2 * linux/arch/arm/mm/fault-armv.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2002 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/pgtable.h>
22 #include <asm/tlbflush.h>
24 static unsigned long shared_pte_mask = L_PTE_CACHEABLE;
27 * We take the easy way out of this problem - we make the
28 * PTE uncacheable. However, we leave the write buffer on.
30 * Note that the pte lock held when calling update_mmu_cache must also
31 * guard the pte (somewhere else in the same mm) that we modify here.
32 * Therefore those configurations which might call adjust_pte (those
33 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
35 static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
42 pgd = pgd_offset(vma->vm_mm, address);
48 pmd = pmd_offset(pgd, address);
54 pte = pte_offset_map(pmd, address);
58 * If this page is present, it's actually being shared.
60 ret = pte_present(entry);
63 * If this page isn't present, or is already setup to
64 * fault (ie, is old), we can safely ignore any issues.
66 if (ret && pte_val(entry) & shared_pte_mask) {
67 flush_cache_page(vma, address, pte_pfn(entry));
68 pte_val(entry) &= ~shared_pte_mask;
69 set_pte_at(vma->vm_mm, address, pte, entry);
70 flush_tlb_page(vma, address);
89 make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
91 struct mm_struct *mm = vma->vm_mm;
92 struct vm_area_struct *mpnt;
93 struct prio_tree_iter iter;
98 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
101 * If we have any shared mappings that are in the same mm
102 * space, then we need to handle them specially to maintain
105 flush_dcache_mmap_lock(mapping);
106 vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
108 * If this VMA is not in our MM, we can ignore it.
109 * Note that we intentionally mask out the VMA
110 * that we are fixing up.
112 if (mpnt->vm_mm != mm || mpnt == vma)
114 if (!(mpnt->vm_flags & VM_MAYSHARE))
116 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
117 aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
119 flush_dcache_mmap_unlock(mapping);
121 adjust_pte(vma, addr);
123 flush_cache_page(vma, addr, pfn);
127 * Take care of architecture specific things when placing a new PTE into
128 * a page table, or changing an existing PTE. Basically, there are two
129 * things that we need to take care of:
131 * 1. If PG_dcache_dirty is set for the page, we need to ensure
132 * that any cache entries for the kernels virtual memory
133 * range are written back to the page.
134 * 2. If we have multiple shared mappings of the same space in
135 * an object, we need to deal with the cache aliasing issues.
137 * Note that the pte lock will be held.
139 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
141 unsigned long pfn = pte_pfn(pte);
142 struct address_space *mapping;
148 page = pfn_to_page(pfn);
149 mapping = page_mapping(page);
152 int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
155 __flush_dcache_page(mapping, page);
159 make_coherent(mapping, vma, addr, pfn);
160 else if (vma->vm_flags & VM_EXEC)
161 __flush_icache_all();
166 * Check whether the write buffer has physical address aliasing
167 * issues. If it has, we need to avoid them for the case where
168 * we have several shared mappings of the same object in user
171 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
173 register unsigned long zero = 0, one = 1, val;
187 void __init check_writebuffer_bugs(void)
193 printk(KERN_INFO "CPU: Testing write buffer coherency: ");
195 page = alloc_page(GFP_KERNEL);
197 unsigned long *p1, *p2;
198 pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
199 L_PTE_DIRTY|L_PTE_WRITE|
202 p1 = vmap(&page, 1, VM_IOREMAP, prot);
203 p2 = vmap(&page, 1, VM_IOREMAP, prot);
206 v = check_writebuffer(p1, p2);
207 reason = "enabling work-around";
209 reason = "unable to map memory\n";
216 reason = "unable to grab page\n";
220 printk("failed, %s\n", reason);
221 shared_pte_mask |= L_PTE_BUFFERABLE;