(uaddr, kaddr, len))
231 * "fromlen shall refer to the value before truncation.."
234 return __put_user(klen, ulen);
237 #define SOCKFS_MAGIC 0x534F434B
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
241 static struct inode *sock_alloc_inode(struct super_block *sb)
243 struct socket_alloc *ei;
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248 init_waitqueue_head(&ei->socket.wait);
250 ei->socket.fasync_list = NULL;
251 ei->socket.state = SS_UNCONNECTED;
252 ei->socket.flags = 0;
253 ei->socket.ops = NULL;
254 ei->socket.sk = NULL;
255 ei->socket.file = NULL;
257 return &ei->vfs_inode;
260 static void sock_destroy_inode(struct inode *inode)
262 kmem_cache_free(sock_inode_cachep,
263 container_of(inode, struct socket_alloc, vfs_inode));
266 static void init_once(struct kmem_cache *cachep, void *foo)
268 struct socket_alloc *ei = (struct socket_alloc *)foo;
270 inode_init_once(&ei->vfs_inode);
273 static int init_inodecache(void)
275 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
276 sizeof(struct socket_alloc),
278 (SLAB_HWCACHE_ALIGN |
279 SLAB_RECLAIM_ACCOUNT |
282 if (sock_inode_cachep == NULL)
287 static struct super_operations sockfs_ops = {
288 .alloc_inode = sock_alloc_inode,
289 .destroy_inode =sock_destroy_inode,
290 .statfs = simple_statfs,
293 static int sockfs_get_sb(struct file_system_type *fs_type,
294 int flags, const char *dev_name, void *data,
295 struct vfsmount *mnt)
297 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
301 static struct vfsmount *sock_mnt __read_mostly;
303 static struct file_system_type sock_fs_type = {
305 .get_sb = sockfs_get_sb,
306 .kill_sb = kill_anon_super,
309 static int sockfs_delete_dentry(struct dentry *dentry)
312 * At creation time, we pretended this dentry was hashed
313 * (by clearing DCACHE_UNHASHED bit in d_flags)
314 * At delete time, we restore the truth : not hashed.
315 * (so that dput() can proceed correctly)
317 dentry->d_flags |= DCACHE_UNHASHED;
322 * sockfs_dname() is called from d_path().
324 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
326 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
327 dentry->d_inode->i_ino);
330 static struct dentry_operations sockfs_dentry_operations = {
331 .d_delete = sockfs_delete_dentry,
332 .d_dname = sockfs_dname,
336 * Obtains the first available file descriptor and sets it up for use.
338 * These functions create file structures and maps them to fd space
339 * of the current process. On success it returns file descriptor
340 * and file struct implicitly stored in sock->file.
341 * Note that another thread may close file descriptor before we return
342 * from this function. We use the fact that now we do not refer
343 * to socket after mapping. If one day we will need it, this
344 * function will increment ref. count on file by 1.
346 * In any case returned fd MAY BE not valid!
347 * This race condition is unavoidable
348 * with shared fd spaces, we cannot solve it inside kernel,
349 * but we take care of internal coherence yet.
352 static int sock_alloc_fd(struct file **filep)
356 fd = get_unused_fd();
357 if (likely(fd >= 0)) {
358 struct file *file = get_empty_filp();
361 if (unlikely(!file)) {
370 static int sock_attach_fd(struct socket *sock, struct file *file)
372 struct dentry *dentry;
373 struct qstr name = { .name = "" };
375 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
376 if (unlikely(!dentry))
379 dentry->d_op = &sockfs_dentry_operations;
381 * We dont want to push this dentry into global dentry hash table.
382 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
383 * This permits a working /proc/$pid/fd/XXX on sockets
385 dentry->d_flags &= ~DCACHE_UNHASHED;
386 d_instantiate(dentry, SOCK_INODE(sock));
389 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
391 SOCK_INODE(sock)->i_fop = &socket_file_ops;
392 file->f_flags = O_RDWR;
394 file->private_data = sock;
399 int sock_map_fd(struct socket *sock)
401 struct file *newfile;
402 int fd = sock_alloc_fd(&newfile);
404 if (likely(fd >= 0)) {
405 int err = sock_attach_fd(sock, newfile);
407 if (unlikely(err < 0)) {
412 fd_install(fd, newfile);
417 static struct socket *sock_from_file(struct file *file, int *err)
419 if (file->f_op == &socket_file_ops)
420 return file->private_data; /* set in sock_map_fd */
427 * sockfd_lookup - Go from a file number to its socket slot
429 * @err: pointer to an error code return
431 * The file handle passed in is locked and the socket it is bound
432 * too is returned. If an error occurs the err pointer is overwritten
433 * with a negative errno code and NULL is returned. The function checks
434 * for both invalid handles and passing a handle which is not a socket.
436 * On a success the socket object pointer is returned.
439 struct socket *sockfd_lookup(int fd, int *err)
450 sock = sock_from_file(file, err);
456 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
462 file = fget_light(fd, fput_needed);
464 sock = sock_from_file(file, err);
467 fput_light(file, *fput_needed);
473 * sock_alloc - allocate a socket
475 * Allocate a new inode and socket object. The two are bound together
476 * and initialised. The socket is then returned. If we are out of inodes
480 static struct socket *sock_alloc(void)
485 inode = new_inode(sock_mnt->mnt_sb);
489 sock = SOCKET_I(inode);
491 inode->i_mode = S_IFSOCK | S_IRWXUGO;
492 inode->i_uid = current->fsuid;
493 inode->i_gid = current->fsgid;
495 get_cpu_var(sockets_in_use)++;
496 put_cpu_var(sockets_in_use);
501 * In theory you can't get an open on this inode, but /proc provides
502 * a back door. Remember to keep it shut otherwise you'll let the
503 * creepy crawlies in.
506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
511 const struct file_operations bad_sock_fops = {
512 .owner = THIS_MODULE,
513 .open = sock_no_open,
517 * sock_release - close a socket
518 * @sock: socket to close
520 * The socket is released from the protocol stack if it has a release
521 * callback, and the inode is then released if the socket is bound to
522 * an inode not a file.
525 void sock_release(struct socket *sock)
528 struct module *owner = sock->ops->owner;
530 sock->ops->release(sock);
535 if (sock->fasync_list)
536 printk(KERN_ERR "sock_release: fasync list not empty!\n");
538 get_cpu_var(sockets_in_use)--;
539 put_cpu_var(sockets_in_use);
541 iput(SOCK_INODE(sock));
547 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
548 struct msghdr *msg, size_t size)
550 struct sock_iocb *si = kiocb_to_siocb(iocb);
558 err = security_socket_sendmsg(sock, msg, size);
562 return sock->ops->sendmsg(iocb, sock, msg, size);
565 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
568 struct sock_iocb siocb;
571 init_sync_kiocb(&iocb, NULL);
572 iocb.private = &siocb;
573 ret = __sock_sendmsg(&iocb, sock, msg, size);
574 if (-EIOCBQUEUED == ret)
575 ret = wait_on_sync_kiocb(&iocb);
579 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
580 struct kvec *vec, size_t num, size_t size)
582 mm_segment_t oldfs = get_fs();
587 * the following is safe, since for compiler definitions of kvec and
588 * iovec are identical, yielding the same in-core layout and alignment
590 msg->msg_iov = (struct iovec *)vec;
591 msg->msg_iovlen = num;
592 result = sock_sendmsg(sock, msg, size);
598 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
600 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
603 ktime_t kt = skb->tstamp;
605 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
607 /* Race occurred between timestamp enabling and packet
608 receiving. Fill in the current time for now. */
610 kt = ktime_get_real();
612 tv = ktime_to_timeval(kt);
613 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
616 /* Race occurred between timestamp enabling and packet
617 receiving. Fill in the current time for now. */
619 kt = ktime_get_real();
621 ts = ktime_to_timespec(kt);
622 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
626 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
628 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
629 struct msghdr *msg, size_t size, int flags)
632 struct sock_iocb *si = kiocb_to_siocb(iocb);
640 err = security_socket_recvmsg(sock, msg, size, flags);
644 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
647 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
648 size_t size, int flags)
651 struct sock_iocb siocb;
654 init_sync_kiocb(&iocb, NULL);
655 iocb.private = &siocb;
656 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
657 if (-EIOCBQUEUED == ret)
658 ret = wait_on_sync_kiocb(&iocb);
662 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
663 struct kvec *vec, size_t num, size_t size, int flags)
665 mm_segment_t oldfs = get_fs();
670 * the following is safe, since for compiler definitions of kvec and
671 * iovec are identical, yielding the same in-core layout and alignment
673 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
674 result = sock_recvmsg(sock, msg, size, flags);
679 static void sock_aio_dtor(struct kiocb *iocb)
681 kfree(iocb->private);
684 static ssize_t sock_sendpage(struct file *file, struct page *page,
685 int offset, size_t size, loff_t *ppos, int more)
690 sock = file->private_data;
692 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
696 return sock->ops->sendpage(sock, page, offset, size, flags);
699 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
700 struct pipe_inode_info *pipe, size_t len,
703 struct socket *sock = file->private_data;
705 if (unlikely(!sock->ops->splice_read))
708 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
711 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
712 struct sock_iocb *siocb)
714 if (!is_sync_kiocb(iocb)) {
715 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
718 iocb->ki_dtor = sock_aio_dtor;
722 iocb->private = siocb;
726 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
727 struct file *file, const struct iovec *iov,
728 unsigned long nr_segs)
730 struct socket *sock = file->private_data;
734 for (i = 0; i < nr_segs; i++)
735 size += iov[i].iov_len;
737 msg->msg_name = NULL;
738 msg->msg_namelen = 0;
739 msg->msg_control = NULL;
740 msg->msg_controllen = 0;
741 msg->msg_iov = (struct iovec *)iov;
742 msg->msg_iovlen = nr_segs;
743 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
745 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
748 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
749 unsigned long nr_segs, loff_t pos)
751 struct sock_iocb siocb, *x;
756 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
760 x = alloc_sock_iocb(iocb, &siocb);
763 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
766 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
767 struct file *file, const struct iovec *iov,
768 unsigned long nr_segs)
770 struct socket *sock = file->private_data;
774 for (i = 0; i < nr_segs; i++)
775 size += iov[i].iov_len;
777 msg->msg_name = NULL;
778 msg->msg_namelen = 0;
779 msg->msg_control = NULL;
780 msg->msg_controllen = 0;
781 msg->msg_iov = (struct iovec *)iov;
782 msg->msg_iovlen = nr_segs;
783 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
784 if (sock->type == SOCK_SEQPACKET)
785 msg->msg_flags |= MSG_EOR;
787 return __sock_sendmsg(iocb, sock, msg, size);
790 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
791 unsigned long nr_segs, loff_t pos)
793 struct sock_iocb siocb, *x;
798 x = alloc_sock_iocb(iocb, &siocb);
802 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
806 * Atomic setting of ioctl hooks to avoid race
807 * with module unload.
810 static DEFINE_MUTEX(br_ioctl_mutex);
811 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
813 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
815 mutex_lock(&br_ioctl_mutex);
816 br_ioctl_hook = hook;
817 mutex_unlock(&br_ioctl_mutex);
820 EXPORT_SYMBOL(brioctl_set);
822 static DEFINE_MUTEX(vlan_ioctl_mutex);
823 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
825 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
827 mutex_lock(&vlan_ioctl_mutex);
828 vlan_ioctl_hook = hook;
829 mutex_unlock(&vlan_ioctl_mutex);
832 EXPORT_SYMBOL(vlan_ioctl_set);
834 static DEFINE_MUTEX(dlci_ioctl_mutex);
835 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
837 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
839 mutex_lock(&dlci_ioctl_mutex);
840 dlci_ioctl_hook = hook;
841 mutex_unlock(&dlci_ioctl_mutex);
844 EXPORT_SYMBOL(dlci_ioctl_set);
847 * With an ioctl, arg may well be a user mode pointer, but we don't know
848 * what to do with it - that's up to the protocol still.
851 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
855 void __user *argp = (void __user *)arg;
859 sock = file->private_data;
862 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
863 err = dev_ioctl(net, cmd, argp);
865 #ifdef CONFIG_WIRELESS_EXT
866 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
867 err = dev_ioctl(net, cmd, argp);
869 #endif /* CONFIG_WIRELESS_EXT */
874 if (get_user(pid, (int __user *)argp))
876 err = f_setown(sock->file, pid, 1);
880 err = put_user(f_getown(sock->file),
889 request_module("bridge");
891 mutex_lock(&br_ioctl_mutex);
893 err = br_ioctl_hook(net, cmd, argp);
894 mutex_unlock(&br_ioctl_mutex);
899 if (!vlan_ioctl_hook)
900 request_module("8021q");
902 mutex_lock(&vlan_ioctl_mutex);
904 err = vlan_ioctl_hook(net, argp);
905 mutex_unlock(&vlan_ioctl_mutex);
910 if (!dlci_ioctl_hook)
911 request_module("dlci");
913 mutex_lock(&dlci_ioctl_mutex);
915 err = dlci_ioctl_hook(cmd, argp);
916 mutex_unlock(&dlci_ioctl_mutex);
919 err = sock->ops->ioctl(sock, cmd, arg);
922 * If this ioctl is unknown try to hand it down
925 if (err == -ENOIOCTLCMD)
926 err = dev_ioctl(net, cmd, argp);
932 int sock_create_lite(int family, int type, int protocol, struct socket **res)
935 struct socket *sock = NULL;
937 err = security_socket_create(family, type, protocol, 1);
948 err = security_socket_post_create(sock, family, type, protocol, 1);
961 /* No kernel lock held - perfect */
962 static unsigned int sock_poll(struct file *file, poll_table *wait)
967 * We can't return errors to poll, so it's either yes or no.
969 sock = file->private_data;
970 return sock->ops->poll(file, sock, wait);
973 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
975 struct socket *sock = file->private_data;
977 return sock->ops->mmap(file, sock, vma);
980 static int sock_close(struct inode *inode, struct file *filp)
983 * It was possible the inode is NULL we were
984 * closing an unfinished socket.
988 printk(KERN_DEBUG "sock_close: NULL inode\n");
991 sock_fasync(-1, filp, 0);
992 sock_release(SOCKET_I(inode));
997 * Update the socket async list
999 * Fasync_list locking strategy.
1001 * 1. fasync_list is modified only under process context socket lock
1002 * i.e. under semaphore.
1003 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1004 * or under socket lock.
1005 * 3. fasync_list can be used from softirq context, so that
1006 * modification under socket lock have to be enhanced with
1007 * write_lock_bh(&sk->sk_callback_lock).
1011 static int sock_fasync(int fd, struct file *filp, int on)
1013 struct fasync_struct *fa, *fna = NULL, **prev;
1014 struct socket *sock;
1018 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1023 sock = filp->private_data;
1033 prev = &(sock->fasync_list);
1035 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1036 if (fa->fa_file == filp)
1041 write_lock_bh(&sk->sk_callback_lock);
1043 write_unlock_bh(&sk->sk_callback_lock);
1048 fna->fa_file = filp;
1050 fna->magic = FASYNC_MAGIC;
1051 fna->fa_next = sock->fasync_list;
1052 write_lock_bh(&sk->sk_callback_lock);
1053 sock->fasync_list = fna;
1054 write_unlock_bh(&sk->sk_callback_lock);
1057 write_lock_bh(&sk->sk_callback_lock);
1058 *prev = fa->fa_next;
1059 write_unlock_bh(&sk->sk_callback_lock);
1065 release_sock(sock->sk);
1069 /* This function may be called only under socket lock or callback_lock */
1071 int sock_wake_async(struct socket *sock, int how, int band)
1073 if (!sock || !sock->fasync_list)
1076 case SOCK_WAKE_WAITD:
1077 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1080 case SOCK_WAKE_SPACE:
1081 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1086 __kill_fasync(sock->fasync_list, SIGIO, band);
1089 __kill_fasync(sock->fasync_list, SIGURG, band);
1094 static int __sock_create(struct net *net, int family, int type, int protocol,
1095 struct socket **res, int kern)
1098 struct socket *sock;
1099 const struct net_proto_family *pf;
1102 * Check protocol is in range
1104 if (family < 0 || family >= NPROTO)
1105 return -EAFNOSUPPORT;
1106 if (type < 0 || type >= SOCK_MAX)
1111 This uglymoron is moved from INET layer to here to avoid
1112 deadlock in module load.
1114 if (family == PF_INET && type == SOCK_PACKET) {
1118 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1124 err = security_socket_create(family, type, protocol, kern);
1129 * Allocate the socket and allow the family to set things up. if
1130 * the protocol is 0, the family is instructed to select an appropriate
1133 sock = sock_alloc();
1135 if (net_ratelimit())
1136 printk(KERN_WARNING "socket: no more sockets\n");
1137 return -ENFILE; /* Not exactly a match, but its the
1138 closest posix thing */
1143 #if defined(CONFIG_KMOD)
1144 /* Attempt to load a protocol module if the find failed.
1146 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1147 * requested real, full-featured networking support upon configuration.
1148 * Otherwise module support will break!
1150 if (net_families[family] == NULL)
1151 request_module("net-pf-%d", family);
1155 pf = rcu_dereference(net_families[family]);
1156 err = -EAFNOSUPPORT;
1161 * We will call the ->create function, that possibly is in a loadable
1162 * module, so we have to bump that loadable module refcnt first.
1164 if (!try_module_get(pf->owner))
1167 /* Now protected by module ref count */
1170 err = pf->create(net, sock, protocol);
1172 goto out_module_put;
1175 * Now to bump the refcnt of the [loadable] module that owns this
1176 * socket at sock_release time we decrement its refcnt.
1178 if (!try_module_get(sock->ops->owner))
1179 goto out_module_busy;
1182 * Now that we're done with the ->create function, the [loadable]
1183 * module can have its refcnt decremented
1185 module_put(pf->owner);
1186 err = security_socket_post_create(sock, family, type, protocol, kern);
1188 goto out_sock_release;
1194 err = -EAFNOSUPPORT;
1197 module_put(pf->owner);
1204 goto out_sock_release;
1207 int sock_create(int family, int type, int protocol, struct socket **res)
1209 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1212 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1214 return __sock_create(&init_net, family, type, protocol, res, 1);
1217 asmlinkage long sys_socket(int family, int type, int protocol)
1220 struct socket *sock;
1222 retval = sock_create(family, type, protocol, &sock);
1226 retval = sock_map_fd(sock);
1231 /* It may be already another descriptor 8) Not kernel problem. */
1240 * Create a pair of connected sockets.
1243 asmlinkage long sys_socketpair(int family, int type, int protocol,
1244 int __user *usockvec)
1246 struct socket *sock1, *sock2;
1248 struct file *newfile1, *newfile2;
1251 * Obtain the first socket and check if the underlying protocol
1252 * supports the socketpair call.
1255 err = sock_create(family, type, protocol, &sock1);
1259 err = sock_create(family, type, protocol, &sock2);
1263 err = sock1->ops->socketpair(sock1, sock2);
1265 goto out_release_both;
1267 fd1 = sock_alloc_fd(&newfile1);
1268 if (unlikely(fd1 < 0)) {
1270 goto out_release_both;
1273 fd2 = sock_alloc_fd(&newfile2);
1274 if (unlikely(fd2 < 0)) {
1278 goto out_release_both;
1281 err = sock_attach_fd(sock1, newfile1);
1282 if (unlikely(err < 0)) {
1286 err = sock_attach_fd(sock2, newfile2);
1287 if (unlikely(err < 0)) {
1292 err = audit_fd_pair(fd1, fd2);
1299 fd_install(fd1, newfile1);
1300 fd_install(fd2, newfile2);
1301 /* fd1 and fd2 may be already another descriptors.
1302 * Not kernel problem.
1305 err = put_user(fd1, &usockvec[0]);
1307 err = put_user(fd2, &usockvec[1]);
1316 sock_release(sock2);
1318 sock_release(sock1);
1324 sock_release(sock1);
1327 sock_release(sock2);
1335 * Bind a name to a socket. Nothing much to do here since it's
1336 * the protocol's responsibility to handle the local address.
1338 * We move the socket address to kernel space before we call
1339 * the protocol layer (having also checked the address is ok).
1342 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1344 struct socket *sock;
1345 char address[MAX_SOCK_ADDR];
1346 int err, fput_needed;
1348 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1350 err = move_addr_to_kernel(umyaddr, addrlen, address);
1352 err = security_socket_bind(sock,
1353 (struct sockaddr *)address,
1356 err = sock->ops->bind(sock,
1360 fput_light(sock->file, fput_needed);
1366 * Perform a listen. Basically, we allow the protocol to do anything
1367 * necessary for a listen, and if that works, we mark the socket as
1368 * ready for listening.
1371 asmlinkage long sys_listen(int fd, int backlog)
1373 struct socket *sock;
1374 int err, fput_needed;
1377 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1379 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1380 if ((unsigned)backlog > somaxconn)
1381 backlog = somaxconn;
1383 err = security_socket_listen(sock, backlog);
1385 err = sock->ops->listen(sock, backlog);
1387 fput_light(sock->file, fput_needed);
1393 * For accept, we attempt to create a new socket, set up the link
1394 * with the client, wake up the client, then return the new
1395 * connected fd. We collect the address of the connector in kernel
1396 * space and move it to user at the very end. This is unclean because
1397 * we open the socket then return an error.
1399 * 1003.1g adds the ability to recvmsg() to query connection pending
1400 * status to recvmsg. We need to add that support in a way thats
1401 * clean when we restucture accept also.
1404 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1405 int __user *upeer_addrlen)
1407 struct socket *sock, *newsock;
1408 struct file *newfile;
1409 int err, len, newfd, fput_needed;
1410 char address[MAX_SOCK_ADDR];
1412 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1417 if (!(newsock = sock_alloc()))
1420 newsock->type = sock->type;
1421 newsock->ops = sock->ops;
1424 * We don't need try_module_get here, as the listening socket (sock)
1425 * has the protocol module (sock->ops->owner) held.
1427 __module_get(newsock->ops->owner);
1429 newfd = sock_alloc_fd(&newfile);
1430 if (unlikely(newfd < 0)) {
1432 sock_release(newsock);
1436 err = sock_attach_fd(newsock, newfile);
1440 err = security_socket_accept(sock, newsock);
1444 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1448 if (upeer_sockaddr) {
1449 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1451 err = -ECONNABORTED;
1454 err = move_addr_to_user(address, len, upeer_sockaddr,
1460 /* File flags are not inherited via accept() unlike another OSes. */
1462 fd_install(newfd, newfile);
1465 security_socket_post_accept(sock, newsock);
1468 fput_light(sock->file, fput_needed);
1472 sock_release(newsock);
1474 put_unused_fd(newfd);
1478 put_unused_fd(newfd);
1483 * Attempt to connect to a socket with the server address. The address
1484 * is in user space so we verify it is OK and move it to kernel space.
1486 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1489 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1490 * other SEQPACKET protocols that take time to connect() as it doesn't
1491 * include the -EINPROGRESS status for such sockets.
1494 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1497 struct socket *sock;
1498 char address[MAX_SOCK_ADDR];
1499 int err, fput_needed;
1501 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1504 err = move_addr_to_kernel(uservaddr, addrlen, address);
1509 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1513 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1514 sock->file->f_flags);
1516 fput_light(sock->file, fput_needed);
1522 * Get the local address ('name') of a socket object. Move the obtained
1523 * name to user space.
1526 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1527 int __user *usockaddr_len)
1529 struct socket *sock;
1530 char address[MAX_SOCK_ADDR];
1531 int len, err, fput_needed;
1533 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1537 err = security_socket_getsockname(sock);
1541 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1544 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1547 fput_light(sock->file, fput_needed);
1553 * Get the remote address ('name') of a socket object. Move the obtained
1554 * name to user space.
1557 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1558 int __user *usockaddr_len)
1560 struct socket *sock;
1561 char address[MAX_SOCK_ADDR];
1562 int len, err, fput_needed;
1564 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1566 err = security_socket_getpeername(sock);
1568 fput_light(sock->file, fput_needed);
1573 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1576 err = move_addr_to_user(address, len, usockaddr,
1578 fput_light(sock->file, fput_needed);
1584 * Send a datagram to a given address. We move the address into kernel
1585 * space and check the user space data area is readable before invoking
1589 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1590 unsigned flags, struct sockaddr __user *addr,
1593 struct socket *sock;
1594 char address[MAX_SOCK_ADDR];
1600 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604 iov.iov_base = buff;
1606 msg.msg_name = NULL;
1609 msg.msg_control = NULL;
1610 msg.msg_controllen = 0;
1611 msg.msg_namelen = 0;
1613 err = move_addr_to_kernel(addr, addr_len, address);
1616 msg.msg_name = address;
1617 msg.msg_namelen = addr_len;
1619 if (sock->file->f_flags & O_NONBLOCK)
1620 flags |= MSG_DONTWAIT;
1621 msg.msg_flags = flags;
1622 err = sock_sendmsg(sock, &msg, len);
1625 fput_light(sock->file, fput_needed);
1631 * Send a datagram down a socket.
1634 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1636 return sys_sendto(fd, buff, len, flags, NULL, 0);
1640 * Receive a frame from the socket and optionally record the address of the
1641 * sender. We verify the buffers are writable and if needed move the
1642 * sender address from kernel to user space.
1645 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1646 unsigned flags, struct sockaddr __user *addr,
1647 int __user *addr_len)
1649 struct socket *sock;
1652 char address[MAX_SOCK_ADDR];
1656 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1660 msg.msg_control = NULL;
1661 msg.msg_controllen = 0;
1665 iov.iov_base = ubuf;
1666 msg.msg_name = address;
1667 msg.msg_namelen = MAX_SOCK_ADDR;
1668 if (sock->file->f_flags & O_NONBLOCK)
1669 flags |= MSG_DONTWAIT;
1670 err = sock_recvmsg(sock, &msg, size, flags);
1672 if (err >= 0 && addr != NULL) {
1673 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1678 fput_light(sock->file, fput_needed);
1684 * Receive a datagram from a socket.
1687 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1690 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1694 * Set a socket option. Because we don't know the option lengths we have
1695 * to pass the user mode parameter for the protocols to sort out.
1698 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1699 char __user *optval, int optlen)
1701 int err, fput_needed;
1702 struct socket *sock;
1707 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1709 err = security_socket_setsockopt(sock, level, optname);
1713 if (level == SOL_SOCKET)
1715 sock_setsockopt(sock, level, optname, optval,
1719 sock->ops->setsockopt(sock, level, optname, optval,
1722 fput_light(sock->file, fput_needed);
1728 * Get a socket option. Because we don't know the option lengths we have
1729 * to pass a user mode parameter for the protocols to sort out.
1732 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1733 char __user *optval, int __user *optlen)
1735 int err, fput_needed;
1736 struct socket *sock;
1738 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1740 err = security_socket_getsockopt(sock, level, optname);
1744 if (level == SOL_SOCKET)
1746 sock_getsockopt(sock, level, optname, optval,
1750 sock->ops->getsockopt(sock, level, optname, optval,
1753 fput_light(sock->file, fput_needed);
1759 * Shutdown a socket.
1762 asmlinkage long sys_shutdown(int fd, int how)
1764 int err, fput_needed;
1765 struct socket *sock;
1767 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 err = security_socket_shutdown(sock, how);
1771 err = sock->ops->shutdown(sock, how);
1772 fput_light(sock->file, fput_needed);
1777 /* A couple of helpful macros for getting the address of the 32/64 bit
1778 * fields which are the same type (int / unsigned) on our platforms.
1780 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1781 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1782 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1785 * BSD sendmsg interface
1788 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1790 struct compat_msghdr __user *msg_compat =
1791 (struct compat_msghdr __user *)msg;
1792 struct socket *sock;
1793 char address[MAX_SOCK_ADDR];
1794 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1795 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1796 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1797 /* 20 is size of ipv6_pktinfo */
1798 unsigned char *ctl_buf = ctl;
1799 struct msghdr msg_sys;
1800 int err, ctl_len, iov_size, total_len;
1804 if (MSG_CMSG_COMPAT & flags) {
1805 if (get_compat_msghdr(&msg_sys, msg_compat))
1808 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1811 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1815 /* do not move before msg_sys is valid */
1817 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1820 /* Check whether to allocate the iovec area */
1822 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1823 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1824 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1829 /* This will also move the address data into kernel space */
1830 if (MSG_CMSG_COMPAT & flags) {
1831 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1833 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1840 if (msg_sys.msg_controllen > INT_MAX)
1842 ctl_len = msg_sys.msg_controllen;
1843 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1845 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1849 ctl_buf = msg_sys.msg_control;
1850 ctl_len = msg_sys.msg_controllen;
1851 } else if (ctl_len) {
1852 if (ctl_len > sizeof(ctl)) {
1853 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1854 if (ctl_buf == NULL)
1859 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1860 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1861 * checking falls down on this.
1863 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1866 msg_sys.msg_control = ctl_buf;
1868 msg_sys.msg_flags = flags;
1870 if (sock->file->f_flags & O_NONBLOCK)
1871 msg_sys.msg_flags |= MSG_DONTWAIT;
1872 err = sock_sendmsg(sock, &msg_sys, total_len);
1876 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1878 if (iov != iovstack)
1879 sock_kfree_s(sock->sk, iov, iov_size);
1881 fput_light(sock->file, fput_needed);
1887 * BSD recvmsg interface
1890 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1893 struct compat_msghdr __user *msg_compat =
1894 (struct compat_msghdr __user *)msg;
1895 struct socket *sock;
1896 struct iovec iovstack[UIO_FASTIOV];
1897 struct iovec *iov = iovstack;
1898 struct msghdr msg_sys;
1899 unsigned long cmsg_ptr;
1900 int err, iov_size, total_len, len;
1903 /* kernel mode address */
1904 char addr[MAX_SOCK_ADDR];
1906 /* user mode address pointers */
1907 struct sockaddr __user *uaddr;
1908 int __user *uaddr_len;
1910 if (MSG_CMSG_COMPAT & flags) {
1911 if (get_compat_msghdr(&msg_sys, msg_compat))
1914 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1917 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1922 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1925 /* Check whether to allocate the iovec area */
1927 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1928 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1929 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1935 * Save the user-mode address (verify_iovec will change the
1936 * kernel msghdr to use the kernel address space)
1939 uaddr = (__force void __user *)msg_sys.msg_name;
1940 uaddr_len = COMPAT_NAMELEN(msg);
1941 if (MSG_CMSG_COMPAT & flags) {
1942 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1944 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1949 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1950 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1952 if (sock->file->f_flags & O_NONBLOCK)
1953 flags |= MSG_DONTWAIT;
1954 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1959 if (uaddr != NULL) {
1960 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1965 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1969 if (MSG_CMSG_COMPAT & flags)
1970 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1971 &msg_compat->msg_controllen);
1973 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1974 &msg->msg_controllen);
1980 if (iov != iovstack)
1981 sock_kfree_s(sock->sk, iov, iov_size);
1983 fput_light(sock->file, fput_needed);
1988 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1990 /* Argument list sizes for sys_socketcall */
1991 #define AL(x) ((x) * sizeof(unsigned long))
1992 static const unsigned char nargs[18]={
1993 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1994 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1995 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
2001 * System call vectors.
2003 * Argument checking cleaned up. Saved 20% in size.
2004 * This function doesn't need to set the kernel lock because
2005 * it is set by the callees.
2008 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2011 unsigned long a0, a1;
2014 if (call < 1 || call > SYS_RECVMSG)
2017 /* copy_from_user should be SMP safe. */
2018 if (copy_from_user(a, args, nargs[call]))
2021 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2030 err = sys_socket(a0, a1, a[2]);
2033 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2036 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2039 err = sys_listen(a0, a1);
2043 sys_accept(a0, (struct sockaddr __user *)a1,
2044 (int __user *)a[2]);
2046 case SYS_GETSOCKNAME:
2048 sys_getsockname(a0, (struct sockaddr __user *)a1,
2049 (int __user *)a[2]);
2051 case SYS_GETPEERNAME:
2053 sys_getpeername(a0, (struct sockaddr __user *)a1,
2054 (int __user *)a[2]);
2056 case SYS_SOCKETPAIR:
2057 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2060 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2063 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2064 (struct sockaddr __user *)a[4], a[5]);
2067 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2070 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2071 (struct sockaddr __user *)a[4],
2072 (int __user *)a[5]);
2075 err = sys_shutdown(a0, a1);
2077 case SYS_SETSOCKOPT:
2078 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2080 case SYS_GETSOCKOPT:
2082 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2083 (int __user *)a[4]);
2086 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2089 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2098 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2101 * sock_register - add a socket protocol handler
2102 * @ops: description of protocol
2104 * This function is called by a protocol handler that wants to
2105 * advertise its address family, and have it linked into the
2106 * socket interface. The value ops->family coresponds to the
2107 * socket system call protocol family.
2109 int sock_register(const struct net_proto_family *ops)
2113 if (ops->family >= NPROTO) {
2114 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2119 spin_lock(&net_family_lock);
2120 if (net_families[ops->family])
2123 net_families[ops->family] = ops;
2126 spin_unlock(&net_family_lock);
2128 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2133 * sock_unregister - remove a protocol handler
2134 * @family: protocol family to remove
2136 * This function is called by a protocol handler that wants to
2137 * remove its address family, and have it unlinked from the
2138 * new socket creation.
2140 * If protocol handler is a module, then it can use module reference
2141 * counts to protect against new references. If protocol handler is not
2142 * a module then it needs to provide its own protection in
2143 * the ops->create routine.
2145 void sock_unregister(int family)
2147 BUG_ON(family < 0 || family >= NPROTO);
2149 spin_lock(&net_family_lock);
2150 net_families[family] = NULL;
2151 spin_unlock(&net_family_lock);
2155 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2158 static int __init sock_init(void)
2161 * Initialize sock SLAB cache.
2167 * Initialize skbuff SLAB cache
2172 * Initialize the protocols module.
2176 register_filesystem(&sock_fs_type);
2177 sock_mnt = kern_mount(&sock_fs_type);
2179 /* The real protocol initialization is performed in later initcalls.
2182 #ifdef CONFIG_NETFILTER
2189 core_initcall(sock_init); /* early initcall */
2191 #ifdef CONFIG_PROC_FS
2192 void socket_seq_show(struct seq_file *seq)
2197 for_each_possible_cpu(cpu)
2198 counter += per_cpu(sockets_in_use, cpu);
2200 /* It can be negative, by the way. 8) */
2204 seq_printf(seq, "sockets: used %d\n", counter);
2206 #endif /* CONFIG_PROC_FS */
2208 #ifdef CONFIG_COMPAT
2209 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2212 struct socket *sock = file->private_data;
2213 int ret = -ENOIOCTLCMD;
2220 if (sock->ops->compat_ioctl)
2221 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2223 if (ret == -ENOIOCTLCMD &&
2224 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2225 ret = compat_wext_handle_ioctl(net, cmd, arg);
2231 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2233 return sock->ops->bind(sock, addr, addrlen);
2236 int kernel_listen(struct socket *sock, int backlog)
2238 return sock->ops->listen(sock, backlog);
2241 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2243 struct sock *sk = sock->sk;
2246 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2251 err = sock->ops->accept(sock, *newsock, flags);
2253 sock_release(*newsock);
2258 (*newsock)->ops = sock->ops;
2264 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2267 return sock->ops->connect(sock, addr, addrlen, flags);
2270 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2273 return sock->ops->getname(sock, addr, addrlen, 0);
2276 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2279 return sock->ops->getname(sock, addr, addrlen, 1);
2282 int kernel_getsockopt(struct socket *sock, int level, int optname,
2283 char *optval, int *optlen)
2285 mm_segment_t oldfs = get_fs();
2289 if (level == SOL_SOCKET)
2290 err = sock_getsockopt(sock, level, optname, optval, optlen);
2292 err = sock->ops->getsockopt(sock, level, optname, optval,
2298 int kernel_setsockopt(struct socket *sock, int level, int optname,
2299 char *optval, int optlen)
2301 mm_segment_t oldfs = get_fs();
2305 if (level == SOL_SOCKET)
2306 err = sock_setsockopt(sock, level, optname, optval, optlen);
2308 err = sock->ops->setsockopt(sock, level, optname, optval,
2314 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2315 size_t size, int flags)
2317 if (sock->ops->sendpage)
2318 return sock->ops->sendpage(sock, page, offset, size, flags);
2320 return sock_no_sendpage(sock, page, offset, size, flags);
2323 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2325 mm_segment_t oldfs = get_fs();
2329 err = sock->ops->ioctl(sock, cmd, arg);
2335 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2337 return sock->ops->shutdown(sock, how);
2340 EXPORT_SYMBOL(sock_create);
2341 EXPORT_SYMBOL(sock_create_kern);
2342 EXPORT_SYMBOL(sock_create_lite);
2343 EXPORT_SYMBOL(sock_map_fd);
2344 EXPORT_SYMBOL(sock_recvmsg);
2345 EXPORT_SYMBOL(sock_register);
2346 EXPORT_SYMBOL(sock_release);
2347 EXPORT_SYMBOL(sock_sendmsg);
2348 EXPORT_SYMBOL(sock_unregister);
2349 EXPORT_SYMBOL(sock_wake_async);
2350 EXPORT_SYMBOL(sockfd_lookup);
2351 EXPORT_SYMBOL(kernel_sendmsg);
2352 EXPORT_SYMBOL(kernel_recvmsg);
2353 EXPORT_SYMBOL(kernel_bind);
2354 EXPORT_SYMBOL(kernel_listen);
2355 EXPORT_SYMBOL(kernel_accept);
2356 EXPORT_SYMBOL(kernel_connect);
2357 EXPORT_SYMBOL(kernel_getsockname);
2358 EXPORT_SYMBOL(kernel_getpeername);
2359 EXPORT_SYMBOL(kernel_getsockopt);
2360 EXPORT_SYMBOL(kernel_setsockopt);
2361 EXPORT_SYMBOL(kernel_sendpage);
2362 EXPORT_SYMBOL(kernel_sock_ioctl);
2363 EXPORT_SYMBOL(kernel_sock_shutdown);