2 * Driver for Digigram VX222 V2/Mic soundcards
4 * VX222-specific low-level routines
6 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/firmware.h>
26 #include <linux/mutex.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
35 static int vx2_reg_offset[VX_REG_MAX] = {
53 [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
54 [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
55 [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
56 [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
57 [VX_CNTRL] = 0x50, // VX_CNTRL_REGISTER_OFFSET
58 [VX_GPIOC] = 0x54, // VX_GPIOC (new with PLX9030)
61 static int vx2_reg_index[VX_REG_MAX] = {
82 [VX_INTCSR] = 0, /* on the PLX */
83 [VX_CNTRL] = 0, /* on the PLX */
84 [VX_GPIOC] = 0, /* on the PLX */
87 static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
89 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
90 return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
94 * snd_vx_inb - read a byte from the register
95 * @offset: register enum
97 static unsigned char vx2_inb(struct vx_core *chip, int offset)
99 return inb(vx2_reg_addr(chip, offset));
103 * snd_vx_outb - write a byte on the register
104 * @offset: the register offset
105 * @val: the value to write
107 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
109 outb(val, vx2_reg_addr(chip, offset));
110 //printk("outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
114 * snd_vx_inl - read a 32bit word from the register
115 * @offset: register enum
117 static unsigned int vx2_inl(struct vx_core *chip, int offset)
119 return inl(vx2_reg_addr(chip, offset));
123 * snd_vx_outl - write a 32bit word on the register
124 * @offset: the register enum
125 * @val: the value to write
127 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
129 // printk("outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
130 outl(val, vx2_reg_addr(chip, offset));
134 * redefine macros to call directly
137 #define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg)
139 #define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val)
141 #define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg)
143 #define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val)
147 * vx_reset_dsp - reset the DSP
150 #define XX_DSP_RESET_WAIT_TIME 2 /* ms */
152 static void vx2_reset_dsp(struct vx_core *_chip)
154 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
156 /* set the reset dsp bit to 0 */
157 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
159 mdelay(XX_DSP_RESET_WAIT_TIME);
161 chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
162 /* set the reset dsp bit to 1 */
163 vx_outl(chip, CDSP, chip->regCDSP);
167 static int vx2_test_xilinx(struct vx_core *_chip)
169 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
172 snd_printdd("testing xilinx...\n");
173 /* This test uses several write/read sequences on TEST0 and TEST1 bits
174 * to figure out whever or not the xilinx was correctly loaded
177 /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
178 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
180 data = vx_inl(chip, STATUS);
181 if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
182 snd_printdd("bad!\n");
186 /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
187 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
189 data = vx_inl(chip, STATUS);
190 if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
191 snd_printdd("bad! #2\n");
195 if (_chip->type == VX_TYPE_BOARD) {
196 /* not implemented on VX_2_BOARDS */
197 /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
198 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
200 data = vx_inl(chip, STATUS);
201 if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
202 snd_printdd("bad! #3\n");
206 /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
207 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
209 data = vx_inl(chip, STATUS);
210 if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
211 snd_printdd("bad! #4\n");
215 snd_printdd("ok, xilinx fine.\n");
221 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
222 * @do_write: 0 = read, 1 = set up for DMA write
224 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
226 /* Interrupt mode and HREQ pin enabled for host transmit data transfers
227 * (in case of the use of the pseudo-dma facility).
229 vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
231 /* Reset the pseudo-dma register (in case of the use of the
232 * pseudo-dma facility).
234 vx_outl(chip, RESET_DMA, 0);
238 * vx_release_pseudo_dma - disable the pseudo-DMA mode
240 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
242 /* HREQ pin disabled. */
243 vx_outl(chip, ICR, 0);
248 /* pseudo-dma write */
249 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
250 struct vx_pipe *pipe, int count)
252 unsigned long port = vx2_reg_addr(chip, VX_DMA);
253 int offset = pipe->hw_ptr;
254 u32 *addr = (u32 *)(runtime->dma_area + offset);
256 snd_assert(count % 4 == 0, return);
258 vx2_setup_pseudo_dma(chip, 1);
260 /* Transfer using pseudo-dma.
262 if (offset + count > pipe->buffer_bytes) {
263 int length = pipe->buffer_bytes - offset;
265 length >>= 2; /* in 32bit words */
266 /* Transfer using pseudo-dma. */
267 while (length-- > 0) {
268 outl(cpu_to_le32(*addr), port);
271 addr = (u32 *)runtime->dma_area;
274 pipe->hw_ptr += count;
275 count >>= 2; /* in 32bit words */
276 /* Transfer using pseudo-dma. */
277 while (count-- > 0) {
278 outl(cpu_to_le32(*addr), port);
282 vx2_release_pseudo_dma(chip);
286 /* pseudo dma read */
287 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
288 struct vx_pipe *pipe, int count)
290 int offset = pipe->hw_ptr;
291 u32 *addr = (u32 *)(runtime->dma_area + offset);
292 unsigned long port = vx2_reg_addr(chip, VX_DMA);
294 snd_assert(count % 4 == 0, return);
296 vx2_setup_pseudo_dma(chip, 0);
297 /* Transfer using pseudo-dma.
299 if (offset + count > pipe->buffer_bytes) {
300 int length = pipe->buffer_bytes - offset;
302 length >>= 2; /* in 32bit words */
303 /* Transfer using pseudo-dma. */
305 *addr++ = le32_to_cpu(inl(port));
306 addr = (u32 *)runtime->dma_area;
309 pipe->hw_ptr += count;
310 count >>= 2; /* in 32bit words */
311 /* Transfer using pseudo-dma. */
313 *addr++ = le32_to_cpu(inl(port));
315 vx2_release_pseudo_dma(chip);
318 #define VX_XILINX_RESET_MASK 0x40000000
319 #define VX_USERBIT0_MASK 0x00000004
320 #define VX_USERBIT1_MASK 0x00000020
321 #define VX_CNTRL_REGISTER_VALUE 0x00172012
324 * transfer counts bits to PLX
326 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
330 for (i = 0; i < counts; i++) {
333 /* set the clock bit to 0. */
334 val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
335 vx2_outl(chip, port, val);
340 val |= VX_USERBIT1_MASK;
342 val &= ~VX_USERBIT1_MASK;
343 vx2_outl(chip, port, val);
346 /* set the clock bit to 1. */
347 val |= VX_USERBIT0_MASK;
348 vx2_outl(chip, port, val);
356 * load the xilinx image
358 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
362 unsigned char *image;
364 /* XILINX reset (wait at least 1 milisecond between reset on and off). */
365 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
368 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
372 if (chip->type == VX_TYPE_BOARD)
375 port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
377 image = xilinx->data;
378 for (i = 0; i < xilinx->size; i++, image++) {
379 if (put_xilinx_data(chip, port, 8, *image) < 0)
381 /* don't take too much time in this loop... */
384 put_xilinx_data(chip, port, 4, 0xff); /* end signature */
388 /* test after loading (is buggy with VX222) */
389 if (chip->type != VX_TYPE_BOARD) {
390 /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
391 i = vx_inl(chip, GPIOC);
394 snd_printk(KERN_ERR "vx222: xilinx test failed after load, GPIOC=0x%x\n", i);
403 * load the boot/dsp images
405 static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
412 if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
414 if ((err = vx2_test_xilinx(vx)) < 0)
419 return snd_vx_dsp_boot(vx, dsp);
422 return snd_vx_dsp_load(vx, dsp);
431 * vx_test_and_ack - test and acknowledge interrupt
433 * called from irq hander, too
437 static int vx2_test_and_ack(struct vx_core *chip)
439 /* not booted yet? */
440 if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
443 if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
446 /* ok, interrupts generated, now ack it */
447 /* set ACQUIT bit up and down */
448 vx_outl(chip, STATUS, 0);
449 /* useless read just to spend some time and maintain
450 * the ACQUIT signal up for a while ( a bus cycle )
452 vx_inl(chip, STATUS);
454 vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
455 /* useless read just to spend some time and maintain
456 * the ACQUIT signal up for a while ( a bus cycle ) */
457 vx_inl(chip, STATUS);
459 vx_outl(chip, STATUS, 0);
466 * vx_validate_irq - enable/disable IRQ
468 static void vx2_validate_irq(struct vx_core *_chip, int enable)
470 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
472 /* Set the interrupt enable bit to 1 in CDSP register */
474 /* Set the PCI interrupt enable bit to 1.*/
475 vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
476 chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
478 /* Set the PCI interrupt enable bit to 0. */
479 vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
480 chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
482 vx_outl(chip, CDSP, chip->regCDSP);
487 * write an AKM codec data (24bit)
489 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
493 vx_inl(chip, HIFREQ);
495 /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
496 for (i = 0; i < 24; i++, data <<= 1)
497 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
498 /* Terminate access to codec registers */
503 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
504 #define AKM_CODEC_RESET_ON_CMD 0xA100
505 #define AKM_CODEC_RESET_OFF_CMD 0xA103
506 #define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240
507 #define AKM_CODEC_MUTE_CMD 0xA38D
508 #define AKM_CODEC_UNMUTE_CMD 0xA30D
509 #define AKM_CODEC_LEFT_LEVEL_CMD 0xA400
510 #define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500
512 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
513 0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
514 0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
515 0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
516 0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
517 0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
518 0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
519 0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
520 0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
521 0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
522 0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
523 0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
524 0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
525 0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
526 0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
527 0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
528 0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
529 0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
530 0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
531 0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
532 0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
533 0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
534 0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
535 0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
536 0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
537 0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
538 0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
539 0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
540 0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
541 0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
542 0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
543 0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
544 0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
545 0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
546 0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
547 0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
548 0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
549 0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
550 0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
551 0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
552 0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
553 0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
554 0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
555 0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
556 0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
557 0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
558 0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
559 0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
560 0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
561 0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
562 0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
563 0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
564 0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
565 0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
566 0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
567 0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
568 0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
569 0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
570 0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
571 0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
572 0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
573 0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
574 0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
575 0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
576 0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
577 0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
578 0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
579 0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
580 0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
581 0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
582 0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
583 0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
584 0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
585 0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
586 0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
587 0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
588 0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
589 0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
590 0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
591 0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
592 0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
593 0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
594 0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
595 0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
596 0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
597 0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
598 0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
599 0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
600 0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
601 0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
602 0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
603 0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
604 0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
605 0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
606 0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
607 0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
608 0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
609 0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
610 0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
611 0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
612 0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
613 0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
614 0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
615 0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
616 0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
617 0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
618 0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
619 0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
620 0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
621 0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
622 0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
623 0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
624 0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
625 0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
626 0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
627 0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
628 0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
629 0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
630 0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
631 0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
632 0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
633 0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
634 0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
635 0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
636 0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
637 0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
638 0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
639 0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
640 0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
641 0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
642 0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
643 0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
644 0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
645 0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
646 0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
647 0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
648 0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
649 0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
650 0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
651 0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
652 0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
653 0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
654 0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
655 0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
656 0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
657 0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
658 0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
659 0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
660 0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
663 * pseudo-codec write entry
665 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
669 if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
670 vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
674 /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
675 a look up table, as there is no linear matching between the driver codec values
676 and the real dBu value
678 snd_assert(data < sizeof(vx2_akm_gains_lut), return);
681 case XX_CODEC_LEVEL_LEFT_REGISTER:
682 val = AKM_CODEC_LEFT_LEVEL_CMD;
684 case XX_CODEC_LEVEL_RIGHT_REGISTER:
685 val = AKM_CODEC_RIGHT_LEVEL_CMD;
691 val |= vx2_akm_gains_lut[data];
693 vx2_write_codec_reg(chip, val);
698 * write codec bit for old VX222 board
700 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
704 /* activate access to codec registers */
705 vx_inl(chip, HIFREQ);
707 for (i = 0; i < 24; i++, data <<= 1)
708 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
710 /* Terminate access to codec registers */
718 static void vx2_reset_codec(struct vx_core *_chip)
720 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
722 /* Set the reset CODEC bit to 0. */
723 vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
726 /* Set the reset CODEC bit to 1. */
727 chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
728 vx_outl(chip, CDSP, chip->regCDSP);
730 if (_chip->type == VX_TYPE_BOARD) {
735 msleep(5); /* additionnel wait time for AKM's */
737 vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
739 vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
740 vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
741 vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
743 if (_chip->type == VX_TYPE_MIC) {
744 /* set up the micro input selector */
745 chip->regSELMIC = MICRO_SELECT_INPUT_NORM |
746 MICRO_SELECT_PREAMPLI_G_0 |
747 MICRO_SELECT_NOISE_T_52DB;
749 /* reset phantom power supply */
750 chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
752 vx_outl(_chip, SELMIC, chip->regSELMIC);
758 * change the audio source
760 static void vx2_change_audio_source(struct vx_core *_chip, int src)
762 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
765 case VX_AUDIO_SRC_DIGITAL:
766 chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
769 chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
772 vx_outl(chip, CFG, chip->regCFG);
777 * set the clock source
779 static void vx2_set_clock_source(struct vx_core *_chip, int source)
781 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
783 if (source == INTERNAL_QUARTZ)
784 chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
786 chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
787 vx_outl(chip, CFG, chip->regCFG);
793 static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
795 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
797 /* initialize the register values */
798 chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
805 * input level controls for VX222 Mic
808 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
809 * 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
810 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
812 #define V2_MICRO_LEVEL_RANGE (318 - 255)
814 static void vx2_set_input_level(struct snd_vx222 *chip)
816 int i, miclevel, preamp;
819 miclevel = chip->mic_level;
820 miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
822 while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
823 preamp++; /* raise pre ampli + 18dB */
824 miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */
826 snd_assert(preamp < 4, return);
828 /* set pre-amp level */
829 chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
830 chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
831 vx_outl(chip, SELMIC, chip->regSELMIC);
833 data = (unsigned int)miclevel << 16 |
834 (unsigned int)chip->input_level[1] << 8 |
835 (unsigned int)chip->input_level[0];
836 vx_inl(chip, DATA); /* Activate input level programming */
838 /* We have to send 32 bits (4 x 8 bits) */
839 for (i = 0; i < 32; i++, data <<= 1)
840 vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
842 vx_inl(chip, RUER); /* Terminate input level programming */
846 #define MIC_LEVEL_MAX 0xff
848 static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
851 * controls API for input levels
855 static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
857 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
859 uinfo->value.integer.min = 0;
860 uinfo->value.integer.max = MIC_LEVEL_MAX;
864 static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
866 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
867 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
868 mutex_lock(&_chip->mixer_mutex);
869 ucontrol->value.integer.value[0] = chip->input_level[0];
870 ucontrol->value.integer.value[1] = chip->input_level[1];
871 mutex_unlock(&_chip->mixer_mutex);
875 static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
877 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
878 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
879 if (ucontrol->value.integer.value[0] < 0 ||
880 ucontrol->value.integer.value[0] < MIC_LEVEL_MAX)
882 if (ucontrol->value.integer.value[1] < 0 ||
883 ucontrol->value.integer.value[1] < MIC_LEVEL_MAX)
885 mutex_lock(&_chip->mixer_mutex);
886 if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
887 chip->input_level[1] != ucontrol->value.integer.value[1]) {
888 chip->input_level[0] = ucontrol->value.integer.value[0];
889 chip->input_level[1] = ucontrol->value.integer.value[1];
890 vx2_set_input_level(chip);
891 mutex_unlock(&_chip->mixer_mutex);
894 mutex_unlock(&_chip->mixer_mutex);
899 static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
901 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
903 uinfo->value.integer.min = 0;
904 uinfo->value.integer.max = MIC_LEVEL_MAX;
908 static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
910 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
911 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
912 ucontrol->value.integer.value[0] = chip->mic_level;
916 static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
918 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
919 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
920 if (ucontrol->value.integer.value[0] < 0 ||
921 ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
923 mutex_lock(&_chip->mixer_mutex);
924 if (chip->mic_level != ucontrol->value.integer.value[0]) {
925 chip->mic_level = ucontrol->value.integer.value[0];
926 vx2_set_input_level(chip);
927 mutex_unlock(&_chip->mixer_mutex);
930 mutex_unlock(&_chip->mixer_mutex);
934 static struct snd_kcontrol_new vx_control_input_level = {
935 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
936 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
937 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
938 .name = "Capture Volume",
939 .info = vx_input_level_info,
940 .get = vx_input_level_get,
941 .put = vx_input_level_put,
942 .tlv = { .p = db_scale_mic },
945 static struct snd_kcontrol_new vx_control_mic_level = {
946 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
947 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
948 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
949 .name = "Mic Capture Volume",
950 .info = vx_mic_level_info,
951 .get = vx_mic_level_get,
952 .put = vx_mic_level_put,
953 .tlv = { .p = db_scale_mic },
957 * FIXME: compressor/limiter implementation is missing yet...
960 static int vx2_add_mic_controls(struct vx_core *_chip)
962 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
965 if (_chip->type != VX_TYPE_MIC)
968 /* mute input levels */
969 chip->input_level[0] = chip->input_level[1] = 0;
971 vx2_set_input_level(chip);
974 if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
976 if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
986 struct snd_vx_ops vx222_ops = {
991 .test_and_ack = vx2_test_and_ack,
992 .validate_irq = vx2_validate_irq,
993 .akm_write = vx2_write_akm,
994 .reset_codec = vx2_reset_codec,
995 .change_audio_source = vx2_change_audio_source,
996 .set_clock_source = vx2_set_clock_source,
997 .load_dsp = vx2_load_dsp,
998 .reset_dsp = vx2_reset_dsp,
999 .reset_board = vx2_reset_board,
1000 .dma_write = vx2_dma_write,
1001 .dma_read = vx2_dma_read,
1002 .add_controls = vx2_add_mic_controls,
1005 /* for old VX222 board */
1006 struct snd_vx_ops vx222_old_ops = {
1011 .test_and_ack = vx2_test_and_ack,
1012 .validate_irq = vx2_validate_irq,
1013 .write_codec = vx2_old_write_codec_bit,
1014 .reset_codec = vx2_reset_codec,
1015 .change_audio_source = vx2_change_audio_source,
1016 .set_clock_source = vx2_set_clock_source,
1017 .load_dsp = vx2_load_dsp,
1018 .reset_dsp = vx2_reset_dsp,
1019 .reset_board = vx2_reset_board,
1020 .dma_write = vx2_dma_write,
1021 .dma_read = vx2_dma_read,