2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/pci.h>
26 #include <linux/scatterlist.h>
28 #include "sas_internal.h"
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37 u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41 /* FIXME: smp needs to migrate into the sas class */
42 static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
43 static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
46 /* ---------- SMP task management ---------- */
48 static void smp_task_timedout(unsigned long _task)
50 struct sas_task *task = (void *) _task;
53 spin_lock_irqsave(&task->task_state_lock, flags);
54 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
55 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
56 spin_unlock_irqrestore(&task->task_state_lock, flags);
58 complete(&task->completion);
61 static void smp_task_done(struct sas_task *task)
63 if (!del_timer(&task->timer))
65 complete(&task->completion);
68 /* Give it some long enough timeout. In seconds. */
69 #define SMP_TIMEOUT 10
71 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
72 void *resp, int resp_size)
75 struct sas_task *task = sas_alloc_task(GFP_KERNEL);
76 struct sas_internal *i =
77 to_sas_internal(dev->port->ha->core.shost->transportt);
83 task->task_proto = dev->tproto;
84 sg_init_one(&task->smp_task.smp_req, req, req_size);
85 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
87 task->task_done = smp_task_done;
89 task->timer.data = (unsigned long) task;
90 task->timer.function = smp_task_timedout;
91 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
92 add_timer(&task->timer);
94 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
97 del_timer(&task->timer);
98 SAS_DPRINTK("executing SMP task failed:%d\n", res);
102 wait_for_completion(&task->completion);
104 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
105 SAS_DPRINTK("smp task timed out or aborted\n");
106 i->dft->lldd_abort_task(task);
107 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
108 SAS_DPRINTK("SMP task aborted and not done\n");
112 if (task->task_status.resp == SAS_TASK_COMPLETE &&
113 task->task_status.stat == SAM_GOOD)
116 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
117 "status 0x%x\n", __FUNCTION__,
118 SAS_ADDR(dev->sas_addr),
119 task->task_status.resp,
120 task->task_status.stat);
126 /* ---------- Allocations ---------- */
128 static inline void *alloc_smp_req(int size)
130 u8 *p = kzalloc(size, GFP_KERNEL);
136 static inline void *alloc_smp_resp(int size)
138 return kzalloc(size, GFP_KERNEL);
141 /* ---------- Expander configuration ---------- */
143 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
146 struct expander_device *ex = &dev->ex_dev;
147 struct ex_phy *phy = &ex->ex_phy[phy_id];
148 struct smp_resp *resp = disc_resp;
149 struct discover_resp *dr = &resp->disc;
150 struct sas_rphy *rphy = dev->rphy;
151 int rediscover = (phy->phy != NULL);
154 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
156 /* FIXME: error_handling */
160 switch (resp->result) {
161 case SMP_RESP_PHY_VACANT:
162 phy->phy_state = PHY_VACANT;
165 phy->phy_state = PHY_NOT_PRESENT;
167 case SMP_RESP_FUNC_ACC:
168 phy->phy_state = PHY_EMPTY; /* do not know yet */
172 phy->phy_id = phy_id;
173 phy->attached_dev_type = dr->attached_dev_type;
174 phy->linkrate = dr->linkrate;
175 phy->attached_sata_host = dr->attached_sata_host;
176 phy->attached_sata_dev = dr->attached_sata_dev;
177 phy->attached_sata_ps = dr->attached_sata_ps;
178 phy->attached_iproto = dr->iproto << 1;
179 phy->attached_tproto = dr->tproto << 1;
180 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
181 phy->attached_phy_id = dr->attached_phy_id;
182 phy->phy_change_count = dr->change_count;
183 phy->routing_attr = dr->routing_attr;
184 phy->virtual = dr->virtual;
185 phy->last_da_index = -1;
187 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
188 phy->phy->identify.target_port_protocols = phy->attached_tproto;
189 phy->phy->identify.phy_identifier = phy_id;
190 phy->phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
191 phy->phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS;
192 phy->phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS;
193 phy->phy->maximum_linkrate = SAS_LINK_RATE_3_0_GBPS;
194 phy->phy->negotiated_linkrate = phy->linkrate;
197 sas_phy_add(phy->phy);
199 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
200 SAS_ADDR(dev->sas_addr), phy->phy_id,
201 phy->routing_attr == TABLE_ROUTING ? 'T' :
202 phy->routing_attr == DIRECT_ROUTING ? 'D' :
203 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
204 SAS_ADDR(phy->attached_sas_addr));
209 #define DISCOVER_REQ_SIZE 16
210 #define DISCOVER_RESP_SIZE 56
212 static int sas_ex_phy_discover(struct domain_device *dev, int single)
214 struct expander_device *ex = &dev->ex_dev;
219 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
223 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
229 disc_req[1] = SMP_DISCOVER;
231 if (0 <= single && single < ex->num_phys) {
232 disc_req[9] = single;
233 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
234 disc_resp, DISCOVER_RESP_SIZE);
237 sas_set_ex_phy(dev, single, disc_resp);
241 for (i = 0; i < ex->num_phys; i++) {
243 res = smp_execute_task(dev, disc_req,
244 DISCOVER_REQ_SIZE, disc_resp,
248 sas_set_ex_phy(dev, i, disc_resp);
257 static int sas_expander_discover(struct domain_device *dev)
259 struct expander_device *ex = &dev->ex_dev;
262 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
266 res = sas_ex_phy_discover(dev, -1);
277 #define MAX_EXPANDER_PHYS 128
279 static void ex_assign_report_general(struct domain_device *dev,
280 struct smp_resp *resp)
282 struct report_general_resp *rg = &resp->rg;
284 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
285 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
286 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
287 dev->ex_dev.conf_route_table = rg->conf_route_table;
288 dev->ex_dev.configuring = rg->configuring;
289 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
292 #define RG_REQ_SIZE 8
293 #define RG_RESP_SIZE 32
295 static int sas_ex_general(struct domain_device *dev)
298 struct smp_resp *rg_resp;
302 rg_req = alloc_smp_req(RG_REQ_SIZE);
306 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
312 rg_req[1] = SMP_REPORT_GENERAL;
314 for (i = 0; i < 5; i++) {
315 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
319 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
320 SAS_ADDR(dev->sas_addr), res);
322 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
323 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
324 SAS_ADDR(dev->sas_addr), rg_resp->result);
325 res = rg_resp->result;
329 ex_assign_report_general(dev, rg_resp);
331 if (dev->ex_dev.configuring) {
332 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
333 SAS_ADDR(dev->sas_addr));
334 schedule_timeout_interruptible(5*HZ);
344 static void ex_assign_manuf_info(struct domain_device *dev, void
347 u8 *mi_resp = _mi_resp;
348 struct sas_rphy *rphy = dev->rphy;
349 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
351 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
352 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
353 memcpy(edev->product_rev, mi_resp + 36,
354 SAS_EXPANDER_PRODUCT_REV_LEN);
356 if (mi_resp[8] & 1) {
357 memcpy(edev->component_vendor_id, mi_resp + 40,
358 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
359 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
360 edev->component_revision_id = mi_resp[50];
364 #define MI_REQ_SIZE 8
365 #define MI_RESP_SIZE 64
367 static int sas_ex_manuf_info(struct domain_device *dev)
373 mi_req = alloc_smp_req(MI_REQ_SIZE);
377 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
383 mi_req[1] = SMP_REPORT_MANUF_INFO;
385 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
387 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
388 SAS_ADDR(dev->sas_addr), res);
390 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
391 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
392 SAS_ADDR(dev->sas_addr), mi_resp[2]);
396 ex_assign_manuf_info(dev, mi_resp);
403 #define PC_REQ_SIZE 44
404 #define PC_RESP_SIZE 8
406 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
407 enum phy_func phy_func)
413 pc_req = alloc_smp_req(PC_REQ_SIZE);
417 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
423 pc_req[1] = SMP_PHY_CONTROL;
425 pc_req[10]= phy_func;
427 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
434 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
436 struct expander_device *ex = &dev->ex_dev;
437 struct ex_phy *phy = &ex->ex_phy[phy_id];
439 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE);
440 phy->linkrate = SAS_PHY_DISABLED;
443 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
445 struct expander_device *ex = &dev->ex_dev;
448 for (i = 0; i < ex->num_phys; i++) {
449 struct ex_phy *phy = &ex->ex_phy[i];
451 if (phy->phy_state == PHY_VACANT ||
452 phy->phy_state == PHY_NOT_PRESENT)
455 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
456 sas_ex_disable_phy(dev, i);
460 static int sas_dev_present_in_domain(struct asd_sas_port *port,
463 struct domain_device *dev;
465 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
467 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
468 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
474 #define RPEL_REQ_SIZE 16
475 #define RPEL_RESP_SIZE 32
476 int sas_smp_get_phy_events(struct sas_phy *phy)
479 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
480 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
481 u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
482 u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
487 req[1] = SMP_REPORT_PHY_ERR_LOG;
488 req[9] = phy->number;
490 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
491 resp, RPEL_RESP_SIZE);
496 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
497 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
498 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
499 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
507 #define RPS_REQ_SIZE 16
508 #define RPS_RESP_SIZE 60
510 static int sas_get_report_phy_sata(struct domain_device *dev,
512 struct smp_resp *rps_resp)
515 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
520 rps_req[1] = SMP_REPORT_PHY_SATA;
523 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
524 rps_resp, RPS_RESP_SIZE);
530 static void sas_ex_get_linkrate(struct domain_device *parent,
531 struct domain_device *child,
532 struct ex_phy *parent_phy)
534 struct expander_device *parent_ex = &parent->ex_dev;
535 struct sas_port *port;
540 port = parent_phy->port;
542 for (i = 0; i < parent_ex->num_phys; i++) {
543 struct ex_phy *phy = &parent_ex->ex_phy[i];
545 if (phy->phy_state == PHY_VACANT ||
546 phy->phy_state == PHY_NOT_PRESENT)
549 if (SAS_ADDR(phy->attached_sas_addr) ==
550 SAS_ADDR(child->sas_addr)) {
552 child->min_linkrate = min(parent->min_linkrate,
554 child->max_linkrate = max(parent->max_linkrate,
557 sas_port_add_phy(port, phy->phy);
560 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
561 child->pathways = min(child->pathways, parent->pathways);
564 static struct domain_device *sas_ex_discover_end_dev(
565 struct domain_device *parent, int phy_id)
567 struct expander_device *parent_ex = &parent->ex_dev;
568 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
569 struct domain_device *child = NULL;
570 struct sas_rphy *rphy;
573 if (phy->attached_sata_host || phy->attached_sata_ps)
576 child = kzalloc(sizeof(*child), GFP_KERNEL);
580 child->parent = parent;
581 child->port = parent->port;
582 child->iproto = phy->attached_iproto;
583 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
584 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
585 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
587 /* FIXME: better error handling*/
588 BUG_ON(sas_port_add(phy->port) != 0);
589 sas_ex_get_linkrate(parent, child, phy);
591 if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
592 child->dev_type = SATA_DEV;
593 if (phy->attached_tproto & SAS_PROTO_STP)
594 child->tproto = phy->attached_tproto;
595 if (phy->attached_sata_dev)
596 child->tproto |= SATA_DEV;
597 res = sas_get_report_phy_sata(parent, phy_id,
598 &child->sata_dev.rps_resp);
600 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
601 "0x%x\n", SAS_ADDR(parent->sas_addr),
606 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
607 sizeof(struct dev_to_host_fis));
609 res = sas_discover_sata(child);
611 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
612 "%016llx:0x%x returned 0x%x\n",
613 SAS_ADDR(child->sas_addr),
614 SAS_ADDR(parent->sas_addr), phy_id, res);
618 } else if (phy->attached_tproto & SAS_PROTO_SSP) {
619 child->dev_type = SAS_END_DEV;
620 rphy = sas_end_device_alloc(phy->port);
621 /* FIXME: error handling */
623 child->tproto = phy->attached_tproto;
627 sas_fill_in_rphy(child, rphy);
629 spin_lock(&parent->port->dev_list_lock);
630 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
631 spin_unlock(&parent->port->dev_list_lock);
633 res = sas_discover_end_dev(child);
635 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
636 "at %016llx:0x%x returned 0x%x\n",
637 SAS_ADDR(child->sas_addr),
638 SAS_ADDR(parent->sas_addr), phy_id, res);
639 /* FIXME: this kfrees list elements without removing them */
644 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
645 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
649 list_add_tail(&child->siblings, &parent_ex->children);
653 static struct domain_device *sas_ex_discover_expander(
654 struct domain_device *parent, int phy_id)
656 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
657 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
658 struct domain_device *child = NULL;
659 struct sas_rphy *rphy;
660 struct sas_expander_device *edev;
661 struct asd_sas_port *port;
664 if (phy->routing_attr == DIRECT_ROUTING) {
665 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
667 SAS_ADDR(parent->sas_addr), phy_id,
668 SAS_ADDR(phy->attached_sas_addr),
669 phy->attached_phy_id);
672 child = kzalloc(sizeof(*child), GFP_KERNEL);
676 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
677 /* FIXME: better error handling */
678 BUG_ON(sas_port_add(phy->port) != 0);
681 switch (phy->attached_dev_type) {
683 rphy = sas_expander_alloc(phy->port,
684 SAS_EDGE_EXPANDER_DEVICE);
687 rphy = sas_expander_alloc(phy->port,
688 SAS_FANOUT_EXPANDER_DEVICE);
691 rphy = NULL; /* shut gcc up */
696 edev = rphy_to_expander_device(rphy);
697 child->dev_type = phy->attached_dev_type;
698 child->parent = parent;
700 child->iproto = phy->attached_iproto;
701 child->tproto = phy->attached_tproto;
702 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
703 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
704 sas_ex_get_linkrate(parent, child, phy);
705 edev->level = parent_ex->level + 1;
706 parent->port->disc.max_level = max(parent->port->disc.max_level,
709 sas_fill_in_rphy(child, rphy);
712 spin_lock(&parent->port->dev_list_lock);
713 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
714 spin_unlock(&parent->port->dev_list_lock);
716 res = sas_discover_expander(child);
721 list_add_tail(&child->siblings, &parent->ex_dev.children);
725 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
727 struct expander_device *ex = &dev->ex_dev;
728 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
729 struct domain_device *child = NULL;
733 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
734 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET))
735 res = sas_ex_phy_discover(dev, phy_id);
740 /* Parent and domain coherency */
741 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
742 SAS_ADDR(dev->port->sas_addr))) {
743 sas_add_parent_port(dev, phy_id);
746 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
747 SAS_ADDR(dev->parent->sas_addr))) {
748 sas_add_parent_port(dev, phy_id);
749 if (ex_phy->routing_attr == TABLE_ROUTING)
750 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
754 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
755 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
757 if (ex_phy->attached_dev_type == NO_DEVICE) {
758 if (ex_phy->routing_attr == DIRECT_ROUTING) {
759 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
760 sas_configure_routing(dev, ex_phy->attached_sas_addr);
763 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
766 if (ex_phy->attached_dev_type != SAS_END_DEV &&
767 ex_phy->attached_dev_type != FANOUT_DEV &&
768 ex_phy->attached_dev_type != EDGE_DEV) {
769 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
770 "phy 0x%x\n", ex_phy->attached_dev_type,
771 SAS_ADDR(dev->sas_addr),
776 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
778 SAS_DPRINTK("configure routing for dev %016llx "
779 "reported 0x%x. Forgotten\n",
780 SAS_ADDR(ex_phy->attached_sas_addr), res);
781 sas_disable_routing(dev, ex_phy->attached_sas_addr);
785 switch (ex_phy->attached_dev_type) {
787 child = sas_ex_discover_end_dev(dev, phy_id);
790 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
791 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
792 "attached to ex %016llx phy 0x%x\n",
793 SAS_ADDR(ex_phy->attached_sas_addr),
794 ex_phy->attached_phy_id,
795 SAS_ADDR(dev->sas_addr),
797 sas_ex_disable_phy(dev, phy_id);
800 memcpy(dev->port->disc.fanout_sas_addr,
801 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
804 child = sas_ex_discover_expander(dev, phy_id);
813 for (i = 0; i < ex->num_phys; i++) {
814 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
815 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
818 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
819 SAS_ADDR(child->sas_addr))
820 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
827 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
829 struct expander_device *ex = &dev->ex_dev;
832 for (i = 0; i < ex->num_phys; i++) {
833 struct ex_phy *phy = &ex->ex_phy[i];
835 if (phy->phy_state == PHY_VACANT ||
836 phy->phy_state == PHY_NOT_PRESENT)
839 if ((phy->attached_dev_type == EDGE_DEV ||
840 phy->attached_dev_type == FANOUT_DEV) &&
841 phy->routing_attr == SUBTRACTIVE_ROUTING) {
843 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
851 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
853 struct expander_device *ex = &dev->ex_dev;
854 struct domain_device *child;
855 u8 sub_addr[8] = {0, };
857 list_for_each_entry(child, &ex->children, siblings) {
858 if (child->dev_type != EDGE_DEV &&
859 child->dev_type != FANOUT_DEV)
861 if (sub_addr[0] == 0) {
862 sas_find_sub_addr(child, sub_addr);
867 if (sas_find_sub_addr(child, s2) &&
868 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
870 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
871 "diverges from subtractive "
872 "boundary %016llx\n",
873 SAS_ADDR(dev->sas_addr),
874 SAS_ADDR(child->sas_addr),
878 sas_ex_disable_port(child, s2);
885 * sas_ex_discover_devices -- discover devices attached to this expander
886 * dev: pointer to the expander domain device
887 * single: if you want to do a single phy, else set to -1;
889 * Configure this expander for use with its devices and register the
890 * devices of this expander.
892 static int sas_ex_discover_devices(struct domain_device *dev, int single)
894 struct expander_device *ex = &dev->ex_dev;
895 int i = 0, end = ex->num_phys;
898 if (0 <= single && single < end) {
903 for ( ; i < end; i++) {
904 struct ex_phy *ex_phy = &ex->ex_phy[i];
906 if (ex_phy->phy_state == PHY_VACANT ||
907 ex_phy->phy_state == PHY_NOT_PRESENT ||
908 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
911 switch (ex_phy->linkrate) {
912 case SAS_PHY_DISABLED:
913 case SAS_PHY_RESET_PROBLEM:
914 case SAS_SATA_PORT_SELECTOR:
917 res = sas_ex_discover_dev(dev, i);
925 sas_check_level_subtractive_boundary(dev);
930 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
932 struct expander_device *ex = &dev->ex_dev;
934 u8 *sub_sas_addr = NULL;
936 if (dev->dev_type != EDGE_DEV)
939 for (i = 0; i < ex->num_phys; i++) {
940 struct ex_phy *phy = &ex->ex_phy[i];
942 if (phy->phy_state == PHY_VACANT ||
943 phy->phy_state == PHY_NOT_PRESENT)
946 if ((phy->attached_dev_type == FANOUT_DEV ||
947 phy->attached_dev_type == EDGE_DEV) &&
948 phy->routing_attr == SUBTRACTIVE_ROUTING) {
951 sub_sas_addr = &phy->attached_sas_addr[0];
952 else if (SAS_ADDR(sub_sas_addr) !=
953 SAS_ADDR(phy->attached_sas_addr)) {
955 SAS_DPRINTK("ex %016llx phy 0x%x "
956 "diverges(%016llx) on subtractive "
957 "boundary(%016llx). Disabled\n",
958 SAS_ADDR(dev->sas_addr), i,
959 SAS_ADDR(phy->attached_sas_addr),
960 SAS_ADDR(sub_sas_addr));
961 sas_ex_disable_phy(dev, i);
968 static void sas_print_parent_topology_bug(struct domain_device *child,
969 struct ex_phy *parent_phy,
970 struct ex_phy *child_phy)
972 static const char ra_char[] = {
973 [DIRECT_ROUTING] = 'D',
974 [SUBTRACTIVE_ROUTING] = 'S',
975 [TABLE_ROUTING] = 'T',
977 static const char *ex_type[] = {
979 [FANOUT_DEV] = "fanout",
981 struct domain_device *parent = child->parent;
983 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
984 "has %c:%c routing link!\n",
986 ex_type[parent->dev_type],
987 SAS_ADDR(parent->sas_addr),
990 ex_type[child->dev_type],
991 SAS_ADDR(child->sas_addr),
994 ra_char[parent_phy->routing_attr],
995 ra_char[child_phy->routing_attr]);
998 static int sas_check_eeds(struct domain_device *child,
999 struct ex_phy *parent_phy,
1000 struct ex_phy *child_phy)
1003 struct domain_device *parent = child->parent;
1005 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1007 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1008 "phy S:0x%x, while there is a fanout ex %016llx\n",
1009 SAS_ADDR(parent->sas_addr),
1011 SAS_ADDR(child->sas_addr),
1013 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1014 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1015 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1017 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1019 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1020 SAS_ADDR(parent->sas_addr)) ||
1021 (SAS_ADDR(parent->port->disc.eeds_a) ==
1022 SAS_ADDR(child->sas_addr)))
1024 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1025 SAS_ADDR(parent->sas_addr)) ||
1026 (SAS_ADDR(parent->port->disc.eeds_b) ==
1027 SAS_ADDR(child->sas_addr))))
1031 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1032 "phy 0x%x link forms a third EEDS!\n",
1033 SAS_ADDR(parent->sas_addr),
1035 SAS_ADDR(child->sas_addr),
1042 /* Here we spill over 80 columns. It is intentional.
1044 static int sas_check_parent_topology(struct domain_device *child)
1046 struct expander_device *child_ex = &child->ex_dev;
1047 struct expander_device *parent_ex;
1054 if (child->parent->dev_type != EDGE_DEV &&
1055 child->parent->dev_type != FANOUT_DEV)
1058 parent_ex = &child->parent->ex_dev;
1060 for (i = 0; i < parent_ex->num_phys; i++) {
1061 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1062 struct ex_phy *child_phy;
1064 if (parent_phy->phy_state == PHY_VACANT ||
1065 parent_phy->phy_state == PHY_NOT_PRESENT)
1068 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1071 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1073 switch (child->parent->dev_type) {
1075 if (child->dev_type == FANOUT_DEV) {
1076 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1077 child_phy->routing_attr != TABLE_ROUTING) {
1078 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1081 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1082 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1083 res = sas_check_eeds(child, parent_phy, child_phy);
1084 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1085 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1088 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1089 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1090 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1095 if (parent_phy->routing_attr != TABLE_ROUTING ||
1096 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1097 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1109 #define RRI_REQ_SIZE 16
1110 #define RRI_RESP_SIZE 44
1112 static int sas_configure_present(struct domain_device *dev, int phy_id,
1113 u8 *sas_addr, int *index, int *present)
1116 struct expander_device *ex = &dev->ex_dev;
1117 struct ex_phy *phy = &ex->ex_phy[phy_id];
1124 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1128 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1134 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1135 rri_req[9] = phy_id;
1137 for (i = 0; i < ex->max_route_indexes ; i++) {
1138 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1139 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1144 if (res == SMP_RESP_NO_INDEX) {
1145 SAS_DPRINTK("overflow of indexes: dev %016llx "
1146 "phy 0x%x index 0x%x\n",
1147 SAS_ADDR(dev->sas_addr), phy_id, i);
1149 } else if (res != SMP_RESP_FUNC_ACC) {
1150 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1151 "result 0x%x\n", __FUNCTION__,
1152 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1155 if (SAS_ADDR(sas_addr) != 0) {
1156 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1158 if ((rri_resp[12] & 0x80) == 0x80)
1163 } else if (SAS_ADDR(rri_resp+16) == 0) {
1168 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1169 phy->last_da_index < i) {
1170 phy->last_da_index = i;
1183 #define CRI_REQ_SIZE 44
1184 #define CRI_RESP_SIZE 8
1186 static int sas_configure_set(struct domain_device *dev, int phy_id,
1187 u8 *sas_addr, int index, int include)
1193 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1197 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1203 cri_req[1] = SMP_CONF_ROUTE_INFO;
1204 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1205 cri_req[9] = phy_id;
1206 if (SAS_ADDR(sas_addr) == 0 || !include)
1207 cri_req[12] |= 0x80;
1208 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1210 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1215 if (res == SMP_RESP_NO_INDEX) {
1216 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1218 SAS_ADDR(dev->sas_addr), phy_id, index);
1226 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1227 u8 *sas_addr, int include)
1233 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1236 if (include ^ present)
1237 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1243 * sas_configure_parent -- configure routing table of parent
1244 * parent: parent expander
1245 * child: child expander
1246 * sas_addr: SAS port identifier of device directly attached to child
1248 static int sas_configure_parent(struct domain_device *parent,
1249 struct domain_device *child,
1250 u8 *sas_addr, int include)
1252 struct expander_device *ex_parent = &parent->ex_dev;
1256 if (parent->parent) {
1257 res = sas_configure_parent(parent->parent, parent, sas_addr,
1263 if (ex_parent->conf_route_table == 0) {
1264 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1265 SAS_ADDR(parent->sas_addr));
1269 for (i = 0; i < ex_parent->num_phys; i++) {
1270 struct ex_phy *phy = &ex_parent->ex_phy[i];
1272 if ((phy->routing_attr == TABLE_ROUTING) &&
1273 (SAS_ADDR(phy->attached_sas_addr) ==
1274 SAS_ADDR(child->sas_addr))) {
1275 res = sas_configure_phy(parent, i, sas_addr, include);
1285 * sas_configure_routing -- configure routing
1286 * dev: expander device
1287 * sas_addr: port identifier of device directly attached to the expander device
1289 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1292 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1296 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1299 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1304 #define SMP_BIN_ATTR_NAME "smp_portal"
1306 static void sas_ex_smp_hook(struct domain_device *dev)
1308 struct expander_device *ex_dev = &dev->ex_dev;
1309 struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1311 memset(bin_attr, 0, sizeof(*bin_attr));
1313 bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1314 bin_attr->attr.owner = THIS_MODULE;
1315 bin_attr->attr.mode = 0600;
1318 bin_attr->private = NULL;
1319 bin_attr->read = smp_portal_read;
1320 bin_attr->write= smp_portal_write;
1321 bin_attr->mmap = NULL;
1323 ex_dev->smp_portal_pid = -1;
1324 init_MUTEX(&ex_dev->smp_sema);
1329 * sas_discover_expander -- expander discovery
1330 * @ex: pointer to expander domain device
1332 * See comment in sas_discover_sata().
1334 static int sas_discover_expander(struct domain_device *dev)
1338 res = sas_notify_lldd_dev_found(dev);
1342 res = sas_ex_general(dev);
1345 res = sas_ex_manuf_info(dev);
1349 res = sas_expander_discover(dev);
1351 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1352 SAS_ADDR(dev->sas_addr), res);
1356 sas_check_ex_subtractive_boundary(dev);
1357 res = sas_check_parent_topology(dev);
1362 sas_notify_lldd_dev_gone(dev);
1366 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1369 struct domain_device *dev;
1371 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1372 if (dev->dev_type == EDGE_DEV ||
1373 dev->dev_type == FANOUT_DEV) {
1374 struct sas_expander_device *ex =
1375 rphy_to_expander_device(dev->rphy);
1377 if (level == ex->level)
1378 res = sas_ex_discover_devices(dev, -1);
1380 res = sas_ex_discover_devices(port->port_dev, -1);
1388 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1394 level = port->disc.max_level;
1395 res = sas_ex_level_discovery(port, level);
1397 } while (level < port->disc.max_level);
1402 int sas_discover_root_expander(struct domain_device *dev)
1405 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1407 sas_rphy_add(dev->rphy);
1409 ex->level = dev->port->disc.max_level; /* 0 */
1410 res = sas_discover_expander(dev);
1412 sas_ex_bfs_disc(dev->port);
1417 /* ---------- Domain revalidation ---------- */
1419 static int sas_get_phy_discover(struct domain_device *dev,
1420 int phy_id, struct smp_resp *disc_resp)
1425 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1429 disc_req[1] = SMP_DISCOVER;
1430 disc_req[9] = phy_id;
1432 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1433 disc_resp, DISCOVER_RESP_SIZE);
1436 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1437 res = disc_resp->result;
1445 static int sas_get_phy_change_count(struct domain_device *dev,
1446 int phy_id, int *pcc)
1449 struct smp_resp *disc_resp;
1451 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1455 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1457 *pcc = disc_resp->disc.change_count;
1463 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1464 int phy_id, u8 *attached_sas_addr)
1467 struct smp_resp *disc_resp;
1468 struct discover_resp *dr;
1470 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1473 dr = &disc_resp->disc;
1475 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1477 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1478 if (dr->attached_dev_type == 0)
1479 memset(attached_sas_addr, 0, 8);
1485 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1488 struct expander_device *ex = &dev->ex_dev;
1492 for (i = from_phy; i < ex->num_phys; i++) {
1493 int phy_change_count = 0;
1495 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1498 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1499 ex->ex_phy[i].phy_change_count = phy_change_count;
1508 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1512 struct smp_resp *rg_resp;
1514 rg_req = alloc_smp_req(RG_REQ_SIZE);
1518 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1524 rg_req[1] = SMP_REPORT_GENERAL;
1526 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1530 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1531 res = rg_resp->result;
1535 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1542 static int sas_find_bcast_dev(struct domain_device *dev,
1543 struct domain_device **src_dev)
1545 struct expander_device *ex = &dev->ex_dev;
1546 int ex_change_count = -1;
1549 res = sas_get_ex_change_count(dev, &ex_change_count);
1552 if (ex_change_count != -1 &&
1553 ex_change_count != ex->ex_change_count) {
1555 ex->ex_change_count = ex_change_count;
1557 struct domain_device *ch;
1559 list_for_each_entry(ch, &ex->children, siblings) {
1560 if (ch->dev_type == EDGE_DEV ||
1561 ch->dev_type == FANOUT_DEV) {
1562 res = sas_find_bcast_dev(ch, src_dev);
1572 static void sas_unregister_ex_tree(struct domain_device *dev)
1574 struct expander_device *ex = &dev->ex_dev;
1575 struct domain_device *child, *n;
1577 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1578 if (child->dev_type == EDGE_DEV ||
1579 child->dev_type == FANOUT_DEV)
1580 sas_unregister_ex_tree(child);
1582 sas_unregister_dev(child);
1584 sas_unregister_dev(dev);
1587 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1590 struct expander_device *ex_dev = &parent->ex_dev;
1591 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1592 struct domain_device *child, *n;
1594 list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1595 if (SAS_ADDR(child->sas_addr) ==
1596 SAS_ADDR(phy->attached_sas_addr)) {
1597 if (child->dev_type == EDGE_DEV ||
1598 child->dev_type == FANOUT_DEV)
1599 sas_unregister_ex_tree(child);
1601 sas_unregister_dev(child);
1605 sas_disable_routing(parent, phy->attached_sas_addr);
1606 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1607 sas_port_delete_phy(phy->port, phy->phy);
1608 if (phy->port->num_phys == 0)
1609 sas_port_delete(phy->port);
1613 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1616 struct expander_device *ex_root = &root->ex_dev;
1617 struct domain_device *child;
1620 list_for_each_entry(child, &ex_root->children, siblings) {
1621 if (child->dev_type == EDGE_DEV ||
1622 child->dev_type == FANOUT_DEV) {
1623 struct sas_expander_device *ex =
1624 rphy_to_expander_device(child->rphy);
1626 if (level > ex->level)
1627 res = sas_discover_bfs_by_root_level(child,
1629 else if (level == ex->level)
1630 res = sas_ex_discover_devices(child, -1);
1636 static int sas_discover_bfs_by_root(struct domain_device *dev)
1639 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1640 int level = ex->level+1;
1642 res = sas_ex_discover_devices(dev, -1);
1646 res = sas_discover_bfs_by_root_level(dev, level);
1649 } while (level <= dev->port->disc.max_level);
1654 static int sas_discover_new(struct domain_device *dev, int phy_id)
1656 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1657 struct domain_device *child;
1660 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1661 SAS_ADDR(dev->sas_addr), phy_id);
1662 res = sas_ex_phy_discover(dev, phy_id);
1665 res = sas_ex_discover_devices(dev, phy_id);
1668 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1669 if (SAS_ADDR(child->sas_addr) ==
1670 SAS_ADDR(ex_phy->attached_sas_addr)) {
1671 if (child->dev_type == EDGE_DEV ||
1672 child->dev_type == FANOUT_DEV)
1673 res = sas_discover_bfs_by_root(child);
1681 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1683 struct expander_device *ex = &dev->ex_dev;
1684 struct ex_phy *phy = &ex->ex_phy[phy_id];
1685 u8 attached_sas_addr[8];
1688 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1690 case SMP_RESP_NO_PHY:
1691 phy->phy_state = PHY_NOT_PRESENT;
1692 sas_unregister_devs_sas_addr(dev, phy_id);
1694 case SMP_RESP_PHY_VACANT:
1695 phy->phy_state = PHY_VACANT;
1696 sas_unregister_devs_sas_addr(dev, phy_id);
1698 case SMP_RESP_FUNC_ACC:
1702 if (SAS_ADDR(attached_sas_addr) == 0) {
1703 phy->phy_state = PHY_EMPTY;
1704 sas_unregister_devs_sas_addr(dev, phy_id);
1705 } else if (SAS_ADDR(attached_sas_addr) ==
1706 SAS_ADDR(phy->attached_sas_addr)) {
1707 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1708 SAS_ADDR(dev->sas_addr), phy_id);
1710 res = sas_discover_new(dev, phy_id);
1715 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1717 struct expander_device *ex = &dev->ex_dev;
1718 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1722 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1723 SAS_ADDR(dev->sas_addr), phy_id);
1725 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1726 for (i = 0; i < ex->num_phys; i++) {
1727 struct ex_phy *phy = &ex->ex_phy[i];
1731 if (SAS_ADDR(phy->attached_sas_addr) ==
1732 SAS_ADDR(changed_phy->attached_sas_addr)) {
1733 SAS_DPRINTK("phy%d part of wide port with "
1734 "phy%d\n", phy_id, i);
1738 res = sas_rediscover_dev(dev, phy_id);
1740 res = sas_discover_new(dev, phy_id);
1746 * sas_revalidate_domain -- revalidate the domain
1747 * @port: port to the domain of interest
1749 * NOTE: this process _must_ quit (return) as soon as any connection
1750 * errors are encountered. Connection recovery is done elsewhere.
1751 * Discover process only interrogates devices in order to discover the
1754 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1757 struct domain_device *dev = NULL;
1759 res = sas_find_bcast_dev(port_dev, &dev);
1763 struct expander_device *ex = &dev->ex_dev;
1768 res = sas_find_bcast_phy(dev, &phy_id, i);
1771 res = sas_rediscover(dev, phy_id);
1773 } while (i < ex->num_phys);
1780 /* ---------- SMP portal ---------- */
1782 static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
1785 struct domain_device *dev = to_dom_device(kobj);
1786 struct expander_device *ex = &dev->ex_dev;
1793 down_interruptible(&ex->smp_sema);
1796 ex->smp_req = kzalloc(size, GFP_USER);
1801 memcpy(ex->smp_req, buf, size);
1802 ex->smp_req_size = size;
1803 ex->smp_portal_pid = current->pid;
1809 static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
1812 struct domain_device *dev = to_dom_device(kobj);
1813 struct expander_device *ex = &dev->ex_dev;
1817 /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1821 down_interruptible(&ex->smp_sema);
1822 if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1830 smp_resp = alloc_smp_resp(size);
1833 res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1836 memcpy(buf, smp_resp, size);
1844 ex->smp_req_size = 0;
1845 ex->smp_portal_pid = -1;