2 * Philips UCB1400 touchscreen driver
4 * Author: Nicolas Pitre
5 * Created: September 25, 2006
6 * Copyright: MontaVista Software, Inc.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * This code is heavily based on ucb1x00-*.c copyrighted by Russell King
13 * covering the UCB1100, UCB1200 and UCB1300.. Support for the UCB1400 has
14 * been made separate from ucb1x00-core/ucb1x00-ts on Russell's request.
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/input.h>
23 #include <linux/device.h>
24 #include <linux/interrupt.h>
25 #include <linux/suspend.h>
26 #include <linux/slab.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
30 #include <sound/driver.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
36 * Interesting UCB1400 AC-link registers
39 #define UCB_IE_RIS 0x5e
40 #define UCB_IE_FAL 0x60
41 #define UCB_IE_STATUS 0x62
42 #define UCB_IE_CLEAR 0x62
43 #define UCB_IE_ADC (1 << 11)
44 #define UCB_IE_TSPX (1 << 12)
46 #define UCB_TS_CR 0x64
47 #define UCB_TS_CR_TSMX_POW (1 << 0)
48 #define UCB_TS_CR_TSPX_POW (1 << 1)
49 #define UCB_TS_CR_TSMY_POW (1 << 2)
50 #define UCB_TS_CR_TSPY_POW (1 << 3)
51 #define UCB_TS_CR_TSMX_GND (1 << 4)
52 #define UCB_TS_CR_TSPX_GND (1 << 5)
53 #define UCB_TS_CR_TSMY_GND (1 << 6)
54 #define UCB_TS_CR_TSPY_GND (1 << 7)
55 #define UCB_TS_CR_MODE_INT (0 << 8)
56 #define UCB_TS_CR_MODE_PRES (1 << 8)
57 #define UCB_TS_CR_MODE_POS (2 << 8)
58 #define UCB_TS_CR_BIAS_ENA (1 << 11)
59 #define UCB_TS_CR_TSPX_LOW (1 << 12)
60 #define UCB_TS_CR_TSMX_LOW (1 << 13)
62 #define UCB_ADC_CR 0x66
63 #define UCB_ADC_SYNC_ENA (1 << 0)
64 #define UCB_ADC_VREFBYP_CON (1 << 1)
65 #define UCB_ADC_INP_TSPX (0 << 2)
66 #define UCB_ADC_INP_TSMX (1 << 2)
67 #define UCB_ADC_INP_TSPY (2 << 2)
68 #define UCB_ADC_INP_TSMY (3 << 2)
69 #define UCB_ADC_INP_AD0 (4 << 2)
70 #define UCB_ADC_INP_AD1 (5 << 2)
71 #define UCB_ADC_INP_AD2 (6 << 2)
72 #define UCB_ADC_INP_AD3 (7 << 2)
73 #define UCB_ADC_EXT_REF (1 << 5)
74 #define UCB_ADC_START (1 << 7)
75 #define UCB_ADC_ENA (1 << 15)
77 #define UCB_ADC_DATA 0x68
78 #define UCB_ADC_DAT_VALID (1 << 15)
79 #define UCB_ADC_DAT_VALUE(x) ((x) & 0x3ff)
82 #define UCB_ID_1400 0x4304
87 struct input_dev *ts_idev;
91 wait_queue_head_t ts_wait;
92 struct task_struct *ts_task;
94 unsigned int irq_pending; /* not bit field shared */
95 unsigned int ts_restart:1;
96 unsigned int adcsync:1;
101 static inline u16 ucb1400_reg_read(struct ucb1400 *ucb, u16 reg)
103 return ucb->ac97->bus->ops->read(ucb->ac97, reg);
106 static inline void ucb1400_reg_write(struct ucb1400 *ucb, u16 reg, u16 val)
108 ucb->ac97->bus->ops->write(ucb->ac97, reg, val);
111 static inline void ucb1400_adc_enable(struct ucb1400 *ucb)
113 ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA);
116 static unsigned int ucb1400_adc_read(struct ucb1400 *ucb, u16 adc_channel)
121 adc_channel |= UCB_ADC_SYNC_ENA;
123 ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA | adc_channel);
124 ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA | adc_channel | UCB_ADC_START);
127 val = ucb1400_reg_read(ucb, UCB_ADC_DATA);
128 if (val & UCB_ADC_DAT_VALID)
130 /* yield to other processes */
131 set_current_state(TASK_INTERRUPTIBLE);
135 return UCB_ADC_DAT_VALUE(val);
138 static inline void ucb1400_adc_disable(struct ucb1400 *ucb)
140 ucb1400_reg_write(ucb, UCB_ADC_CR, 0);
143 /* Switch to interrupt mode. */
144 static inline void ucb1400_ts_mode_int(struct ucb1400 *ucb)
146 ucb1400_reg_write(ucb, UCB_TS_CR,
147 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
148 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
153 * Switch to pressure mode, and read pressure. We don't need to wait
154 * here, since both plates are being driven.
156 static inline unsigned int ucb1400_ts_read_pressure(struct ucb1400 *ucb)
158 ucb1400_reg_write(ucb, UCB_TS_CR,
159 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
160 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
161 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
162 return ucb1400_adc_read(ucb, UCB_ADC_INP_TSPY);
166 * Switch to X position mode and measure Y plate. We switch the plate
167 * configuration in pressure mode, then switch to position mode. This
168 * gives a faster response time. Even so, we need to wait about 55us
169 * for things to stabilise.
171 static inline unsigned int ucb1400_ts_read_xpos(struct ucb1400 *ucb)
173 ucb1400_reg_write(ucb, UCB_TS_CR,
174 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
175 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
176 ucb1400_reg_write(ucb, UCB_TS_CR,
177 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
178 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
179 ucb1400_reg_write(ucb, UCB_TS_CR,
180 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
181 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
185 return ucb1400_adc_read(ucb, UCB_ADC_INP_TSPY);
189 * Switch to Y position mode and measure X plate. We switch the plate
190 * configuration in pressure mode, then switch to position mode. This
191 * gives a faster response time. Even so, we need to wait about 55us
192 * for things to stabilise.
194 static inline unsigned int ucb1400_ts_read_ypos(struct ucb1400 *ucb)
196 ucb1400_reg_write(ucb, UCB_TS_CR,
197 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
198 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
199 ucb1400_reg_write(ucb, UCB_TS_CR,
200 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
201 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
202 ucb1400_reg_write(ucb, UCB_TS_CR,
203 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
204 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
208 return ucb1400_adc_read(ucb, UCB_ADC_INP_TSPX);
212 * Switch to X plate resistance mode. Set MX to ground, PX to
213 * supply. Measure current.
215 static inline unsigned int ucb1400_ts_read_xres(struct ucb1400 *ucb)
217 ucb1400_reg_write(ucb, UCB_TS_CR,
218 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
219 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
220 return ucb1400_adc_read(ucb, 0);
224 * Switch to Y plate resistance mode. Set MY to ground, PY to
225 * supply. Measure current.
227 static inline unsigned int ucb1400_ts_read_yres(struct ucb1400 *ucb)
229 ucb1400_reg_write(ucb, UCB_TS_CR,
230 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
231 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
232 return ucb1400_adc_read(ucb, 0);
235 static inline int ucb1400_ts_pen_down(struct ucb1400 *ucb)
237 unsigned short val = ucb1400_reg_read(ucb, UCB_TS_CR);
238 return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
241 static inline void ucb1400_ts_irq_enable(struct ucb1400 *ucb)
243 ucb1400_reg_write(ucb, UCB_IE_CLEAR, UCB_IE_TSPX);
244 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
245 ucb1400_reg_write(ucb, UCB_IE_FAL, UCB_IE_TSPX);
248 static inline void ucb1400_ts_irq_disable(struct ucb1400 *ucb)
250 ucb1400_reg_write(ucb, UCB_IE_FAL, 0);
253 static void ucb1400_ts_evt_add(struct input_dev *idev, u16 pressure, u16 x, u16 y)
255 input_report_abs(idev, ABS_X, x);
256 input_report_abs(idev, ABS_Y, y);
257 input_report_abs(idev, ABS_PRESSURE, pressure);
261 static void ucb1400_ts_event_release(struct input_dev *idev)
263 input_report_abs(idev, ABS_PRESSURE, 0);
267 static void ucb1400_handle_pending_irq(struct ucb1400 *ucb)
271 isr = ucb1400_reg_read(ucb, UCB_IE_STATUS);
272 ucb1400_reg_write(ucb, UCB_IE_CLEAR, isr);
273 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
275 if (isr & UCB_IE_TSPX)
276 ucb1400_ts_irq_disable(ucb);
278 printk(KERN_ERR "ucb1400: unexpected IE_STATUS = %#x\n", isr);
280 enable_irq(ucb->irq);
283 static int ucb1400_ts_thread(void *_ucb)
285 struct ucb1400 *ucb = _ucb;
286 struct task_struct *tsk = current;
289 tsk->policy = SCHED_FIFO;
290 tsk->rt_priority = 1;
292 while (!kthread_should_stop()) {
293 unsigned int x, y, p;
298 if (ucb->irq_pending) {
299 ucb->irq_pending = 0;
300 ucb1400_handle_pending_irq(ucb);
303 ucb1400_adc_enable(ucb);
304 x = ucb1400_ts_read_xpos(ucb);
305 y = ucb1400_ts_read_ypos(ucb);
306 p = ucb1400_ts_read_pressure(ucb);
307 ucb1400_adc_disable(ucb);
309 /* Switch back to interrupt mode. */
310 ucb1400_ts_mode_int(ucb);
314 if (ucb1400_ts_pen_down(ucb)) {
315 ucb1400_ts_irq_enable(ucb);
318 * If we spat out a valid sample set last time,
319 * spit out a "pen off" sample here.
322 ucb1400_ts_event_release(ucb->ts_idev);
326 timeout = MAX_SCHEDULE_TIMEOUT;
329 ucb1400_ts_evt_add(ucb->ts_idev, p, x, y);
330 timeout = msecs_to_jiffies(10);
333 wait_event_interruptible_timeout(ucb->ts_wait,
334 ucb->irq_pending || ucb->ts_restart || kthread_should_stop(),
339 /* Send the "pen off" if we are stopping with the pen still active */
341 ucb1400_ts_event_release(ucb->ts_idev);
348 * A restriction with interrupts exists when using the ucb1400, as
349 * the codec read/write routines may sleep while waiting for codec
350 * access completion and uses semaphores for access control to the
351 * AC97 bus. A complete codec read cycle could take anywhere from
352 * 60 to 100uSec so we *definitely* don't want to spin inside the
353 * interrupt handler waiting for codec access. So, we handle the
354 * interrupt by scheduling a RT kernel thread to run in process
355 * context instead of interrupt context.
357 static irqreturn_t ucb1400_hard_irq(int irqnr, void *devid)
359 struct ucb1400 *ucb = devid;
361 if (irqnr == ucb->irq) {
362 disable_irq(ucb->irq);
363 ucb->irq_pending = 1;
364 wake_up(&ucb->ts_wait);
370 static int ucb1400_ts_open(struct input_dev *idev)
372 struct ucb1400 *ucb = idev->private;
375 BUG_ON(ucb->ts_task);
377 ucb->ts_task = kthread_run(ucb1400_ts_thread, ucb, "UCB1400_ts");
378 if (IS_ERR(ucb->ts_task)) {
379 ret = PTR_ERR(ucb->ts_task);
386 static void ucb1400_ts_close(struct input_dev *idev)
388 struct ucb1400 *ucb = idev->private;
391 kthread_stop(ucb->ts_task);
393 ucb1400_ts_irq_disable(ucb);
394 ucb1400_reg_write(ucb, UCB_TS_CR, 0);
398 static int ucb1400_ts_resume(struct device *dev)
400 struct ucb1400 *ucb = dev_get_drvdata(dev);
404 * Restart the TS thread to ensure the
405 * TS interrupt mode is set up again
409 wake_up(&ucb->ts_wait);
414 #define ucb1400_ts_resume NULL
422 * Try to probe our interrupt, rather than relying on lots of
423 * hard-coded machine dependencies.
425 static int ucb1400_detect_irq(struct ucb1400 *ucb)
427 unsigned long mask, timeout;
429 mask = probe_irq_on();
435 /* Enable the ADC interrupt. */
436 ucb1400_reg_write(ucb, UCB_IE_RIS, UCB_IE_ADC);
437 ucb1400_reg_write(ucb, UCB_IE_FAL, UCB_IE_ADC);
438 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0xffff);
439 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
441 /* Cause an ADC interrupt. */
442 ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA);
443 ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
445 /* Wait for the conversion to complete. */
446 timeout = jiffies + HZ/2;
447 while (!(ucb1400_reg_read(ucb, UCB_ADC_DATA) & UCB_ADC_DAT_VALID)) {
449 if (time_after(jiffies, timeout)) {
450 printk(KERN_ERR "ucb1400: timed out in IRQ probe\n");
455 ucb1400_reg_write(ucb, UCB_ADC_CR, 0);
457 /* Disable and clear interrupt. */
458 ucb1400_reg_write(ucb, UCB_IE_RIS, 0);
459 ucb1400_reg_write(ucb, UCB_IE_FAL, 0);
460 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0xffff);
461 ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
463 /* Read triggered interrupt. */
464 ucb->irq = probe_irq_off(mask);
465 if (ucb->irq < 0 || ucb->irq == NO_IRQ)
471 static int ucb1400_ts_probe(struct device *dev)
474 struct input_dev *idev;
475 int error, id, x_res, y_res;
477 ucb = kzalloc(sizeof(struct ucb1400), GFP_KERNEL);
478 idev = input_allocate_device();
485 ucb->adcsync = adcsync;
486 ucb->ac97 = to_ac97_t(dev);
487 init_waitqueue_head(&ucb->ts_wait);
489 id = ucb1400_reg_read(ucb, UCB_ID);
490 if (id != UCB_ID_1400) {
495 error = ucb1400_detect_irq(ucb);
497 printk(KERN_ERR "UCB1400: IRQ probe failed\n");
501 error = request_irq(ucb->irq, ucb1400_hard_irq, IRQF_TRIGGER_RISING,
504 printk(KERN_ERR "ucb1400: unable to grab irq%d: %d\n",
508 printk(KERN_DEBUG "UCB1400: found IRQ %d\n", ucb->irq);
511 idev->cdev.dev = dev;
512 idev->name = "UCB1400 touchscreen interface";
513 idev->id.vendor = ucb1400_reg_read(ucb, AC97_VENDOR_ID1);
514 idev->id.product = id;
515 idev->open = ucb1400_ts_open;
516 idev->close = ucb1400_ts_close;
517 idev->evbit[0] = BIT(EV_ABS);
519 ucb1400_adc_enable(ucb);
520 x_res = ucb1400_ts_read_xres(ucb);
521 y_res = ucb1400_ts_read_yres(ucb);
522 ucb1400_adc_disable(ucb);
523 printk(KERN_DEBUG "UCB1400: x/y = %d/%d\n", x_res, y_res);
525 input_set_abs_params(idev, ABS_X, 0, x_res, 0, 0);
526 input_set_abs_params(idev, ABS_Y, 0, y_res, 0, 0);
527 input_set_abs_params(idev, ABS_PRESSURE, 0, 0, 0, 0);
529 error = input_register_device(idev);
533 dev_set_drvdata(dev, ucb);
537 free_irq(ucb->irq, ucb);
539 input_free_device(idev);
544 static int ucb1400_ts_remove(struct device *dev)
546 struct ucb1400 *ucb = dev_get_drvdata(dev);
548 free_irq(ucb->irq, ucb);
549 input_unregister_device(ucb->ts_idev);
550 dev_set_drvdata(dev, NULL);
555 static struct device_driver ucb1400_ts_driver = {
556 .owner = THIS_MODULE,
557 .bus = &ac97_bus_type,
558 .probe = ucb1400_ts_probe,
559 .remove = ucb1400_ts_remove,
560 .resume = ucb1400_ts_resume,
563 static int __init ucb1400_ts_init(void)
565 return driver_register(&ucb1400_ts_driver);
568 static void __exit ucb1400_ts_exit(void)
570 driver_unregister(&ucb1400_ts_driver);
573 module_param(adcsync, int, 0444);
575 module_init(ucb1400_ts_init);
576 module_exit(ucb1400_ts_exit);
578 MODULE_DESCRIPTION("Philips UCB1400 touchscreen driver");
579 MODULE_LICENSE("GPL");