Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[linux-2.6] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
17 #include "bitfield.h"
18 #include "efx.h"
19 #include "mac.h"
20 #include "gmii.h"
21 #include "spi.h"
22 #include "falcon.h"
23 #include "falcon_hwdefs.h"
24 #include "falcon_io.h"
25 #include "mdio_10g.h"
26 #include "phy.h"
27 #include "boards.h"
28 #include "workarounds.h"
29
30 /* Falcon hardware control.
31  * Falcon is the internal codename for the SFC4000 controller that is
32  * present in SFE400X evaluation boards
33  */
34
35 /**
36  * struct falcon_nic_data - Falcon NIC state
37  * @next_buffer_table: First available buffer table id
38  * @pci_dev2: The secondary PCI device if present
39  */
40 struct falcon_nic_data {
41         unsigned next_buffer_table;
42         struct pci_dev *pci_dev2;
43 };
44
45 /**************************************************************************
46  *
47  * Configurable values
48  *
49  **************************************************************************
50  */
51
52 static int disable_dma_stats;
53
54 /* This is set to 16 for a good reason.  In summary, if larger than
55  * 16, the descriptor cache holds more than a default socket
56  * buffer's worth of packets (for UDP we can only have at most one
57  * socket buffer's worth outstanding).  This combined with the fact
58  * that we only get 1 TX event per descriptor cache means the NIC
59  * goes idle.
60  */
61 #define TX_DC_ENTRIES 16
62 #define TX_DC_ENTRIES_ORDER 0
63 #define TX_DC_BASE 0x130000
64
65 #define RX_DC_ENTRIES 64
66 #define RX_DC_ENTRIES_ORDER 2
67 #define RX_DC_BASE 0x100000
68
69 /* RX FIFO XOFF watermark
70  *
71  * When the amount of the RX FIFO increases used increases past this
72  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
73  * This also has an effect on RX/TX arbitration
74  */
75 static int rx_xoff_thresh_bytes = -1;
76 module_param(rx_xoff_thresh_bytes, int, 0644);
77 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
78
79 /* RX FIFO XON watermark
80  *
81  * When the amount of the RX FIFO used decreases below this
82  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
83  * This also has an effect on RX/TX arbitration
84  */
85 static int rx_xon_thresh_bytes = -1;
86 module_param(rx_xon_thresh_bytes, int, 0644);
87 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
88
89 /* TX descriptor ring size - min 512 max 4k */
90 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
91 #define FALCON_TXD_RING_SIZE 1024
92 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
93
94 /* RX descriptor ring size - min 512 max 4k */
95 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
96 #define FALCON_RXD_RING_SIZE 1024
97 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
98
99 /* Event queue size - max 32k */
100 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
101 #define FALCON_EVQ_SIZE 4096
102 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
103
104 /* Max number of internal errors. After this resets will not be performed */
105 #define FALCON_MAX_INT_ERRORS 4
106
107 /* Maximum period that we wait for flush events. If the flush event
108  * doesn't arrive in this period of time then we check if the queue
109  * was disabled anyway. */
110 #define FALCON_FLUSH_TIMEOUT 10 /* 10ms */
111
112 /**************************************************************************
113  *
114  * Falcon constants
115  *
116  **************************************************************************
117  */
118
119 /* DMA address mask (up to 46-bit, avoiding compiler warnings)
120  *
121  * Note that it is possible to have a platform with 64-bit longs and
122  * 32-bit DMA addresses, or vice versa.  EFX_DMA_MASK takes care of the
123  * platform DMA mask.
124  */
125 #if BITS_PER_LONG == 64
126 #define FALCON_DMA_MASK EFX_DMA_MASK(0x00003fffffffffffUL)
127 #else
128 #define FALCON_DMA_MASK EFX_DMA_MASK(0x00003fffffffffffULL)
129 #endif
130
131 /* TX DMA length mask (13-bit) */
132 #define FALCON_TX_DMA_MASK (4096 - 1)
133
134 /* Size and alignment of special buffers (4KB) */
135 #define FALCON_BUF_SIZE 4096
136
137 /* Dummy SRAM size code */
138 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
139
140 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
141 #define PCI_EXP_DEVCAP_PWR_VAL_LBN      18
142 #define PCI_EXP_DEVCAP_PWR_SCL_LBN      26
143 #define PCI_EXP_DEVCTL_PAYLOAD_LBN      5
144 #define PCI_EXP_LNKSTA_LNK_WID          0x3f0
145 #define PCI_EXP_LNKSTA_LNK_WID_LBN      4
146
147 #define FALCON_IS_DUAL_FUNC(efx)                \
148         (FALCON_REV(efx) < FALCON_REV_B0)
149
150 /**************************************************************************
151  *
152  * Falcon hardware access
153  *
154  **************************************************************************/
155
156 /* Read the current event from the event queue */
157 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
158                                         unsigned int index)
159 {
160         return (((efx_qword_t *) (channel->eventq.addr)) + index);
161 }
162
163 /* See if an event is present
164  *
165  * We check both the high and low dword of the event for all ones.  We
166  * wrote all ones when we cleared the event, and no valid event can
167  * have all ones in either its high or low dwords.  This approach is
168  * robust against reordering.
169  *
170  * Note that using a single 64-bit comparison is incorrect; even
171  * though the CPU read will be atomic, the DMA write may not be.
172  */
173 static inline int falcon_event_present(efx_qword_t *event)
174 {
175         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
176                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
177 }
178
179 /**************************************************************************
180  *
181  * I2C bus - this is a bit-bashing interface using GPIO pins
182  * Note that it uses the output enables to tristate the outputs
183  * SDA is the data pin and SCL is the clock
184  *
185  **************************************************************************
186  */
187 static void falcon_setsdascl(struct efx_i2c_interface *i2c)
188 {
189         efx_oword_t reg;
190
191         falcon_read(i2c->efx, &reg, GPIO_CTL_REG_KER);
192         EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, (i2c->scl ? 0 : 1));
193         EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, (i2c->sda ? 0 : 1));
194         falcon_write(i2c->efx, &reg, GPIO_CTL_REG_KER);
195 }
196
197 static int falcon_getsda(struct efx_i2c_interface *i2c)
198 {
199         efx_oword_t reg;
200
201         falcon_read(i2c->efx, &reg, GPIO_CTL_REG_KER);
202         return EFX_OWORD_FIELD(reg, GPIO3_IN);
203 }
204
205 static int falcon_getscl(struct efx_i2c_interface *i2c)
206 {
207         efx_oword_t reg;
208
209         falcon_read(i2c->efx, &reg, GPIO_CTL_REG_KER);
210         return EFX_DWORD_FIELD(reg, GPIO0_IN);
211 }
212
213 static struct efx_i2c_bit_operations falcon_i2c_bit_operations = {
214         .setsda         = falcon_setsdascl,
215         .setscl         = falcon_setsdascl,
216         .getsda         = falcon_getsda,
217         .getscl         = falcon_getscl,
218         .udelay         = 100,
219         .mdelay         = 10,
220 };
221
222 /**************************************************************************
223  *
224  * Falcon special buffer handling
225  * Special buffers are used for event queues and the TX and RX
226  * descriptor rings.
227  *
228  *************************************************************************/
229
230 /*
231  * Initialise a Falcon special buffer
232  *
233  * This will define a buffer (previously allocated via
234  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
235  * it to be used for event queues, descriptor rings etc.
236  */
237 static int
238 falcon_init_special_buffer(struct efx_nic *efx,
239                            struct efx_special_buffer *buffer)
240 {
241         efx_qword_t buf_desc;
242         int index;
243         dma_addr_t dma_addr;
244         int i;
245
246         EFX_BUG_ON_PARANOID(!buffer->addr);
247
248         /* Write buffer descriptors to NIC */
249         for (i = 0; i < buffer->entries; i++) {
250                 index = buffer->index + i;
251                 dma_addr = buffer->dma_addr + (i * 4096);
252                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
253                         index, (unsigned long long)dma_addr);
254                 EFX_POPULATE_QWORD_4(buf_desc,
255                                      IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
256                                      BUF_ADR_REGION, 0,
257                                      BUF_ADR_FBUF, (dma_addr >> 12),
258                                      BUF_OWNER_ID_FBUF, 0);
259                 falcon_write_sram(efx, &buf_desc, index);
260         }
261
262         return 0;
263 }
264
265 /* Unmaps a buffer from Falcon and clears the buffer table entries */
266 static void
267 falcon_fini_special_buffer(struct efx_nic *efx,
268                            struct efx_special_buffer *buffer)
269 {
270         efx_oword_t buf_tbl_upd;
271         unsigned int start = buffer->index;
272         unsigned int end = (buffer->index + buffer->entries - 1);
273
274         if (!buffer->entries)
275                 return;
276
277         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
278                 buffer->index, buffer->index + buffer->entries - 1);
279
280         EFX_POPULATE_OWORD_4(buf_tbl_upd,
281                              BUF_UPD_CMD, 0,
282                              BUF_CLR_CMD, 1,
283                              BUF_CLR_END_ID, end,
284                              BUF_CLR_START_ID, start);
285         falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
286 }
287
288 /*
289  * Allocate a new Falcon special buffer
290  *
291  * This allocates memory for a new buffer, clears it and allocates a
292  * new buffer ID range.  It does not write into Falcon's buffer table.
293  *
294  * This call will allocate 4KB buffers, since Falcon can't use 8KB
295  * buffers for event queues and descriptor rings.
296  */
297 static int falcon_alloc_special_buffer(struct efx_nic *efx,
298                                        struct efx_special_buffer *buffer,
299                                        unsigned int len)
300 {
301         struct falcon_nic_data *nic_data = efx->nic_data;
302
303         len = ALIGN(len, FALCON_BUF_SIZE);
304
305         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
306                                             &buffer->dma_addr);
307         if (!buffer->addr)
308                 return -ENOMEM;
309         buffer->len = len;
310         buffer->entries = len / FALCON_BUF_SIZE;
311         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
312
313         /* All zeros is a potentially valid event so memset to 0xff */
314         memset(buffer->addr, 0xff, len);
315
316         /* Select new buffer ID */
317         buffer->index = nic_data->next_buffer_table;
318         nic_data->next_buffer_table += buffer->entries;
319
320         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
321                 "(virt %p phys %lx)\n", buffer->index,
322                 buffer->index + buffer->entries - 1,
323                 (unsigned long long)buffer->dma_addr, len,
324                 buffer->addr, virt_to_phys(buffer->addr));
325
326         return 0;
327 }
328
329 static void falcon_free_special_buffer(struct efx_nic *efx,
330                                        struct efx_special_buffer *buffer)
331 {
332         if (!buffer->addr)
333                 return;
334
335         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
336                 "(virt %p phys %lx)\n", buffer->index,
337                 buffer->index + buffer->entries - 1,
338                 (unsigned long long)buffer->dma_addr, buffer->len,
339                 buffer->addr, virt_to_phys(buffer->addr));
340
341         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
342                             buffer->dma_addr);
343         buffer->addr = NULL;
344         buffer->entries = 0;
345 }
346
347 /**************************************************************************
348  *
349  * Falcon generic buffer handling
350  * These buffers are used for interrupt status and MAC stats
351  *
352  **************************************************************************/
353
354 static int falcon_alloc_buffer(struct efx_nic *efx,
355                                struct efx_buffer *buffer, unsigned int len)
356 {
357         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
358                                             &buffer->dma_addr);
359         if (!buffer->addr)
360                 return -ENOMEM;
361         buffer->len = len;
362         memset(buffer->addr, 0, len);
363         return 0;
364 }
365
366 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
367 {
368         if (buffer->addr) {
369                 pci_free_consistent(efx->pci_dev, buffer->len,
370                                     buffer->addr, buffer->dma_addr);
371                 buffer->addr = NULL;
372         }
373 }
374
375 /**************************************************************************
376  *
377  * Falcon TX path
378  *
379  **************************************************************************/
380
381 /* Returns a pointer to the specified transmit descriptor in the TX
382  * descriptor queue belonging to the specified channel.
383  */
384 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
385                                                unsigned int index)
386 {
387         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
388 }
389
390 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
391 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
392 {
393         unsigned write_ptr;
394         efx_dword_t reg;
395
396         write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
397         EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
398         falcon_writel_page(tx_queue->efx, &reg,
399                            TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
400 }
401
402
403 /* For each entry inserted into the software descriptor ring, create a
404  * descriptor in the hardware TX descriptor ring (in host memory), and
405  * write a doorbell.
406  */
407 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
408 {
409
410         struct efx_tx_buffer *buffer;
411         efx_qword_t *txd;
412         unsigned write_ptr;
413
414         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
415
416         do {
417                 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
418                 buffer = &tx_queue->buffer[write_ptr];
419                 txd = falcon_tx_desc(tx_queue, write_ptr);
420                 ++tx_queue->write_count;
421
422                 /* Create TX descriptor ring entry */
423                 EFX_POPULATE_QWORD_5(*txd,
424                                      TX_KER_PORT, 0,
425                                      TX_KER_CONT, buffer->continuation,
426                                      TX_KER_BYTE_CNT, buffer->len,
427                                      TX_KER_BUF_REGION, 0,
428                                      TX_KER_BUF_ADR, buffer->dma_addr);
429         } while (tx_queue->write_count != tx_queue->insert_count);
430
431         wmb(); /* Ensure descriptors are written before they are fetched */
432         falcon_notify_tx_desc(tx_queue);
433 }
434
435 /* Allocate hardware resources for a TX queue */
436 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
437 {
438         struct efx_nic *efx = tx_queue->efx;
439         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
440                                            FALCON_TXD_RING_SIZE *
441                                            sizeof(efx_qword_t));
442 }
443
444 int falcon_init_tx(struct efx_tx_queue *tx_queue)
445 {
446         efx_oword_t tx_desc_ptr;
447         struct efx_nic *efx = tx_queue->efx;
448         int rc;
449
450         /* Pin TX descriptor ring */
451         rc = falcon_init_special_buffer(efx, &tx_queue->txd);
452         if (rc)
453                 return rc;
454
455         /* Push TX descriptor ring to card */
456         EFX_POPULATE_OWORD_10(tx_desc_ptr,
457                               TX_DESCQ_EN, 1,
458                               TX_ISCSI_DDIG_EN, 0,
459                               TX_ISCSI_HDIG_EN, 0,
460                               TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
461                               TX_DESCQ_EVQ_ID, tx_queue->channel->evqnum,
462                               TX_DESCQ_OWNER_ID, 0,
463                               TX_DESCQ_LABEL, tx_queue->queue,
464                               TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
465                               TX_DESCQ_TYPE, 0,
466                               TX_NON_IP_DROP_DIS_B0, 1);
467
468         if (FALCON_REV(efx) >= FALCON_REV_B0) {
469                 int csum = !(efx->net_dev->features & NETIF_F_IP_CSUM);
470                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, csum);
471                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, csum);
472         }
473
474         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
475                            tx_queue->queue);
476
477         if (FALCON_REV(efx) < FALCON_REV_B0) {
478                 efx_oword_t reg;
479
480                 BUG_ON(tx_queue->queue >= 128); /* HW limit */
481
482                 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
483                 if (efx->net_dev->features & NETIF_F_IP_CSUM)
484                         clear_bit_le(tx_queue->queue, (void *)&reg);
485                 else
486                         set_bit_le(tx_queue->queue, (void *)&reg);
487                 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
488         }
489
490         return 0;
491 }
492
493 static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
494 {
495         struct efx_nic *efx = tx_queue->efx;
496         struct efx_channel *channel = &efx->channel[0];
497         efx_oword_t tx_flush_descq;
498         unsigned int read_ptr, i;
499
500         /* Post a flush command */
501         EFX_POPULATE_OWORD_2(tx_flush_descq,
502                              TX_FLUSH_DESCQ_CMD, 1,
503                              TX_FLUSH_DESCQ, tx_queue->queue);
504         falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
505         msleep(FALCON_FLUSH_TIMEOUT);
506
507         if (EFX_WORKAROUND_7803(efx))
508                 return 0;
509
510         /* Look for a flush completed event */
511         read_ptr = channel->eventq_read_ptr;
512         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
513                 efx_qword_t *event = falcon_event(channel, read_ptr);
514                 int ev_code, ev_sub_code, ev_queue;
515                 if (!falcon_event_present(event))
516                         break;
517
518                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
519                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
520                 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID);
521                 if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) &&
522                     (ev_queue == tx_queue->queue)) {
523                         EFX_LOG(efx, "tx queue %d flush command succesful\n",
524                                 tx_queue->queue);
525                         return 0;
526                 }
527
528                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
529         }
530
531         if (EFX_WORKAROUND_11557(efx)) {
532                 efx_oword_t reg;
533                 int enabled;
534
535                 falcon_read_table(efx, &reg, efx->type->txd_ptr_tbl_base,
536                                   tx_queue->queue);
537                 enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN);
538                 if (!enabled) {
539                         EFX_LOG(efx, "tx queue %d disabled without a "
540                                 "flush event seen\n", tx_queue->queue);
541                         return 0;
542                 }
543         }
544
545         EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue);
546         return -ETIMEDOUT;
547 }
548
549 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
550 {
551         struct efx_nic *efx = tx_queue->efx;
552         efx_oword_t tx_desc_ptr;
553
554         /* Stop the hardware using the queue */
555         if (falcon_flush_tx_queue(tx_queue))
556                 EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue);
557
558         /* Remove TX descriptor ring from card */
559         EFX_ZERO_OWORD(tx_desc_ptr);
560         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
561                            tx_queue->queue);
562
563         /* Unpin TX descriptor ring */
564         falcon_fini_special_buffer(efx, &tx_queue->txd);
565 }
566
567 /* Free buffers backing TX queue */
568 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
569 {
570         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
571 }
572
573 /**************************************************************************
574  *
575  * Falcon RX path
576  *
577  **************************************************************************/
578
579 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
580 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
581                                                unsigned int index)
582 {
583         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
584 }
585
586 /* This creates an entry in the RX descriptor queue */
587 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
588                                         unsigned index)
589 {
590         struct efx_rx_buffer *rx_buf;
591         efx_qword_t *rxd;
592
593         rxd = falcon_rx_desc(rx_queue, index);
594         rx_buf = efx_rx_buffer(rx_queue, index);
595         EFX_POPULATE_QWORD_3(*rxd,
596                              RX_KER_BUF_SIZE,
597                              rx_buf->len -
598                              rx_queue->efx->type->rx_buffer_padding,
599                              RX_KER_BUF_REGION, 0,
600                              RX_KER_BUF_ADR, rx_buf->dma_addr);
601 }
602
603 /* This writes to the RX_DESC_WPTR register for the specified receive
604  * descriptor ring.
605  */
606 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
607 {
608         efx_dword_t reg;
609         unsigned write_ptr;
610
611         while (rx_queue->notified_count != rx_queue->added_count) {
612                 falcon_build_rx_desc(rx_queue,
613                                      rx_queue->notified_count &
614                                      FALCON_RXD_RING_MASK);
615                 ++rx_queue->notified_count;
616         }
617
618         wmb();
619         write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
620         EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
621         falcon_writel_page(rx_queue->efx, &reg,
622                            RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
623 }
624
625 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
626 {
627         struct efx_nic *efx = rx_queue->efx;
628         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
629                                            FALCON_RXD_RING_SIZE *
630                                            sizeof(efx_qword_t));
631 }
632
633 int falcon_init_rx(struct efx_rx_queue *rx_queue)
634 {
635         efx_oword_t rx_desc_ptr;
636         struct efx_nic *efx = rx_queue->efx;
637         int rc;
638         int is_b0 = FALCON_REV(efx) >= FALCON_REV_B0;
639         int iscsi_digest_en = is_b0;
640
641         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
642                 rx_queue->queue, rx_queue->rxd.index,
643                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
644
645         /* Pin RX descriptor ring */
646         rc = falcon_init_special_buffer(efx, &rx_queue->rxd);
647         if (rc)
648                 return rc;
649
650         /* Push RX descriptor ring to card */
651         EFX_POPULATE_OWORD_10(rx_desc_ptr,
652                               RX_ISCSI_DDIG_EN, iscsi_digest_en,
653                               RX_ISCSI_HDIG_EN, iscsi_digest_en,
654                               RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
655                               RX_DESCQ_EVQ_ID, rx_queue->channel->evqnum,
656                               RX_DESCQ_OWNER_ID, 0,
657                               RX_DESCQ_LABEL, rx_queue->queue,
658                               RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
659                               RX_DESCQ_TYPE, 0 /* kernel queue */ ,
660                               /* For >=B0 this is scatter so disable */
661                               RX_DESCQ_JUMBO, !is_b0,
662                               RX_DESCQ_EN, 1);
663         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
664                            rx_queue->queue);
665         return 0;
666 }
667
668 static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
669 {
670         struct efx_nic *efx = rx_queue->efx;
671         struct efx_channel *channel = &efx->channel[0];
672         unsigned int read_ptr, i;
673         efx_oword_t rx_flush_descq;
674
675         /* Post a flush command */
676         EFX_POPULATE_OWORD_2(rx_flush_descq,
677                              RX_FLUSH_DESCQ_CMD, 1,
678                              RX_FLUSH_DESCQ, rx_queue->queue);
679         falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
680         msleep(FALCON_FLUSH_TIMEOUT);
681
682         if (EFX_WORKAROUND_7803(efx))
683                 return 0;
684
685         /* Look for a flush completed event */
686         read_ptr = channel->eventq_read_ptr;
687         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
688                 efx_qword_t *event = falcon_event(channel, read_ptr);
689                 int ev_code, ev_sub_code, ev_queue, ev_failed;
690                 if (!falcon_event_present(event))
691                         break;
692
693                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
694                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
695                 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID);
696                 ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL);
697
698                 if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) &&
699                     (ev_queue == rx_queue->queue)) {
700                         if (ev_failed) {
701                                 EFX_INFO(efx, "rx queue %d flush command "
702                                          "failed\n", rx_queue->queue);
703                                 return -EAGAIN;
704                         } else {
705                                 EFX_LOG(efx, "rx queue %d flush command "
706                                         "succesful\n", rx_queue->queue);
707                                 return 0;
708                         }
709                 }
710
711                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
712         }
713
714         if (EFX_WORKAROUND_11557(efx)) {
715                 efx_oword_t reg;
716                 int enabled;
717
718                 falcon_read_table(efx, &reg, efx->type->rxd_ptr_tbl_base,
719                                   rx_queue->queue);
720                 enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN);
721                 if (!enabled) {
722                         EFX_LOG(efx, "rx queue %d disabled without a "
723                                 "flush event seen\n", rx_queue->queue);
724                         return 0;
725                 }
726         }
727
728         EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue);
729         return -ETIMEDOUT;
730 }
731
732 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
733 {
734         efx_oword_t rx_desc_ptr;
735         struct efx_nic *efx = rx_queue->efx;
736         int i, rc;
737
738         /* Try and flush the rx queue. This may need to be repeated */
739         for (i = 0; i < 5; i++) {
740                 rc = falcon_flush_rx_queue(rx_queue);
741                 if (rc == -EAGAIN)
742                         continue;
743                 break;
744         }
745         if (rc)
746                 EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue);
747
748         /* Remove RX descriptor ring from card */
749         EFX_ZERO_OWORD(rx_desc_ptr);
750         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
751                            rx_queue->queue);
752
753         /* Unpin RX descriptor ring */
754         falcon_fini_special_buffer(efx, &rx_queue->rxd);
755 }
756
757 /* Free buffers backing RX queue */
758 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
759 {
760         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
761 }
762
763 /**************************************************************************
764  *
765  * Falcon event queue processing
766  * Event queues are processed by per-channel tasklets.
767  *
768  **************************************************************************/
769
770 /* Update a channel's event queue's read pointer (RPTR) register
771  *
772  * This writes the EVQ_RPTR_REG register for the specified channel's
773  * event queue.
774  *
775  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
776  * whereas channel->eventq_read_ptr contains the index of the "next to
777  * read" event.
778  */
779 void falcon_eventq_read_ack(struct efx_channel *channel)
780 {
781         efx_dword_t reg;
782         struct efx_nic *efx = channel->efx;
783
784         EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
785         falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
786                             channel->evqnum);
787 }
788
789 /* Use HW to insert a SW defined event */
790 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
791 {
792         efx_oword_t drv_ev_reg;
793
794         EFX_POPULATE_OWORD_2(drv_ev_reg,
795                              DRV_EV_QID, channel->evqnum,
796                              DRV_EV_DATA,
797                              EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
798         falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
799 }
800
801 /* Handle a transmit completion event
802  *
803  * Falcon batches TX completion events; the message we receive is of
804  * the form "complete all TX events up to this index".
805  */
806 static inline void falcon_handle_tx_event(struct efx_channel *channel,
807                                           efx_qword_t *event)
808 {
809         unsigned int tx_ev_desc_ptr;
810         unsigned int tx_ev_q_label;
811         struct efx_tx_queue *tx_queue;
812         struct efx_nic *efx = channel->efx;
813
814         if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
815                 /* Transmit completion */
816                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
817                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
818                 tx_queue = &efx->tx_queue[tx_ev_q_label];
819                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
820         } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
821                 /* Rewrite the FIFO write pointer */
822                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
823                 tx_queue = &efx->tx_queue[tx_ev_q_label];
824
825                 if (NET_DEV_REGISTERED(efx))
826                         netif_tx_lock(efx->net_dev);
827                 falcon_notify_tx_desc(tx_queue);
828                 if (NET_DEV_REGISTERED(efx))
829                         netif_tx_unlock(efx->net_dev);
830         } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
831                    EFX_WORKAROUND_10727(efx)) {
832                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
833         } else {
834                 EFX_ERR(efx, "channel %d unexpected TX event "
835                         EFX_QWORD_FMT"\n", channel->channel,
836                         EFX_QWORD_VAL(*event));
837         }
838 }
839
840 /* Check received packet's destination MAC address. */
841 static int check_dest_mac(struct efx_rx_queue *rx_queue,
842                           const efx_qword_t *event)
843 {
844         struct efx_rx_buffer *rx_buf;
845         struct efx_nic *efx = rx_queue->efx;
846         int rx_ev_desc_ptr;
847         struct ethhdr *eh;
848
849         if (efx->promiscuous)
850                 return 1;
851
852         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
853         rx_buf = efx_rx_buffer(rx_queue, rx_ev_desc_ptr);
854         eh = (struct ethhdr *)rx_buf->data;
855         if (memcmp(eh->h_dest, efx->net_dev->dev_addr, ETH_ALEN))
856                 return 0;
857         return 1;
858 }
859
860 /* Detect errors included in the rx_evt_pkt_ok bit. */
861 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
862                                     const efx_qword_t *event,
863                                     unsigned *rx_ev_pkt_ok,
864                                     int *discard, int byte_count)
865 {
866         struct efx_nic *efx = rx_queue->efx;
867         unsigned rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
868         unsigned rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
869         unsigned rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
870         unsigned rx_ev_pkt_type, rx_ev_other_err, rx_ev_pause_frm;
871         unsigned rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
872         int snap, non_ip;
873
874         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
875         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
876         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
877         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
878         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
879                                                  RX_EV_BUF_OWNER_ID_ERR);
880         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
881         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
882                                                   RX_EV_IP_HDR_CHKSUM_ERR);
883         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
884                                                    RX_EV_TCP_UDP_CHKSUM_ERR);
885         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
886         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
887         rx_ev_drib_nib = ((FALCON_REV(efx) >= FALCON_REV_B0) ?
888                           0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
889         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
890
891         /* Every error apart from tobe_disc and pause_frm */
892         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
893                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
894                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
895
896         snap = (rx_ev_pkt_type == RX_EV_PKT_TYPE_LLC_DECODE) ||
897                 (rx_ev_pkt_type == RX_EV_PKT_TYPE_VLAN_LLC_DECODE);
898         non_ip = (rx_ev_hdr_type == RX_EV_HDR_TYPE_NON_IP_DECODE);
899
900         /* SFC bug 5475/8970: The Falcon XMAC incorrectly calculates the
901          * length field of an LLC frame, which sets TOBE_DISC. We could set
902          * PASS_LEN_ERR, but we want the MAC to filter out short frames (to
903          * protect the RX block).
904          *
905          * bug5475 - LLC/SNAP: Falcon identifies SNAP packets.
906          * bug8970 - LLC/noSNAP: Falcon does not provide an LLC flag.
907          *                       LLC can't encapsulate IP, so by definition
908          *                       these packets are NON_IP.
909          *
910          * Unicast mismatch will also cause TOBE_DISC, so the driver needs
911          * to check this.
912          */
913         if (EFX_WORKAROUND_5475(efx) && rx_ev_tobe_disc && (snap || non_ip)) {
914                 /* If all the other flags are zero then we can state the
915                  * entire packet is ok, which will flag to the kernel not
916                  * to recalculate checksums.
917                  */
918                 if (!(non_ip | rx_ev_other_err | rx_ev_pause_frm))
919                         *rx_ev_pkt_ok = 1;
920
921                 rx_ev_tobe_disc = 0;
922
923                 /* TOBE_DISC is set for unicast mismatch.  But given that
924                  * we can't trust TOBE_DISC here, we must validate the dest
925                  * MAC address ourselves.
926                  */
927                 if (!rx_ev_mcast_pkt && !check_dest_mac(rx_queue, event))
928                         rx_ev_tobe_disc = 1;
929         }
930
931         /* Count errors that are not in MAC stats. */
932         if (rx_ev_frm_trunc)
933                 ++rx_queue->channel->n_rx_frm_trunc;
934         else if (rx_ev_tobe_disc)
935                 ++rx_queue->channel->n_rx_tobe_disc;
936         else if (rx_ev_ip_hdr_chksum_err)
937                 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
938         else if (rx_ev_tcp_udp_chksum_err)
939                 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
940         if (rx_ev_ip_frag_err)
941                 ++rx_queue->channel->n_rx_ip_frag_err;
942
943         /* The frame must be discarded if any of these are true. */
944         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
945                     rx_ev_tobe_disc | rx_ev_pause_frm);
946
947         /* TOBE_DISC is expected on unicast mismatches; don't print out an
948          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
949          * to a FIFO overflow.
950          */
951 #ifdef EFX_ENABLE_DEBUG
952         if (rx_ev_other_err) {
953                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
954                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s%s\n",
955                             rx_queue->queue, EFX_QWORD_VAL(*event),
956                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
957                             rx_ev_ip_hdr_chksum_err ?
958                             " [IP_HDR_CHKSUM_ERR]" : "",
959                             rx_ev_tcp_udp_chksum_err ?
960                             " [TCP_UDP_CHKSUM_ERR]" : "",
961                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
962                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
963                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
964                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
965                             rx_ev_pause_frm ? " [PAUSE]" : "",
966                             snap ? " [SNAP/LLC]" : "");
967         }
968 #endif
969
970         if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
971                      efx->phy_type == PHY_TYPE_10XPRESS))
972                 tenxpress_crc_err(efx);
973 }
974
975 /* Handle receive events that are not in-order. */
976 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
977                                        unsigned index)
978 {
979         struct efx_nic *efx = rx_queue->efx;
980         unsigned expected, dropped;
981
982         expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
983         dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
984                    FALCON_RXD_RING_MASK);
985         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
986                 dropped, index, expected);
987
988         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
989                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
990 }
991
992 /* Handle a packet received event
993  *
994  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
995  * wrong destination address
996  * Also "is multicast" and "matches multicast filter" flags can be used to
997  * discard non-matching multicast packets.
998  */
999 static inline int falcon_handle_rx_event(struct efx_channel *channel,
1000                                          const efx_qword_t *event)
1001 {
1002         unsigned int rx_ev_q_label, rx_ev_desc_ptr, rx_ev_byte_cnt;
1003         unsigned int rx_ev_pkt_ok, rx_ev_hdr_type, rx_ev_mcast_pkt;
1004         unsigned expected_ptr;
1005         int discard = 0, checksummed;
1006         struct efx_rx_queue *rx_queue;
1007         struct efx_nic *efx = channel->efx;
1008
1009         /* Basic packet information */
1010         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
1011         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
1012         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
1013         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
1014         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
1015
1016         rx_ev_q_label = EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL);
1017         rx_queue = &efx->rx_queue[rx_ev_q_label];
1018
1019         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
1020         expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
1021         if (unlikely(rx_ev_desc_ptr != expected_ptr)) {
1022                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
1023                 return rx_ev_q_label;
1024         }
1025
1026         if (likely(rx_ev_pkt_ok)) {
1027                 /* If packet is marked as OK and packet type is TCP/IPv4 or
1028                  * UDP/IPv4, then we can rely on the hardware checksum.
1029                  */
1030                 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
1031         } else {
1032                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
1033                                         &discard, rx_ev_byte_cnt);
1034                 checksummed = 0;
1035         }
1036
1037         /* Detect multicast packets that didn't match the filter */
1038         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
1039         if (rx_ev_mcast_pkt) {
1040                 unsigned int rx_ev_mcast_hash_match =
1041                         EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
1042
1043                 if (unlikely(!rx_ev_mcast_hash_match))
1044                         discard = 1;
1045         }
1046
1047         /* Handle received packet */
1048         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
1049                       checksummed, discard);
1050
1051         return rx_ev_q_label;
1052 }
1053
1054 /* Global events are basically PHY events */
1055 static void falcon_handle_global_event(struct efx_channel *channel,
1056                                        efx_qword_t *event)
1057 {
1058         struct efx_nic *efx = channel->efx;
1059         int is_phy_event = 0, handled = 0;
1060
1061         /* Check for interrupt on either port.  Some boards have a
1062          * single PHY wired to the interrupt line for port 1. */
1063         if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
1064             EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
1065             EFX_QWORD_FIELD(*event, XG_PHY_INTR))
1066                 is_phy_event = 1;
1067
1068         if ((FALCON_REV(efx) >= FALCON_REV_B0) &&
1069             EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0))
1070                 is_phy_event = 1;
1071
1072         if (is_phy_event) {
1073                 efx->phy_op->clear_interrupt(efx);
1074                 queue_work(efx->workqueue, &efx->reconfigure_work);
1075                 handled = 1;
1076         }
1077
1078         if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
1079                 EFX_ERR(efx, "channel %d seen global RX_RESET "
1080                         "event. Resetting.\n", channel->channel);
1081
1082                 atomic_inc(&efx->rx_reset);
1083                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1084                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1085                 handled = 1;
1086         }
1087
1088         if (!handled)
1089                 EFX_ERR(efx, "channel %d unknown global event "
1090                         EFX_QWORD_FMT "\n", channel->channel,
1091                         EFX_QWORD_VAL(*event));
1092 }
1093
1094 static void falcon_handle_driver_event(struct efx_channel *channel,
1095                                        efx_qword_t *event)
1096 {
1097         struct efx_nic *efx = channel->efx;
1098         unsigned int ev_sub_code;
1099         unsigned int ev_sub_data;
1100
1101         ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1102         ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
1103
1104         switch (ev_sub_code) {
1105         case TX_DESCQ_FLS_DONE_EV_DECODE:
1106                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
1107                           channel->channel, ev_sub_data);
1108                 break;
1109         case RX_DESCQ_FLS_DONE_EV_DECODE:
1110                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
1111                           channel->channel, ev_sub_data);
1112                 break;
1113         case EVQ_INIT_DONE_EV_DECODE:
1114                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
1115                         channel->channel, ev_sub_data);
1116                 break;
1117         case SRM_UPD_DONE_EV_DECODE:
1118                 EFX_TRACE(efx, "channel %d SRAM update done\n",
1119                           channel->channel);
1120                 break;
1121         case WAKE_UP_EV_DECODE:
1122                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
1123                           channel->channel, ev_sub_data);
1124                 break;
1125         case TIMER_EV_DECODE:
1126                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
1127                           channel->channel, ev_sub_data);
1128                 break;
1129         case RX_RECOVERY_EV_DECODE:
1130                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
1131                         "Resetting.\n", channel->channel);
1132                 efx_schedule_reset(efx,
1133                                    EFX_WORKAROUND_6555(efx) ?
1134                                    RESET_TYPE_RX_RECOVERY :
1135                                    RESET_TYPE_DISABLE);
1136                 break;
1137         case RX_DSC_ERROR_EV_DECODE:
1138                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
1139                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1140                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1141                 break;
1142         case TX_DSC_ERROR_EV_DECODE:
1143                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
1144                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1145                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1146                 break;
1147         default:
1148                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1149                           "data %04x\n", channel->channel, ev_sub_code,
1150                           ev_sub_data);
1151                 break;
1152         }
1153 }
1154
1155 int falcon_process_eventq(struct efx_channel *channel, int *rx_quota)
1156 {
1157         unsigned int read_ptr;
1158         efx_qword_t event, *p_event;
1159         int ev_code;
1160         int rxq;
1161         int rxdmaqs = 0;
1162
1163         read_ptr = channel->eventq_read_ptr;
1164
1165         do {
1166                 p_event = falcon_event(channel, read_ptr);
1167                 event = *p_event;
1168
1169                 if (!falcon_event_present(&event))
1170                         /* End of events */
1171                         break;
1172
1173                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1174                           channel->channel, EFX_QWORD_VAL(event));
1175
1176                 /* Clear this event by marking it all ones */
1177                 EFX_SET_QWORD(*p_event);
1178
1179                 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1180
1181                 switch (ev_code) {
1182                 case RX_IP_EV_DECODE:
1183                         rxq = falcon_handle_rx_event(channel, &event);
1184                         rxdmaqs |= (1 << rxq);
1185                         (*rx_quota)--;
1186                         break;
1187                 case TX_IP_EV_DECODE:
1188                         falcon_handle_tx_event(channel, &event);
1189                         break;
1190                 case DRV_GEN_EV_DECODE:
1191                         channel->eventq_magic
1192                                 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1193                         EFX_LOG(channel->efx, "channel %d received generated "
1194                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1195                                 EFX_QWORD_VAL(event));
1196                         break;
1197                 case GLOBAL_EV_DECODE:
1198                         falcon_handle_global_event(channel, &event);
1199                         break;
1200                 case DRIVER_EV_DECODE:
1201                         falcon_handle_driver_event(channel, &event);
1202                         break;
1203                 default:
1204                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1205                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1206                                 ev_code, EFX_QWORD_VAL(event));
1207                 }
1208
1209                 /* Increment read pointer */
1210                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1211
1212         } while (*rx_quota);
1213
1214         channel->eventq_read_ptr = read_ptr;
1215         return rxdmaqs;
1216 }
1217
1218 void falcon_set_int_moderation(struct efx_channel *channel)
1219 {
1220         efx_dword_t timer_cmd;
1221         struct efx_nic *efx = channel->efx;
1222
1223         /* Set timer register */
1224         if (channel->irq_moderation) {
1225                 /* Round to resolution supported by hardware.  The value we
1226                  * program is based at 0.  So actual interrupt moderation
1227                  * achieved is ((x + 1) * res).
1228                  */
1229                 unsigned int res = 5;
1230                 channel->irq_moderation -= (channel->irq_moderation % res);
1231                 if (channel->irq_moderation < res)
1232                         channel->irq_moderation = res;
1233                 EFX_POPULATE_DWORD_2(timer_cmd,
1234                                      TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1235                                      TIMER_VAL,
1236                                      (channel->irq_moderation / res) - 1);
1237         } else {
1238                 EFX_POPULATE_DWORD_2(timer_cmd,
1239                                      TIMER_MODE, TIMER_MODE_DIS,
1240                                      TIMER_VAL, 0);
1241         }
1242         falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1243                                   channel->evqnum);
1244
1245 }
1246
1247 /* Allocate buffer table entries for event queue */
1248 int falcon_probe_eventq(struct efx_channel *channel)
1249 {
1250         struct efx_nic *efx = channel->efx;
1251         unsigned int evq_size;
1252
1253         evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1254         return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1255 }
1256
1257 int falcon_init_eventq(struct efx_channel *channel)
1258 {
1259         efx_oword_t evq_ptr;
1260         struct efx_nic *efx = channel->efx;
1261         int rc;
1262
1263         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1264                 channel->channel, channel->eventq.index,
1265                 channel->eventq.index + channel->eventq.entries - 1);
1266
1267         /* Pin event queue buffer */
1268         rc = falcon_init_special_buffer(efx, &channel->eventq);
1269         if (rc)
1270                 return rc;
1271
1272         /* Fill event queue with all ones (i.e. empty events) */
1273         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1274
1275         /* Push event queue to card */
1276         EFX_POPULATE_OWORD_3(evq_ptr,
1277                              EVQ_EN, 1,
1278                              EVQ_SIZE, FALCON_EVQ_ORDER,
1279                              EVQ_BUF_BASE_ID, channel->eventq.index);
1280         falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1281                            channel->evqnum);
1282
1283         falcon_set_int_moderation(channel);
1284
1285         return 0;
1286 }
1287
1288 void falcon_fini_eventq(struct efx_channel *channel)
1289 {
1290         efx_oword_t eventq_ptr;
1291         struct efx_nic *efx = channel->efx;
1292
1293         /* Remove event queue from card */
1294         EFX_ZERO_OWORD(eventq_ptr);
1295         falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1296                            channel->evqnum);
1297
1298         /* Unpin event queue */
1299         falcon_fini_special_buffer(efx, &channel->eventq);
1300 }
1301
1302 /* Free buffers backing event queue */
1303 void falcon_remove_eventq(struct efx_channel *channel)
1304 {
1305         falcon_free_special_buffer(channel->efx, &channel->eventq);
1306 }
1307
1308
1309 /* Generates a test event on the event queue.  A subsequent call to
1310  * process_eventq() should pick up the event and place the value of
1311  * "magic" into channel->eventq_magic;
1312  */
1313 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1314 {
1315         efx_qword_t test_event;
1316
1317         EFX_POPULATE_QWORD_2(test_event,
1318                              EV_CODE, DRV_GEN_EV_DECODE,
1319                              EVQ_MAGIC, magic);
1320         falcon_generate_event(channel, &test_event);
1321 }
1322
1323
1324 /**************************************************************************
1325  *
1326  * Falcon hardware interrupts
1327  * The hardware interrupt handler does very little work; all the event
1328  * queue processing is carried out by per-channel tasklets.
1329  *
1330  **************************************************************************/
1331
1332 /* Enable/disable/generate Falcon interrupts */
1333 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1334                                      int force)
1335 {
1336         efx_oword_t int_en_reg_ker;
1337
1338         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1339                              KER_INT_KER, force,
1340                              DRV_INT_EN_KER, enabled);
1341         falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1342 }
1343
1344 void falcon_enable_interrupts(struct efx_nic *efx)
1345 {
1346         efx_oword_t int_adr_reg_ker;
1347         struct efx_channel *channel;
1348
1349         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1350         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1351
1352         /* Program address */
1353         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1354                              NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1355                              INT_ADR_KER, efx->irq_status.dma_addr);
1356         falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1357
1358         /* Enable interrupts */
1359         falcon_interrupts(efx, 1, 0);
1360
1361         /* Force processing of all the channels to get the EVQ RPTRs up to
1362            date */
1363         efx_for_each_channel_with_interrupt(channel, efx)
1364                 efx_schedule_channel(channel);
1365 }
1366
1367 void falcon_disable_interrupts(struct efx_nic *efx)
1368 {
1369         /* Disable interrupts */
1370         falcon_interrupts(efx, 0, 0);
1371 }
1372
1373 /* Generate a Falcon test interrupt
1374  * Interrupt must already have been enabled, otherwise nasty things
1375  * may happen.
1376  */
1377 void falcon_generate_interrupt(struct efx_nic *efx)
1378 {
1379         falcon_interrupts(efx, 1, 1);
1380 }
1381
1382 /* Acknowledge a legacy interrupt from Falcon
1383  *
1384  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1385  *
1386  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1387  * BIU. Interrupt acknowledge is read sensitive so must write instead
1388  * (then read to ensure the BIU collector is flushed)
1389  *
1390  * NB most hardware supports MSI interrupts
1391  */
1392 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1393 {
1394         efx_dword_t reg;
1395
1396         EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1397         falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1398         falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1399 }
1400
1401 /* Process a fatal interrupt
1402  * Disable bus mastering ASAP and schedule a reset
1403  */
1404 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1405 {
1406         struct falcon_nic_data *nic_data = efx->nic_data;
1407         efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
1408         efx_oword_t fatal_intr;
1409         int error, mem_perr;
1410         static int n_int_errors;
1411
1412         falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1413         error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1414
1415         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1416                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1417                 EFX_OWORD_VAL(fatal_intr),
1418                 error ? "disabling bus mastering" : "no recognised error");
1419         if (error == 0)
1420                 goto out;
1421
1422         /* If this is a memory parity error dump which blocks are offending */
1423         mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1424         if (mem_perr) {
1425                 efx_oword_t reg;
1426                 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1427                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1428                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1429         }
1430
1431         /* Disable DMA bus mastering on both devices */
1432         pci_disable_device(efx->pci_dev);
1433         if (FALCON_IS_DUAL_FUNC(efx))
1434                 pci_disable_device(nic_data->pci_dev2);
1435
1436         if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1437                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1438                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1439         } else {
1440                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1441                         "NIC will be disabled\n");
1442                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1443         }
1444 out:
1445         return IRQ_HANDLED;
1446 }
1447
1448 /* Handle a legacy interrupt from Falcon
1449  * Acknowledges the interrupt and schedule event queue processing.
1450  */
1451 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1452 {
1453         struct efx_nic *efx = (struct efx_nic *)dev_id;
1454         efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
1455         struct efx_channel *channel;
1456         efx_dword_t reg;
1457         u32 queues;
1458         int syserr;
1459
1460         /* Read the ISR which also ACKs the interrupts */
1461         falcon_readl(efx, &reg, INT_ISR0_B0);
1462         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1463
1464         /* Check to see if we have a serious error condition */
1465         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1466         if (unlikely(syserr))
1467                 return falcon_fatal_interrupt(efx);
1468
1469         if (queues == 0)
1470                 return IRQ_NONE;
1471
1472         efx->last_irq_cpu = raw_smp_processor_id();
1473         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1474                   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1475
1476         /* Schedule processing of any interrupting queues */
1477         channel = &efx->channel[0];
1478         while (queues) {
1479                 if (queues & 0x01)
1480                         efx_schedule_channel(channel);
1481                 channel++;
1482                 queues >>= 1;
1483         }
1484
1485         return IRQ_HANDLED;
1486 }
1487
1488
1489 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1490 {
1491         struct efx_nic *efx = (struct efx_nic *)dev_id;
1492         efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
1493         struct efx_channel *channel;
1494         int syserr;
1495         int queues;
1496
1497         /* Check to see if this is our interrupt.  If it isn't, we
1498          * exit without having touched the hardware.
1499          */
1500         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1501                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1502                           raw_smp_processor_id());
1503                 return IRQ_NONE;
1504         }
1505         efx->last_irq_cpu = raw_smp_processor_id();
1506         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1507                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1508
1509         /* Check to see if we have a serious error condition */
1510         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1511         if (unlikely(syserr))
1512                 return falcon_fatal_interrupt(efx);
1513
1514         /* Determine interrupting queues, clear interrupt status
1515          * register and acknowledge the device interrupt.
1516          */
1517         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1518         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1519         EFX_ZERO_OWORD(*int_ker);
1520         wmb(); /* Ensure the vector is cleared before interrupt ack */
1521         falcon_irq_ack_a1(efx);
1522
1523         /* Schedule processing of any interrupting queues */
1524         channel = &efx->channel[0];
1525         while (queues) {
1526                 if (queues & 0x01)
1527                         efx_schedule_channel(channel);
1528                 channel++;
1529                 queues >>= 1;
1530         }
1531
1532         return IRQ_HANDLED;
1533 }
1534
1535 /* Handle an MSI interrupt from Falcon
1536  *
1537  * Handle an MSI hardware interrupt.  This routine schedules event
1538  * queue processing.  No interrupt acknowledgement cycle is necessary.
1539  * Also, we never need to check that the interrupt is for us, since
1540  * MSI interrupts cannot be shared.
1541  */
1542 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1543 {
1544         struct efx_channel *channel = (struct efx_channel *)dev_id;
1545         struct efx_nic *efx = channel->efx;
1546         efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
1547         int syserr;
1548
1549         efx->last_irq_cpu = raw_smp_processor_id();
1550         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1551                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1552
1553         /* Check to see if we have a serious error condition */
1554         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1555         if (unlikely(syserr))
1556                 return falcon_fatal_interrupt(efx);
1557
1558         /* Schedule processing of the channel */
1559         efx_schedule_channel(channel);
1560
1561         return IRQ_HANDLED;
1562 }
1563
1564
1565 /* Setup RSS indirection table.
1566  * This maps from the hash value of the packet to RXQ
1567  */
1568 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1569 {
1570         int i = 0;
1571         unsigned long offset;
1572         efx_dword_t dword;
1573
1574         if (FALCON_REV(efx) < FALCON_REV_B0)
1575                 return;
1576
1577         for (offset = RX_RSS_INDIR_TBL_B0;
1578              offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1579              offset += 0x10) {
1580                 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1581                                      i % efx->rss_queues);
1582                 falcon_writel(efx, &dword, offset);
1583                 i++;
1584         }
1585 }
1586
1587 /* Hook interrupt handler(s)
1588  * Try MSI and then legacy interrupts.
1589  */
1590 int falcon_init_interrupt(struct efx_nic *efx)
1591 {
1592         struct efx_channel *channel;
1593         int rc;
1594
1595         if (!EFX_INT_MODE_USE_MSI(efx)) {
1596                 irq_handler_t handler;
1597                 if (FALCON_REV(efx) >= FALCON_REV_B0)
1598                         handler = falcon_legacy_interrupt_b0;
1599                 else
1600                         handler = falcon_legacy_interrupt_a1;
1601
1602                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1603                                  efx->name, efx);
1604                 if (rc) {
1605                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1606                                 efx->pci_dev->irq);
1607                         goto fail1;
1608                 }
1609                 return 0;
1610         }
1611
1612         /* Hook MSI or MSI-X interrupt */
1613         efx_for_each_channel_with_interrupt(channel, efx) {
1614                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1615                                  IRQF_PROBE_SHARED, /* Not shared */
1616                                  efx->name, channel);
1617                 if (rc) {
1618                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1619                         goto fail2;
1620                 }
1621         }
1622
1623         return 0;
1624
1625  fail2:
1626         efx_for_each_channel_with_interrupt(channel, efx)
1627                 free_irq(channel->irq, channel);
1628  fail1:
1629         return rc;
1630 }
1631
1632 void falcon_fini_interrupt(struct efx_nic *efx)
1633 {
1634         struct efx_channel *channel;
1635         efx_oword_t reg;
1636
1637         /* Disable MSI/MSI-X interrupts */
1638         efx_for_each_channel_with_interrupt(channel, efx)
1639                 if (channel->irq)
1640                         free_irq(channel->irq, channel);
1641
1642         /* ACK legacy interrupt */
1643         if (FALCON_REV(efx) >= FALCON_REV_B0)
1644                 falcon_read(efx, &reg, INT_ISR0_B0);
1645         else
1646                 falcon_irq_ack_a1(efx);
1647
1648         /* Disable legacy interrupt */
1649         if (efx->legacy_irq)
1650                 free_irq(efx->legacy_irq, efx);
1651 }
1652
1653 /**************************************************************************
1654  *
1655  * EEPROM/flash
1656  *
1657  **************************************************************************
1658  */
1659
1660 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1661
1662 /* Wait for SPI command completion */
1663 static int falcon_spi_wait(struct efx_nic *efx)
1664 {
1665         efx_oword_t reg;
1666         int cmd_en, timer_active;
1667         int count;
1668
1669         count = 0;
1670         do {
1671                 falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1672                 cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN);
1673                 timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE);
1674                 if (!cmd_en && !timer_active)
1675                         return 0;
1676                 udelay(10);
1677         } while (++count < 10000); /* wait upto 100msec */
1678         EFX_ERR(efx, "timed out waiting for SPI\n");
1679         return -ETIMEDOUT;
1680 }
1681
1682 static int
1683 falcon_spi_read(struct efx_nic *efx, int device_id, unsigned int command,
1684                 unsigned int address, unsigned int addr_len,
1685                 void *data, unsigned int len)
1686 {
1687         efx_oword_t reg;
1688         int rc;
1689
1690         BUG_ON(len > FALCON_SPI_MAX_LEN);
1691
1692         /* Check SPI not currently being accessed */
1693         rc = falcon_spi_wait(efx);
1694         if (rc)
1695                 return rc;
1696
1697         /* Program address register */
1698         EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1699         falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1700
1701         /* Issue read command */
1702         EFX_POPULATE_OWORD_7(reg,
1703                              EE_SPI_HCMD_CMD_EN, 1,
1704                              EE_SPI_HCMD_SF_SEL, device_id,
1705                              EE_SPI_HCMD_DABCNT, len,
1706                              EE_SPI_HCMD_READ, EE_SPI_READ,
1707                              EE_SPI_HCMD_DUBCNT, 0,
1708                              EE_SPI_HCMD_ADBCNT, addr_len,
1709                              EE_SPI_HCMD_ENC, command);
1710         falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1711
1712         /* Wait for read to complete */
1713         rc = falcon_spi_wait(efx);
1714         if (rc)
1715                 return rc;
1716
1717         /* Read data */
1718         falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1719         memcpy(data, &reg, len);
1720         return 0;
1721 }
1722
1723 /**************************************************************************
1724  *
1725  * MAC wrapper
1726  *
1727  **************************************************************************
1728  */
1729 void falcon_drain_tx_fifo(struct efx_nic *efx)
1730 {
1731         efx_oword_t temp;
1732         int count;
1733
1734         if (FALCON_REV(efx) < FALCON_REV_B0)
1735                 return;
1736
1737         falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1738         /* There is no point in draining more than once */
1739         if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1740                 return;
1741
1742         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1743          * the drain sequence with the statistics fetch */
1744         spin_lock(&efx->stats_lock);
1745
1746         EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
1747         falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
1748
1749         /* Reset the MAC and EM block. */
1750         falcon_read(efx, &temp, GLB_CTL_REG_KER);
1751         EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
1752         EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
1753         EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
1754         falcon_write(efx, &temp, GLB_CTL_REG_KER);
1755
1756         count = 0;
1757         while (1) {
1758                 falcon_read(efx, &temp, GLB_CTL_REG_KER);
1759                 if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
1760                     !EFX_OWORD_FIELD(temp, RST_XGRX) &&
1761                     !EFX_OWORD_FIELD(temp, RST_EM)) {
1762                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1763                                 count);
1764                         break;
1765                 }
1766                 if (count > 20) {
1767                         EFX_ERR(efx, "MAC reset failed\n");
1768                         break;
1769                 }
1770                 count++;
1771                 udelay(10);
1772         }
1773
1774         spin_unlock(&efx->stats_lock);
1775
1776         /* If we've reset the EM block and the link is up, then
1777          * we'll have to kick the XAUI link so the PHY can recover */
1778         if (efx->link_up && EFX_WORKAROUND_5147(efx))
1779                 falcon_reset_xaui(efx);
1780 }
1781
1782 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1783 {
1784         efx_oword_t temp;
1785
1786         if (FALCON_REV(efx) < FALCON_REV_B0)
1787                 return;
1788
1789         /* Isolate the MAC -> RX */
1790         falcon_read(efx, &temp, RX_CFG_REG_KER);
1791         EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
1792         falcon_write(efx, &temp, RX_CFG_REG_KER);
1793
1794         if (!efx->link_up)
1795                 falcon_drain_tx_fifo(efx);
1796 }
1797
1798 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1799 {
1800         efx_oword_t reg;
1801         int link_speed;
1802         unsigned int tx_fc;
1803
1804         if (efx->link_options & GM_LPA_10000)
1805                 link_speed = 0x3;
1806         else if (efx->link_options & GM_LPA_1000)
1807                 link_speed = 0x2;
1808         else if (efx->link_options & GM_LPA_100)
1809                 link_speed = 0x1;
1810         else
1811                 link_speed = 0x0;
1812         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1813          * as advertised.  Disable to ensure packets are not
1814          * indefinitely held and TX queue can be flushed at any point
1815          * while the link is down. */
1816         EFX_POPULATE_OWORD_5(reg,
1817                              MAC_XOFF_VAL, 0xffff /* max pause time */,
1818                              MAC_BCAD_ACPT, 1,
1819                              MAC_UC_PROM, efx->promiscuous,
1820                              MAC_LINK_STATUS, 1, /* always set */
1821                              MAC_SPEED, link_speed);
1822         /* On B0, MAC backpressure can be disabled and packets get
1823          * discarded. */
1824         if (FALCON_REV(efx) >= FALCON_REV_B0) {
1825                 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1826                                     !efx->link_up);
1827         }
1828
1829         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1830
1831         /* Restore the multicast hash registers. */
1832         falcon_set_multicast_hash(efx);
1833
1834         /* Transmission of pause frames when RX crosses the threshold is
1835          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1836          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1837         tx_fc = (efx->flow_control & EFX_FC_TX) ? 1 : 0;
1838         falcon_read(efx, &reg, RX_CFG_REG_KER);
1839         EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1840
1841         /* Unisolate the MAC -> RX */
1842         if (FALCON_REV(efx) >= FALCON_REV_B0)
1843                 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
1844         falcon_write(efx, &reg, RX_CFG_REG_KER);
1845 }
1846
1847 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
1848 {
1849         efx_oword_t reg;
1850         u32 *dma_done;
1851         int i;
1852
1853         if (disable_dma_stats)
1854                 return 0;
1855
1856         /* Statistics fetch will fail if the MAC is in TX drain */
1857         if (FALCON_REV(efx) >= FALCON_REV_B0) {
1858                 efx_oword_t temp;
1859                 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1860                 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1861                         return 0;
1862         }
1863
1864         dma_done = (efx->stats_buffer.addr + done_offset);
1865         *dma_done = FALCON_STATS_NOT_DONE;
1866         wmb(); /* ensure done flag is clear */
1867
1868         /* Initiate DMA transfer of stats */
1869         EFX_POPULATE_OWORD_2(reg,
1870                              MAC_STAT_DMA_CMD, 1,
1871                              MAC_STAT_DMA_ADR,
1872                              efx->stats_buffer.dma_addr);
1873         falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
1874
1875         /* Wait for transfer to complete */
1876         for (i = 0; i < 400; i++) {
1877                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE)
1878                         return 0;
1879                 udelay(10);
1880         }
1881
1882         EFX_ERR(efx, "timed out waiting for statistics\n");
1883         return -ETIMEDOUT;
1884 }
1885
1886 /**************************************************************************
1887  *
1888  * PHY access via GMII
1889  *
1890  **************************************************************************
1891  */
1892
1893 /* Use the top bit of the MII PHY id to indicate the PHY type
1894  * (1G/10G), with the remaining bits as the actual PHY id.
1895  *
1896  * This allows us to avoid leaking information from the mii_if_info
1897  * structure into other data structures.
1898  */
1899 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
1900 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
1901 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
1902 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
1903 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
1904
1905
1906 /* Packing the clause 45 port and device fields into a single value */
1907 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
1908 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
1909 #define MD_DEV_ADR_COMP_LBN    0
1910 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
1911
1912
1913 /* Wait for GMII access to complete */
1914 static int falcon_gmii_wait(struct efx_nic *efx)
1915 {
1916         efx_dword_t md_stat;
1917         int count;
1918
1919         for (count = 0; count < 1000; count++) {        /* wait upto 10ms */
1920                 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
1921                 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
1922                         if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
1923                             EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
1924                                 EFX_ERR(efx, "error from GMII access "
1925                                         EFX_DWORD_FMT"\n",
1926                                         EFX_DWORD_VAL(md_stat));
1927                                 return -EIO;
1928                         }
1929                         return 0;
1930                 }
1931                 udelay(10);
1932         }
1933         EFX_ERR(efx, "timed out waiting for GMII\n");
1934         return -ETIMEDOUT;
1935 }
1936
1937 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
1938 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
1939                               int addr, int value)
1940 {
1941         struct efx_nic *efx = (struct efx_nic *)net_dev->priv;
1942         unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
1943         efx_oword_t reg;
1944
1945         /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
1946          * chosen so that the only current user, Falcon, can take the
1947          * packed value and use them directly.
1948          * Fail to build if this assumption is broken.
1949          */
1950         BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
1951         BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
1952         BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
1953         BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
1954
1955         if (phy_id2 == PHY_ADDR_INVALID)
1956                 return;
1957
1958         /* See falcon_mdio_read for an explanation. */
1959         if (!(phy_id & FALCON_PHY_ID_10G)) {
1960                 int mmd = ffs(efx->phy_op->mmds) - 1;
1961                 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
1962                 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
1963                         & FALCON_PHY_ID_ID_MASK;
1964         }
1965
1966         EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
1967                     addr, value);
1968
1969         spin_lock_bh(&efx->phy_lock);
1970
1971         /* Check MII not currently being accessed */
1972         if (falcon_gmii_wait(efx) != 0)
1973                 goto out;
1974
1975         /* Write the address/ID register */
1976         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
1977         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
1978
1979         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
1980         falcon_write(efx, &reg, MD_ID_REG_KER);
1981
1982         /* Write data */
1983         EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
1984         falcon_write(efx, &reg, MD_TXD_REG_KER);
1985
1986         EFX_POPULATE_OWORD_2(reg,
1987                              MD_WRC, 1,
1988                              MD_GC, 0);
1989         falcon_write(efx, &reg, MD_CS_REG_KER);
1990
1991         /* Wait for data to be written */
1992         if (falcon_gmii_wait(efx) != 0) {
1993                 /* Abort the write operation */
1994                 EFX_POPULATE_OWORD_2(reg,
1995                                      MD_WRC, 0,
1996                                      MD_GC, 1);
1997                 falcon_write(efx, &reg, MD_CS_REG_KER);
1998                 udelay(10);
1999         }
2000
2001  out:
2002         spin_unlock_bh(&efx->phy_lock);
2003 }
2004
2005 /* Reads a GMII register from a PHY connected to Falcon.  If no value
2006  * could be read, -1 will be returned. */
2007 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2008 {
2009         struct efx_nic *efx = (struct efx_nic *)net_dev->priv;
2010         unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2011         efx_oword_t reg;
2012         int value = -1;
2013
2014         if (phy_addr == PHY_ADDR_INVALID)
2015                 return -1;
2016
2017         /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2018          * but the generic Linux code does not make any distinction or have
2019          * any state for this.
2020          * We spot the case where someone tried to talk 22 to a 45 PHY and
2021          * redirect the request to the lowest numbered MMD as a clause45
2022          * request. This is enough to allow simple queries like id and link
2023          * state to succeed. TODO: We may need to do more in future.
2024          */
2025         if (!(phy_id & FALCON_PHY_ID_10G)) {
2026                 int mmd = ffs(efx->phy_op->mmds) - 1;
2027                 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2028                 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2029                         & FALCON_PHY_ID_ID_MASK;
2030         }
2031
2032         spin_lock_bh(&efx->phy_lock);
2033
2034         /* Check MII not currently being accessed */
2035         if (falcon_gmii_wait(efx) != 0)
2036                 goto out;
2037
2038         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2039         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2040
2041         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2042         falcon_write(efx, &reg, MD_ID_REG_KER);
2043
2044         /* Request data to be read */
2045         EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2046         falcon_write(efx, &reg, MD_CS_REG_KER);
2047
2048         /* Wait for data to become available */
2049         value = falcon_gmii_wait(efx);
2050         if (value == 0) {
2051                 falcon_read(efx, &reg, MD_RXD_REG_KER);
2052                 value = EFX_OWORD_FIELD(reg, MD_RXD);
2053                 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2054                             phy_id, addr, value);
2055         } else {
2056                 /* Abort the read operation */
2057                 EFX_POPULATE_OWORD_2(reg,
2058                                      MD_RIC, 0,
2059                                      MD_GC, 1);
2060                 falcon_write(efx, &reg, MD_CS_REG_KER);
2061
2062                 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2063                         "error %d\n", phy_id, addr, value);
2064         }
2065
2066  out:
2067         spin_unlock_bh(&efx->phy_lock);
2068
2069         return value;
2070 }
2071
2072 static void falcon_init_mdio(struct mii_if_info *gmii)
2073 {
2074         gmii->mdio_read = falcon_mdio_read;
2075         gmii->mdio_write = falcon_mdio_write;
2076         gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2077         gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2078 }
2079
2080 static int falcon_probe_phy(struct efx_nic *efx)
2081 {
2082         switch (efx->phy_type) {
2083         case PHY_TYPE_10XPRESS:
2084                 efx->phy_op = &falcon_tenxpress_phy_ops;
2085                 break;
2086         case PHY_TYPE_XFP:
2087                 efx->phy_op = &falcon_xfp_phy_ops;
2088                 break;
2089         default:
2090                 EFX_ERR(efx, "Unknown PHY type %d\n",
2091                         efx->phy_type);
2092                 return -1;
2093         }
2094         return 0;
2095 }
2096
2097 /* This call is responsible for hooking in the MAC and PHY operations */
2098 int falcon_probe_port(struct efx_nic *efx)
2099 {
2100         int rc;
2101
2102         /* Hook in PHY operations table */
2103         rc = falcon_probe_phy(efx);
2104         if (rc)
2105                 return rc;
2106
2107         /* Set up GMII structure for PHY */
2108         efx->mii.supports_gmii = 1;
2109         falcon_init_mdio(&efx->mii);
2110
2111         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2112         if (FALCON_REV(efx) >= FALCON_REV_B0)
2113                 efx->flow_control = EFX_FC_RX | EFX_FC_TX;
2114         else
2115                 efx->flow_control = EFX_FC_RX;
2116
2117         /* Allocate buffer for stats */
2118         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2119                                  FALCON_MAC_STATS_SIZE);
2120         if (rc)
2121                 return rc;
2122         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2123                 (unsigned long long)efx->stats_buffer.dma_addr,
2124                 efx->stats_buffer.addr,
2125                 virt_to_phys(efx->stats_buffer.addr));
2126
2127         return 0;
2128 }
2129
2130 void falcon_remove_port(struct efx_nic *efx)
2131 {
2132         falcon_free_buffer(efx, &efx->stats_buffer);
2133 }
2134
2135 /**************************************************************************
2136  *
2137  * Multicast filtering
2138  *
2139  **************************************************************************
2140  */
2141
2142 void falcon_set_multicast_hash(struct efx_nic *efx)
2143 {
2144         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2145
2146         /* Broadcast packets go through the multicast hash filter.
2147          * ether_crc_le() of the broadcast address is 0xbe2612ff
2148          * so we always add bit 0xff to the mask.
2149          */
2150         set_bit_le(0xff, mc_hash->byte);
2151
2152         falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2153         falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2154 }
2155
2156 /**************************************************************************
2157  *
2158  * Device reset
2159  *
2160  **************************************************************************
2161  */
2162
2163 /* Resets NIC to known state.  This routine must be called in process
2164  * context and is allowed to sleep. */
2165 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2166 {
2167         struct falcon_nic_data *nic_data = efx->nic_data;
2168         efx_oword_t glb_ctl_reg_ker;
2169         int rc;
2170
2171         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2172
2173         /* Initiate device reset */
2174         if (method == RESET_TYPE_WORLD) {
2175                 rc = pci_save_state(efx->pci_dev);
2176                 if (rc) {
2177                         EFX_ERR(efx, "failed to backup PCI state of primary "
2178                                 "function prior to hardware reset\n");
2179                         goto fail1;
2180                 }
2181                 if (FALCON_IS_DUAL_FUNC(efx)) {
2182                         rc = pci_save_state(nic_data->pci_dev2);
2183                         if (rc) {
2184                                 EFX_ERR(efx, "failed to backup PCI state of "
2185                                         "secondary function prior to "
2186                                         "hardware reset\n");
2187                                 goto fail2;
2188                         }
2189                 }
2190
2191                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2192                                      EXT_PHY_RST_DUR, 0x7,
2193                                      SWRST, 1);
2194         } else {
2195                 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2196                                  EXCLUDE_FROM_RESET : 0);
2197
2198                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2199                                      EXT_PHY_RST_CTL, reset_phy,
2200                                      PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2201                                      PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2202                                      PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2203                                      EE_RST_CTL, EXCLUDE_FROM_RESET,
2204                                      EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2205                                      SWRST, 1);
2206         }
2207         falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2208
2209         EFX_LOG(efx, "waiting for hardware reset\n");
2210         schedule_timeout_uninterruptible(HZ / 20);
2211
2212         /* Restore PCI configuration if needed */
2213         if (method == RESET_TYPE_WORLD) {
2214                 if (FALCON_IS_DUAL_FUNC(efx)) {
2215                         rc = pci_restore_state(nic_data->pci_dev2);
2216                         if (rc) {
2217                                 EFX_ERR(efx, "failed to restore PCI config for "
2218                                         "the secondary function\n");
2219                                 goto fail3;
2220                         }
2221                 }
2222                 rc = pci_restore_state(efx->pci_dev);
2223                 if (rc) {
2224                         EFX_ERR(efx, "failed to restore PCI config for the "
2225                                 "primary function\n");
2226                         goto fail4;
2227                 }
2228                 EFX_LOG(efx, "successfully restored PCI config\n");
2229         }
2230
2231         /* Assert that reset complete */
2232         falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2233         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2234                 rc = -ETIMEDOUT;
2235                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2236                 goto fail5;
2237         }
2238         EFX_LOG(efx, "hardware reset complete\n");
2239
2240         return 0;
2241
2242         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2243 fail2:
2244 fail3:
2245         pci_restore_state(efx->pci_dev);
2246 fail1:
2247 fail4:
2248 fail5:
2249         return rc;
2250 }
2251
2252 /* Zeroes out the SRAM contents.  This routine must be called in
2253  * process context and is allowed to sleep.
2254  */
2255 static int falcon_reset_sram(struct efx_nic *efx)
2256 {
2257         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2258         int count;
2259
2260         /* Set the SRAM wake/sleep GPIO appropriately. */
2261         falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2262         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2263         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2264         falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2265
2266         /* Initiate SRAM reset */
2267         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2268                              SRAM_OOB_BT_INIT_EN, 1,
2269                              SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2270         falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2271
2272         /* Wait for SRAM reset to complete */
2273         count = 0;
2274         do {
2275                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2276
2277                 /* SRAM reset is slow; expect around 16ms */
2278                 schedule_timeout_uninterruptible(HZ / 50);
2279
2280                 /* Check for reset complete */
2281                 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2282                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2283                         EFX_LOG(efx, "SRAM reset complete\n");
2284
2285                         return 0;
2286                 }
2287         } while (++count < 20); /* wait upto 0.4 sec */
2288
2289         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2290         return -ETIMEDOUT;
2291 }
2292
2293 /* Extract non-volatile configuration */
2294 static int falcon_probe_nvconfig(struct efx_nic *efx)
2295 {
2296         struct falcon_nvconfig *nvconfig;
2297         efx_oword_t nic_stat;
2298         int device_id;
2299         unsigned addr_len;
2300         size_t offset, len;
2301         int magic_num, struct_ver, board_rev;
2302         int rc;
2303
2304         /* Find the boot device. */
2305         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2306         if (EFX_OWORD_FIELD(nic_stat, SF_PRST)) {
2307                 device_id = EE_SPI_FLASH;
2308                 addr_len = 3;
2309         } else if (EFX_OWORD_FIELD(nic_stat, EE_PRST)) {
2310                 device_id = EE_SPI_EEPROM;
2311                 addr_len = 2;
2312         } else {
2313                 return -ENODEV;
2314         }
2315
2316         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2317
2318         /* Read the whole configuration structure into memory. */
2319         for (offset = 0; offset < sizeof(*nvconfig); offset += len) {
2320                 len = min(sizeof(*nvconfig) - offset,
2321                           (size_t) FALCON_SPI_MAX_LEN);
2322                 rc = falcon_spi_read(efx, device_id, SPI_READ,
2323                                      NVCONFIG_BASE + offset, addr_len,
2324                                      (char *)nvconfig + offset, len);
2325                 if (rc)
2326                         goto out;
2327         }
2328
2329         /* Read the MAC addresses */
2330         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2331
2332         /* Read the board configuration. */
2333         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2334         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2335
2336         if (magic_num != NVCONFIG_BOARD_MAGIC_NUM || struct_ver < 2) {
2337                 EFX_ERR(efx, "Non volatile memory bad magic=%x ver=%x "
2338                         "therefore using defaults\n", magic_num, struct_ver);
2339                 efx->phy_type = PHY_TYPE_NONE;
2340                 efx->mii.phy_id = PHY_ADDR_INVALID;
2341                 board_rev = 0;
2342         } else {
2343                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2344
2345                 efx->phy_type = v2->port0_phy_type;
2346                 efx->mii.phy_id = v2->port0_phy_addr;
2347                 board_rev = le16_to_cpu(v2->board_revision);
2348         }
2349
2350         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2351
2352         efx_set_board_info(efx, board_rev);
2353
2354  out:
2355         kfree(nvconfig);
2356         return rc;
2357 }
2358
2359 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2360  * count, port speed).  Set workaround and feature flags accordingly.
2361  */
2362 static int falcon_probe_nic_variant(struct efx_nic *efx)
2363 {
2364         efx_oword_t altera_build;
2365
2366         falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2367         if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2368                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2369                 return -ENODEV;
2370         }
2371
2372         switch (FALCON_REV(efx)) {
2373         case FALCON_REV_A0:
2374         case 0xff:
2375                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2376                 return -ENODEV;
2377
2378         case FALCON_REV_A1:{
2379                 efx_oword_t nic_stat;
2380
2381                 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2382
2383                 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2384                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2385                         return -ENODEV;
2386                 }
2387                 if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
2388                         EFX_ERR(efx, "1G mode not supported\n");
2389                         return -ENODEV;
2390                 }
2391                 break;
2392         }
2393
2394         case FALCON_REV_B0:
2395                 break;
2396
2397         default:
2398                 EFX_ERR(efx, "Unknown Falcon rev %d\n", FALCON_REV(efx));
2399                 return -ENODEV;
2400         }
2401
2402         return 0;
2403 }
2404
2405 int falcon_probe_nic(struct efx_nic *efx)
2406 {
2407         struct falcon_nic_data *nic_data;
2408         int rc;
2409
2410         /* Initialise I2C interface state */
2411         efx->i2c.efx = efx;
2412         efx->i2c.op = &falcon_i2c_bit_operations;
2413         efx->i2c.sda = 1;
2414         efx->i2c.scl = 1;
2415
2416         /* Allocate storage for hardware specific data */
2417         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2418         efx->nic_data = (void *) nic_data;
2419
2420         /* Determine number of ports etc. */
2421         rc = falcon_probe_nic_variant(efx);
2422         if (rc)
2423                 goto fail1;
2424
2425         /* Probe secondary function if expected */
2426         if (FALCON_IS_DUAL_FUNC(efx)) {
2427                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2428
2429                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2430                                              dev))) {
2431                         if (dev->bus == efx->pci_dev->bus &&
2432                             dev->devfn == efx->pci_dev->devfn + 1) {
2433                                 nic_data->pci_dev2 = dev;
2434                                 break;
2435                         }
2436                 }
2437                 if (!nic_data->pci_dev2) {
2438                         EFX_ERR(efx, "failed to find secondary function\n");
2439                         rc = -ENODEV;
2440                         goto fail2;
2441                 }
2442         }
2443
2444         /* Now we can reset the NIC */
2445         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2446         if (rc) {
2447                 EFX_ERR(efx, "failed to reset NIC\n");
2448                 goto fail3;
2449         }
2450
2451         /* Allocate memory for INT_KER */
2452         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2453         if (rc)
2454                 goto fail4;
2455         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2456
2457         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2458                 (unsigned long long)efx->irq_status.dma_addr,
2459                 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2460
2461         /* Read in the non-volatile configuration */
2462         rc = falcon_probe_nvconfig(efx);
2463         if (rc)
2464                 goto fail5;
2465
2466         return 0;
2467
2468  fail5:
2469         falcon_free_buffer(efx, &efx->irq_status);
2470  fail4:
2471         /* fall-thru */
2472  fail3:
2473         if (nic_data->pci_dev2) {
2474                 pci_dev_put(nic_data->pci_dev2);
2475                 nic_data->pci_dev2 = NULL;
2476         }
2477  fail2:
2478         /* fall-thru */
2479  fail1:
2480         kfree(efx->nic_data);
2481         return rc;
2482 }
2483
2484 /* This call performs hardware-specific global initialisation, such as
2485  * defining the descriptor cache sizes and number of RSS channels.
2486  * It does not set up any buffers, descriptor rings or event queues.
2487  */
2488 int falcon_init_nic(struct efx_nic *efx)
2489 {
2490         struct falcon_nic_data *data;
2491         efx_oword_t temp;
2492         unsigned thresh;
2493         int rc;
2494
2495         data = (struct falcon_nic_data *)efx->nic_data;
2496
2497         /* Set up the address region register. This is only needed
2498          * for the B0 FPGA, but since we are just pushing in the
2499          * reset defaults this may as well be unconditional. */
2500         EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0,
2501                                    ADR_REGION1, (1 << 16),
2502                                    ADR_REGION2, (2 << 16),
2503                                    ADR_REGION3, (3 << 16));
2504         falcon_write(efx, &temp, ADR_REGION_REG_KER);
2505
2506         /* Use on-chip SRAM */
2507         falcon_read(efx, &temp, NIC_STAT_REG);
2508         EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2509         falcon_write(efx, &temp, NIC_STAT_REG);
2510
2511         /* Set buffer table mode */
2512         EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2513         falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2514
2515         rc = falcon_reset_sram(efx);
2516         if (rc)
2517                 return rc;
2518
2519         /* Set positions of descriptor caches in SRAM. */
2520         EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2521         falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2522         EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2523         falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2524
2525         /* Set TX descriptor cache size. */
2526         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2527         EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2528         falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
2529
2530         /* Set RX descriptor cache size.  Set low watermark to size-8, as
2531          * this allows most efficient prefetching.
2532          */
2533         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2534         EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2535         falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
2536         EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2537         falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
2538
2539         /* Clear the parity enables on the TX data fifos as
2540          * they produce false parity errors because of timing issues
2541          */
2542         if (EFX_WORKAROUND_5129(efx)) {
2543                 falcon_read(efx, &temp, SPARE_REG_KER);
2544                 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
2545                 falcon_write(efx, &temp, SPARE_REG_KER);
2546         }
2547
2548         /* Enable all the genuinely fatal interrupts.  (They are still
2549          * masked by the overall interrupt mask, controlled by
2550          * falcon_interrupts()).
2551          *
2552          * Note: All other fatal interrupts are enabled
2553          */
2554         EFX_POPULATE_OWORD_3(temp,
2555                              ILL_ADR_INT_KER_EN, 1,
2556                              RBUF_OWN_INT_KER_EN, 1,
2557                              TBUF_OWN_INT_KER_EN, 1);
2558         EFX_INVERT_OWORD(temp);
2559         falcon_write(efx, &temp, FATAL_INTR_REG_KER);
2560
2561         /* Set number of RSS queues for receive path. */
2562         falcon_read(efx, &temp, RX_FILTER_CTL_REG);
2563         if (FALCON_REV(efx) >= FALCON_REV_B0)
2564                 EFX_SET_OWORD_FIELD(temp, NUM_KER, 0);
2565         else
2566                 EFX_SET_OWORD_FIELD(temp, NUM_KER, efx->rss_queues - 1);
2567         if (EFX_WORKAROUND_7244(efx)) {
2568                 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
2569                 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
2570                 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
2571                 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
2572         }
2573         falcon_write(efx, &temp, RX_FILTER_CTL_REG);
2574
2575         falcon_setup_rss_indir_table(efx);
2576
2577         /* Setup RX.  Wait for descriptor is broken and must
2578          * be disabled.  RXDP recovery shouldn't be needed, but is.
2579          */
2580         falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
2581         EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
2582         EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
2583         if (EFX_WORKAROUND_5583(efx))
2584                 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
2585         falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
2586
2587         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
2588          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
2589          */
2590         falcon_read(efx, &temp, TX_CFG2_REG_KER);
2591         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
2592         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
2593         EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
2594         EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
2595         EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
2596         /* Enable SW_EV to inherit in char driver - assume harmless here */
2597         EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
2598         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
2599         EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
2600         /* Squash TX of packets of 16 bytes or less */
2601         if (FALCON_REV(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
2602                 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
2603         falcon_write(efx, &temp, TX_CFG2_REG_KER);
2604
2605         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2606          * descriptors (which is bad).
2607          */
2608         falcon_read(efx, &temp, TX_CFG_REG_KER);
2609         EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
2610         falcon_write(efx, &temp, TX_CFG_REG_KER);
2611
2612         /* RX config */
2613         falcon_read(efx, &temp, RX_CFG_REG_KER);
2614         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
2615         if (EFX_WORKAROUND_7575(efx))
2616                 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
2617                                         (3 * 4096) / 32);
2618         if (FALCON_REV(efx) >= FALCON_REV_B0)
2619                 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
2620
2621         /* RX FIFO flow control thresholds */
2622         thresh = ((rx_xon_thresh_bytes >= 0) ?
2623                   rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
2624         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
2625         thresh = ((rx_xoff_thresh_bytes >= 0) ?
2626                   rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
2627         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
2628         /* RX control FIFO thresholds [32 entries] */
2629         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 25);
2630         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 20);
2631         falcon_write(efx, &temp, RX_CFG_REG_KER);
2632
2633         /* Set destination of both TX and RX Flush events */
2634         if (FALCON_REV(efx) >= FALCON_REV_B0) {
2635                 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
2636                 falcon_write(efx, &temp, DP_CTRL_REG);
2637         }
2638
2639         return 0;
2640 }
2641
2642 void falcon_remove_nic(struct efx_nic *efx)
2643 {
2644         struct falcon_nic_data *nic_data = efx->nic_data;
2645
2646         falcon_free_buffer(efx, &efx->irq_status);
2647
2648         (void) falcon_reset_hw(efx, RESET_TYPE_ALL);
2649
2650         /* Release the second function after the reset */
2651         if (nic_data->pci_dev2) {
2652                 pci_dev_put(nic_data->pci_dev2);
2653                 nic_data->pci_dev2 = NULL;
2654         }
2655
2656         /* Tear down the private nic state */
2657         kfree(efx->nic_data);
2658         efx->nic_data = NULL;
2659 }
2660
2661 void falcon_update_nic_stats(struct efx_nic *efx)
2662 {
2663         efx_oword_t cnt;
2664
2665         falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
2666         efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
2667 }
2668
2669 /**************************************************************************
2670  *
2671  * Revision-dependent attributes used by efx.c
2672  *
2673  **************************************************************************
2674  */
2675
2676 struct efx_nic_type falcon_a_nic_type = {
2677         .mem_bar = 2,
2678         .mem_map_size = 0x20000,
2679         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
2680         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
2681         .buf_tbl_base = BUF_TBL_KER_A1,
2682         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
2683         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
2684         .txd_ring_mask = FALCON_TXD_RING_MASK,
2685         .rxd_ring_mask = FALCON_RXD_RING_MASK,
2686         .evq_size = FALCON_EVQ_SIZE,
2687         .max_dma_mask = FALCON_DMA_MASK,
2688         .tx_dma_mask = FALCON_TX_DMA_MASK,
2689         .bug5391_mask = 0xf,
2690         .rx_xoff_thresh = 2048,
2691         .rx_xon_thresh = 512,
2692         .rx_buffer_padding = 0x24,
2693         .max_interrupt_mode = EFX_INT_MODE_MSI,
2694         .phys_addr_channels = 4,
2695 };
2696
2697 struct efx_nic_type falcon_b_nic_type = {
2698         .mem_bar = 2,
2699         /* Map everything up to and including the RSS indirection
2700          * table.  Don't map MSI-X table, MSI-X PBA since Linux
2701          * requires that they not be mapped.  */
2702         .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
2703         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
2704         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
2705         .buf_tbl_base = BUF_TBL_KER_B0,
2706         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
2707         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
2708         .txd_ring_mask = FALCON_TXD_RING_MASK,
2709         .rxd_ring_mask = FALCON_RXD_RING_MASK,
2710         .evq_size = FALCON_EVQ_SIZE,
2711         .max_dma_mask = FALCON_DMA_MASK,
2712         .tx_dma_mask = FALCON_TX_DMA_MASK,
2713         .bug5391_mask = 0,
2714         .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
2715         .rx_xon_thresh = 27648,  /* ~3*max MTU */
2716         .rx_buffer_padding = 0,
2717         .max_interrupt_mode = EFX_INT_MODE_MSIX,
2718         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
2719                                    * interrupt handler only supports 32
2720                                    * channels */
2721 };
2722