3 * Linux MegaRAID driver for SAS based RAID controllers
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 * FILE : megaraid_sas.c
13 * Version : v00.00.03.10-rc1
16 * (email-id : megaraidlinux@lsi.com)
21 * List of supported controllers
23 * OEM Product Name VID DID SSVID SSID
24 * --- ------------ --- --- ---- ----
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/uio.h>
37 #include <asm/uaccess.h>
39 #include <linux/compat.h>
40 #include <linux/blkdev.h>
41 #include <linux/mutex.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47 #include "megaraid_sas.h"
49 MODULE_LICENSE("GPL");
50 MODULE_VERSION(MEGASAS_VERSION);
51 MODULE_AUTHOR("megaraidlinux@lsi.com");
52 MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
55 * PCI ID table for all supported controllers
57 static struct pci_device_id megasas_pci_table[] = {
59 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
61 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
63 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
64 /* xscale IOP, vega */
65 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
70 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
72 static int megasas_mgmt_majorno;
73 static struct megasas_mgmt_info megasas_mgmt_info;
74 static struct fasync_struct *megasas_async_queue;
75 static DEFINE_MUTEX(megasas_async_queue_mutex);
77 static u32 megasas_dbg_lvl;
80 * megasas_get_cmd - Get a command from the free pool
81 * @instance: Adapter soft state
83 * Returns a free command from the pool
85 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
89 struct megasas_cmd *cmd = NULL;
91 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
93 if (!list_empty(&instance->cmd_pool)) {
94 cmd = list_entry((&instance->cmd_pool)->next,
95 struct megasas_cmd, list);
96 list_del_init(&cmd->list);
98 printk(KERN_ERR "megasas: Command pool empty!\n");
101 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
106 * megasas_return_cmd - Return a cmd to free command pool
107 * @instance: Adapter soft state
108 * @cmd: Command packet to be returned to free command pool
111 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
115 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
118 list_add_tail(&cmd->list, &instance->cmd_pool);
120 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
125 * The following functions are defined for xscale
126 * (deviceid : 1064R, PERC5) controllers
130 * megasas_enable_intr_xscale - Enables interrupts
131 * @regs: MFI register set
134 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
136 writel(1, &(regs)->outbound_intr_mask);
138 /* Dummy readl to force pci flush */
139 readl(®s->outbound_intr_mask);
143 * megasas_disable_intr_xscale -Disables interrupt
144 * @regs: MFI register set
147 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
150 writel(mask, ®s->outbound_intr_mask);
151 /* Dummy readl to force pci flush */
152 readl(®s->outbound_intr_mask);
156 * megasas_read_fw_status_reg_xscale - returns the current FW status value
157 * @regs: MFI register set
160 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
162 return readl(&(regs)->outbound_msg_0);
165 * megasas_clear_interrupt_xscale - Check & clear interrupt
166 * @regs: MFI register set
169 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
173 * Check if it is our interrupt
175 status = readl(®s->outbound_intr_status);
177 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
182 * Clear the interrupt by writing back the same value
184 writel(status, ®s->outbound_intr_status);
190 * megasas_fire_cmd_xscale - Sends command to the FW
191 * @frame_phys_addr : Physical address of cmd
192 * @frame_count : Number of frames for the command
193 * @regs : MFI register set
196 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
198 writel((frame_phys_addr >> 3)|(frame_count),
199 &(regs)->inbound_queue_port);
202 static struct megasas_instance_template megasas_instance_template_xscale = {
204 .fire_cmd = megasas_fire_cmd_xscale,
205 .enable_intr = megasas_enable_intr_xscale,
206 .disable_intr = megasas_disable_intr_xscale,
207 .clear_intr = megasas_clear_intr_xscale,
208 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
212 * This is the end of set of functions & definitions specific
213 * to xscale (deviceid : 1064R, PERC5) controllers
217 * The following functions are defined for ppc (deviceid : 0x60)
222 * megasas_enable_intr_ppc - Enables interrupts
223 * @regs: MFI register set
226 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
228 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
230 writel(~0x80000004, &(regs)->outbound_intr_mask);
232 /* Dummy readl to force pci flush */
233 readl(®s->outbound_intr_mask);
237 * megasas_disable_intr_ppc - Disable interrupt
238 * @regs: MFI register set
241 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
243 u32 mask = 0xFFFFFFFF;
244 writel(mask, ®s->outbound_intr_mask);
245 /* Dummy readl to force pci flush */
246 readl(®s->outbound_intr_mask);
250 * megasas_read_fw_status_reg_ppc - returns the current FW status value
251 * @regs: MFI register set
254 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
256 return readl(&(regs)->outbound_scratch_pad);
260 * megasas_clear_interrupt_ppc - Check & clear interrupt
261 * @regs: MFI register set
264 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
268 * Check if it is our interrupt
270 status = readl(®s->outbound_intr_status);
272 if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
277 * Clear the interrupt by writing back the same value
279 writel(status, ®s->outbound_doorbell_clear);
284 * megasas_fire_cmd_ppc - Sends command to the FW
285 * @frame_phys_addr : Physical address of cmd
286 * @frame_count : Number of frames for the command
287 * @regs : MFI register set
290 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
292 writel((frame_phys_addr | (frame_count<<1))|1,
293 &(regs)->inbound_queue_port);
296 static struct megasas_instance_template megasas_instance_template_ppc = {
298 .fire_cmd = megasas_fire_cmd_ppc,
299 .enable_intr = megasas_enable_intr_ppc,
300 .disable_intr = megasas_disable_intr_ppc,
301 .clear_intr = megasas_clear_intr_ppc,
302 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
306 * This is the end of set of functions & definitions
307 * specific to ppc (deviceid : 0x60) controllers
311 * megasas_issue_polled - Issues a polling command
312 * @instance: Adapter soft state
313 * @cmd: Command packet to be issued
315 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
318 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
321 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
323 struct megasas_header *frame_hdr = &cmd->frame->hdr;
325 frame_hdr->cmd_status = 0xFF;
326 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
329 * Issue the frame using inbound queue port
331 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
334 * Wait for cmd_status to change
336 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
341 if (frame_hdr->cmd_status == 0xff)
348 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
349 * @instance: Adapter soft state
350 * @cmd: Command to be issued
352 * This function waits on an event for the command to be returned from ISR.
353 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
354 * Used to issue ioctl commands.
357 megasas_issue_blocked_cmd(struct megasas_instance *instance,
358 struct megasas_cmd *cmd)
360 cmd->cmd_status = ENODATA;
362 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
364 wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
365 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
371 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
372 * @instance: Adapter soft state
373 * @cmd_to_abort: Previously issued cmd to be aborted
375 * MFI firmware can abort previously issued AEN comamnd (automatic event
376 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
377 * cmd and waits for return status.
378 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
381 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
382 struct megasas_cmd *cmd_to_abort)
384 struct megasas_cmd *cmd;
385 struct megasas_abort_frame *abort_fr;
387 cmd = megasas_get_cmd(instance);
392 abort_fr = &cmd->frame->abort;
395 * Prepare and issue the abort frame
397 abort_fr->cmd = MFI_CMD_ABORT;
398 abort_fr->cmd_status = 0xFF;
400 abort_fr->abort_context = cmd_to_abort->index;
401 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
402 abort_fr->abort_mfi_phys_addr_hi = 0;
405 cmd->cmd_status = 0xFF;
407 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
410 * Wait for this cmd to complete
412 wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
413 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
415 megasas_return_cmd(instance, cmd);
420 * megasas_make_sgl32 - Prepares 32-bit SGL
421 * @instance: Adapter soft state
422 * @scp: SCSI command from the mid-layer
423 * @mfi_sgl: SGL to be filled in
425 * If successful, this function returns the number of SG elements. Otherwise,
429 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
430 union megasas_sgl *mfi_sgl)
434 struct scatterlist *os_sgl;
437 * Return 0 if there is no data transfer
439 if (!scp->request_buffer || !scp->request_bufflen)
443 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
450 mfi_sgl->sge32[0].length = scp->request_bufflen;
455 os_sgl = (struct scatterlist *)scp->request_buffer;
456 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
457 scp->sc_data_direction);
459 for (i = 0; i < sge_count; i++, os_sgl++) {
460 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
461 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
468 * megasas_make_sgl64 - Prepares 64-bit SGL
469 * @instance: Adapter soft state
470 * @scp: SCSI command from the mid-layer
471 * @mfi_sgl: SGL to be filled in
473 * If successful, this function returns the number of SG elements. Otherwise,
477 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
478 union megasas_sgl *mfi_sgl)
482 struct scatterlist *os_sgl;
485 * Return 0 if there is no data transfer
487 if (!scp->request_buffer || !scp->request_bufflen)
491 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
499 mfi_sgl->sge64[0].length = scp->request_bufflen;
504 os_sgl = (struct scatterlist *)scp->request_buffer;
505 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
506 scp->sc_data_direction);
508 for (i = 0; i < sge_count; i++, os_sgl++) {
509 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
510 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
517 * megasas_get_frame_count - Computes the number of frames
518 * @sge_count : number of sg elements
520 * Returns the number of frames required for numnber of sge's (sge_count)
523 static u32 megasas_get_frame_count(u8 sge_count)
530 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
531 sizeof(struct megasas_sge32);
534 * Main frame can contain 2 SGEs for 64-bit SGLs and
535 * 3 SGEs for 32-bit SGLs
538 num_cnt = sge_count - 2;
540 num_cnt = sge_count - 3;
543 sge_bytes = sge_sz * num_cnt;
545 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
546 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
557 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
558 * @instance: Adapter soft state
560 * @cmd: Command to be prepared in
562 * This function prepares CDB commands. These are typcially pass-through
563 * commands to the devices.
566 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
567 struct megasas_cmd *cmd)
572 struct megasas_pthru_frame *pthru;
574 is_logical = MEGASAS_IS_LOGICAL(scp);
575 device_id = MEGASAS_DEV_INDEX(instance, scp);
576 pthru = (struct megasas_pthru_frame *)cmd->frame;
578 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
579 flags = MFI_FRAME_DIR_WRITE;
580 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
581 flags = MFI_FRAME_DIR_READ;
582 else if (scp->sc_data_direction == PCI_DMA_NONE)
583 flags = MFI_FRAME_DIR_NONE;
586 * Prepare the DCDB frame
588 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
589 pthru->cmd_status = 0x0;
590 pthru->scsi_status = 0x0;
591 pthru->target_id = device_id;
592 pthru->lun = scp->device->lun;
593 pthru->cdb_len = scp->cmd_len;
595 pthru->flags = flags;
596 pthru->data_xfer_len = scp->request_bufflen;
598 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
604 pthru->flags |= MFI_FRAME_SGL64;
605 pthru->sge_count = megasas_make_sgl64(instance, scp,
608 pthru->sge_count = megasas_make_sgl32(instance, scp,
612 * Sense info specific
614 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
615 pthru->sense_buf_phys_addr_hi = 0;
616 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
619 * Compute the total number of frames this command consumes. FW uses
620 * this number to pull sufficient number of frames from host memory.
622 cmd->frame_count = megasas_get_frame_count(pthru->sge_count);
624 return cmd->frame_count;
628 * megasas_build_ldio - Prepares IOs to logical devices
629 * @instance: Adapter soft state
631 * @cmd: Command to to be prepared
633 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
636 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
637 struct megasas_cmd *cmd)
640 u8 sc = scp->cmnd[0];
642 struct megasas_io_frame *ldio;
644 device_id = MEGASAS_DEV_INDEX(instance, scp);
645 ldio = (struct megasas_io_frame *)cmd->frame;
647 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
648 flags = MFI_FRAME_DIR_WRITE;
649 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
650 flags = MFI_FRAME_DIR_READ;
653 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
655 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
656 ldio->cmd_status = 0x0;
657 ldio->scsi_status = 0x0;
658 ldio->target_id = device_id;
660 ldio->reserved_0 = 0;
663 ldio->start_lba_hi = 0;
664 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
667 * 6-byte READ(0x08) or WRITE(0x0A) cdb
669 if (scp->cmd_len == 6) {
670 ldio->lba_count = (u32) scp->cmnd[4];
671 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
672 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
674 ldio->start_lba_lo &= 0x1FFFFF;
678 * 10-byte READ(0x28) or WRITE(0x2A) cdb
680 else if (scp->cmd_len == 10) {
681 ldio->lba_count = (u32) scp->cmnd[8] |
682 ((u32) scp->cmnd[7] << 8);
683 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
684 ((u32) scp->cmnd[3] << 16) |
685 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
689 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
691 else if (scp->cmd_len == 12) {
692 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
693 ((u32) scp->cmnd[7] << 16) |
694 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
696 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
697 ((u32) scp->cmnd[3] << 16) |
698 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
702 * 16-byte READ(0x88) or WRITE(0x8A) cdb
704 else if (scp->cmd_len == 16) {
705 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
706 ((u32) scp->cmnd[11] << 16) |
707 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
709 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
710 ((u32) scp->cmnd[7] << 16) |
711 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
713 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
714 ((u32) scp->cmnd[3] << 16) |
715 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
723 ldio->flags |= MFI_FRAME_SGL64;
724 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
726 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
729 * Sense info specific
731 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
732 ldio->sense_buf_phys_addr_hi = 0;
733 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
736 * Compute the total number of frames this command consumes. FW uses
737 * this number to pull sufficient number of frames from host memory.
739 cmd->frame_count = megasas_get_frame_count(ldio->sge_count);
741 return cmd->frame_count;
745 * megasas_is_ldio - Checks if the cmd is for logical drive
746 * @scmd: SCSI command
748 * Called by megasas_queue_command to find out if the command to be queued
749 * is a logical drive command
751 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
753 if (!MEGASAS_IS_LOGICAL(cmd))
755 switch (cmd->cmnd[0]) {
771 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds
773 * @instance: Adapter soft state
776 megasas_dump_pending_frames(struct megasas_instance *instance)
778 struct megasas_cmd *cmd;
780 union megasas_sgl *mfi_sgl;
781 struct megasas_io_frame *ldio;
782 struct megasas_pthru_frame *pthru;
784 u32 max_cmd = instance->max_fw_cmds;
786 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
787 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
789 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
791 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
793 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
794 for (i = 0; i < max_cmd; i++) {
795 cmd = instance->cmd_list[i];
798 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
799 if (megasas_is_ldio(cmd->scmd)){
800 ldio = (struct megasas_io_frame *)cmd->frame;
801 mfi_sgl = &ldio->sgl;
802 sgcount = ldio->sge_count;
803 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
806 pthru = (struct megasas_pthru_frame *) cmd->frame;
807 mfi_sgl = &pthru->sgl;
808 sgcount = pthru->sge_count;
809 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
811 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
812 for (n = 0; n < sgcount; n++){
814 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
816 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
819 printk(KERN_ERR "\n");
821 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
822 for (i = 0; i < max_cmd; i++) {
824 cmd = instance->cmd_list[i];
826 if(cmd->sync_cmd == 1){
827 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
830 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
834 * megasas_queue_command - Queue entry point
835 * @scmd: SCSI command to be queued
836 * @done: Callback entry point
839 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
842 struct megasas_cmd *cmd;
843 struct megasas_instance *instance;
845 instance = (struct megasas_instance *)
846 scmd->device->host->hostdata;
848 /* Don't process if we have already declared adapter dead */
849 if (instance->hw_crit_error)
850 return SCSI_MLQUEUE_HOST_BUSY;
852 scmd->scsi_done = done;
855 if (MEGASAS_IS_LOGICAL(scmd) &&
856 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
857 scmd->result = DID_BAD_TARGET << 16;
861 switch (scmd->cmnd[0]) {
862 case SYNCHRONIZE_CACHE:
864 * FW takes care of flush cache on its own
865 * No need to send it down
867 scmd->result = DID_OK << 16;
873 cmd = megasas_get_cmd(instance);
875 return SCSI_MLQUEUE_HOST_BUSY;
878 * Logical drive command
880 if (megasas_is_ldio(scmd))
881 frame_count = megasas_build_ldio(instance, scmd, cmd);
883 frame_count = megasas_build_dcdb(instance, scmd, cmd);
891 * Issue the command to the FW
893 atomic_inc(&instance->fw_outstanding);
895 instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
900 megasas_return_cmd(instance, cmd);
906 static int megasas_slave_configure(struct scsi_device *sdev)
909 * Don't export physical disk devices to the disk driver.
911 * FIXME: Currently we don't export them to the midlayer at all.
912 * That will be fixed once LSI engineers have audited the
913 * firmware for possible issues.
915 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
919 * The RAID firmware may require extended timeouts.
921 if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
922 sdev->timeout = 90 * HZ;
927 * megasas_wait_for_outstanding - Wait for all outstanding cmds
928 * @instance: Adapter soft state
930 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
931 * complete all its outstanding commands. Returns error if one or more IOs
932 * are pending after this time period. It also marks the controller dead.
934 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
937 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
939 for (i = 0; i < wait_time; i++) {
941 int outstanding = atomic_read(&instance->fw_outstanding);
946 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
947 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
948 "commands to complete\n",i,outstanding);
954 if (atomic_read(&instance->fw_outstanding)) {
956 * Send signal to FW to stop processing any pending cmds.
957 * The controller will be taken offline by the OS now.
960 &instance->reg_set->inbound_doorbell);
961 megasas_dump_pending_frames(instance);
962 instance->hw_crit_error = 1;
970 * megasas_generic_reset - Generic reset routine
971 * @scmd: Mid-layer SCSI command
973 * This routine implements a generic reset handler for device, bus and host
974 * reset requests. Device, bus and host specific reset handlers can use this
975 * function after they do their specific tasks.
977 static int megasas_generic_reset(struct scsi_cmnd *scmd)
980 struct megasas_instance *instance;
982 instance = (struct megasas_instance *)scmd->device->host->hostdata;
984 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x\n",
985 scmd->serial_number, scmd->cmnd[0]);
987 if (instance->hw_crit_error) {
988 printk(KERN_ERR "megasas: cannot recover from previous reset "
993 ret_val = megasas_wait_for_outstanding(instance);
994 if (ret_val == SUCCESS)
995 printk(KERN_NOTICE "megasas: reset successful \n");
997 printk(KERN_ERR "megasas: failed to do reset\n");
1003 * megasas_reset_device - Device reset handler entry point
1005 static int megasas_reset_device(struct scsi_cmnd *scmd)
1010 * First wait for all commands to complete
1012 ret = megasas_generic_reset(scmd);
1018 * megasas_reset_bus_host - Bus & host reset handler entry point
1020 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1025 * First wait for all commands to complete
1027 ret = megasas_generic_reset(scmd);
1033 * megasas_bios_param - Returns disk geometry for a disk
1034 * @sdev: device handle
1035 * @bdev: block device
1036 * @capacity: drive capacity
1037 * @geom: geometry parameters
1040 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1041 sector_t capacity, int geom[])
1047 /* Default heads (64) & sectors (32) */
1051 tmp = heads * sectors;
1052 cylinders = capacity;
1054 sector_div(cylinders, tmp);
1057 * Handle extended translation size for logical drives > 1Gb
1060 if (capacity >= 0x200000) {
1063 tmp = heads*sectors;
1064 cylinders = capacity;
1065 sector_div(cylinders, tmp);
1070 geom[2] = cylinders;
1076 * megasas_service_aen - Processes an event notification
1077 * @instance: Adapter soft state
1078 * @cmd: AEN command completed by the ISR
1080 * For AEN, driver sends a command down to FW that is held by the FW till an
1081 * event occurs. When an event of interest occurs, FW completes the command
1082 * that it was previously holding.
1084 * This routines sends SIGIO signal to processes that have registered with the
1088 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1091 * Don't signal app if it is just an aborted previously registered aen
1093 if (!cmd->abort_aen)
1094 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1098 instance->aen_cmd = NULL;
1099 megasas_return_cmd(instance, cmd);
1103 * Scsi host template for megaraid_sas driver
1105 static struct scsi_host_template megasas_template = {
1107 .module = THIS_MODULE,
1108 .name = "LSI Logic SAS based MegaRAID driver",
1109 .proc_name = "megaraid_sas",
1110 .slave_configure = megasas_slave_configure,
1111 .queuecommand = megasas_queue_command,
1112 .eh_device_reset_handler = megasas_reset_device,
1113 .eh_bus_reset_handler = megasas_reset_bus_host,
1114 .eh_host_reset_handler = megasas_reset_bus_host,
1115 .bios_param = megasas_bios_param,
1116 .use_clustering = ENABLE_CLUSTERING,
1120 * megasas_complete_int_cmd - Completes an internal command
1121 * @instance: Adapter soft state
1122 * @cmd: Command to be completed
1124 * The megasas_issue_blocked_cmd() function waits for a command to complete
1125 * after it issues a command. This function wakes up that waiting routine by
1126 * calling wake_up() on the wait queue.
1129 megasas_complete_int_cmd(struct megasas_instance *instance,
1130 struct megasas_cmd *cmd)
1132 cmd->cmd_status = cmd->frame->io.cmd_status;
1134 if (cmd->cmd_status == ENODATA) {
1135 cmd->cmd_status = 0;
1137 wake_up(&instance->int_cmd_wait_q);
1141 * megasas_complete_abort - Completes aborting a command
1142 * @instance: Adapter soft state
1143 * @cmd: Cmd that was issued to abort another cmd
1145 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
1146 * after it issues an abort on a previously issued command. This function
1147 * wakes up all functions waiting on the same wait queue.
1150 megasas_complete_abort(struct megasas_instance *instance,
1151 struct megasas_cmd *cmd)
1153 if (cmd->sync_cmd) {
1155 cmd->cmd_status = 0;
1156 wake_up(&instance->abort_cmd_wait_q);
1163 * megasas_unmap_sgbuf - Unmap SG buffers
1164 * @instance: Adapter soft state
1165 * @cmd: Completed command
1168 megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
1173 if (cmd->scmd->use_sg) {
1174 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
1175 cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
1179 if (!cmd->scmd->request_bufflen)
1182 opcode = cmd->frame->hdr.cmd;
1184 if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
1186 buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
1188 buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
1191 buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
1193 buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
1196 pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
1197 cmd->scmd->sc_data_direction);
1202 * megasas_complete_cmd - Completes a command
1203 * @instance: Adapter soft state
1204 * @cmd: Command to be completed
1205 * @alt_status: If non-zero, use this value as status to
1206 * SCSI mid-layer instead of the value returned
1207 * by the FW. This should be used if caller wants
1208 * an alternate status (as in the case of aborted
1212 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1216 struct megasas_header *hdr = &cmd->frame->hdr;
1219 cmd->scmd->SCp.ptr = (char *)0;
1224 case MFI_CMD_PD_SCSI_IO:
1225 case MFI_CMD_LD_SCSI_IO:
1228 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1229 * issued either through an IO path or an IOCTL path. If it
1230 * was via IOCTL, we will send it to internal completion.
1232 if (cmd->sync_cmd) {
1234 megasas_complete_int_cmd(instance, cmd);
1238 case MFI_CMD_LD_READ:
1239 case MFI_CMD_LD_WRITE:
1242 cmd->scmd->result = alt_status << 16;
1248 atomic_dec(&instance->fw_outstanding);
1250 megasas_unmap_sgbuf(instance, cmd);
1251 cmd->scmd->scsi_done(cmd->scmd);
1252 megasas_return_cmd(instance, cmd);
1257 switch (hdr->cmd_status) {
1260 cmd->scmd->result = DID_OK << 16;
1263 case MFI_STAT_SCSI_IO_FAILED:
1264 case MFI_STAT_LD_INIT_IN_PROGRESS:
1266 (DID_ERROR << 16) | hdr->scsi_status;
1269 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1271 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1273 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1274 memset(cmd->scmd->sense_buffer, 0,
1275 SCSI_SENSE_BUFFERSIZE);
1276 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1279 cmd->scmd->result |= DRIVER_SENSE << 24;
1284 case MFI_STAT_LD_OFFLINE:
1285 case MFI_STAT_DEVICE_NOT_FOUND:
1286 cmd->scmd->result = DID_BAD_TARGET << 16;
1290 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1292 cmd->scmd->result = DID_ERROR << 16;
1296 atomic_dec(&instance->fw_outstanding);
1298 megasas_unmap_sgbuf(instance, cmd);
1299 cmd->scmd->scsi_done(cmd->scmd);
1300 megasas_return_cmd(instance, cmd);
1309 * See if got an event notification
1311 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1312 megasas_service_aen(instance, cmd);
1314 megasas_complete_int_cmd(instance, cmd);
1320 * Cmd issued to abort another cmd returned
1322 megasas_complete_abort(instance, cmd);
1326 printk("megasas: Unknown command completed! [0x%X]\n",
1333 * megasas_deplete_reply_queue - Processes all completed commands
1334 * @instance: Adapter soft state
1335 * @alt_status: Alternate status to be returned to
1336 * SCSI mid-layer instead of the status
1337 * returned by the FW
1340 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1343 * Check if it is our interrupt
1344 * Clear the interrupt
1346 if(instance->instancet->clear_intr(instance->reg_set))
1349 if (instance->hw_crit_error)
1352 * Schedule the tasklet for cmd completion
1354 tasklet_schedule(&instance->isr_tasklet);
1360 * megasas_isr - isr entry point
1362 static irqreturn_t megasas_isr(int irq, void *devp)
1364 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1369 * megasas_transition_to_ready - Move the FW to READY state
1370 * @instance: Adapter soft state
1372 * During the initialization, FW passes can potentially be in any one of
1373 * several possible states. If the FW in operational, waiting-for-handshake
1374 * states, driver must take steps to bring it to ready state. Otherwise, it
1375 * has to wait for the ready state.
1378 megasas_transition_to_ready(struct megasas_instance* instance)
1385 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1387 if (fw_state != MFI_STATE_READY)
1388 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1391 while (fw_state != MFI_STATE_READY) {
1395 case MFI_STATE_FAULT:
1397 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1400 case MFI_STATE_WAIT_HANDSHAKE:
1402 * Set the CLR bit in inbound doorbell
1404 writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1405 &instance->reg_set->inbound_doorbell);
1408 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1411 case MFI_STATE_BOOT_MESSAGE_PENDING:
1412 writel(MFI_INIT_HOTPLUG,
1413 &instance->reg_set->inbound_doorbell);
1416 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1419 case MFI_STATE_OPERATIONAL:
1421 * Bring it to READY state; assuming max wait 10 secs
1423 instance->instancet->disable_intr(instance->reg_set);
1424 writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1427 cur_state = MFI_STATE_OPERATIONAL;
1430 case MFI_STATE_UNDEFINED:
1432 * This state should not last for more than 2 seconds
1435 cur_state = MFI_STATE_UNDEFINED;
1438 case MFI_STATE_BB_INIT:
1440 cur_state = MFI_STATE_BB_INIT;
1443 case MFI_STATE_FW_INIT:
1445 cur_state = MFI_STATE_FW_INIT;
1448 case MFI_STATE_FW_INIT_2:
1450 cur_state = MFI_STATE_FW_INIT_2;
1453 case MFI_STATE_DEVICE_SCAN:
1455 cur_state = MFI_STATE_DEVICE_SCAN;
1458 case MFI_STATE_FLUSH_CACHE:
1460 cur_state = MFI_STATE_FLUSH_CACHE;
1464 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1470 * The cur_state should not last for more than max_wait secs
1472 for (i = 0; i < (max_wait * 1000); i++) {
1473 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1476 if (fw_state == cur_state) {
1483 * Return error if fw_state hasn't changed after max_wait
1485 if (fw_state == cur_state) {
1486 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1487 "in %d secs\n", fw_state, max_wait);
1491 printk(KERN_INFO "megasas: FW now in Ready state\n");
1497 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1498 * @instance: Adapter soft state
1500 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1503 u32 max_cmd = instance->max_fw_cmds;
1504 struct megasas_cmd *cmd;
1506 if (!instance->frame_dma_pool)
1510 * Return all frames to pool
1512 for (i = 0; i < max_cmd; i++) {
1514 cmd = instance->cmd_list[i];
1517 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1518 cmd->frame_phys_addr);
1521 pci_pool_free(instance->sense_dma_pool, cmd->sense,
1522 cmd->sense_phys_addr);
1526 * Now destroy the pool itself
1528 pci_pool_destroy(instance->frame_dma_pool);
1529 pci_pool_destroy(instance->sense_dma_pool);
1531 instance->frame_dma_pool = NULL;
1532 instance->sense_dma_pool = NULL;
1536 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1537 * @instance: Adapter soft state
1539 * Each command packet has an embedded DMA memory buffer that is used for
1540 * filling MFI frame and the SG list that immediately follows the frame. This
1541 * function creates those DMA memory buffers for each command packet by using
1542 * PCI pool facility.
1544 static int megasas_create_frame_pool(struct megasas_instance *instance)
1552 struct megasas_cmd *cmd;
1554 max_cmd = instance->max_fw_cmds;
1557 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1558 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1560 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1561 sizeof(struct megasas_sge32);
1564 * Calculated the number of 64byte frames required for SGL
1566 sgl_sz = sge_sz * instance->max_num_sge;
1567 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1570 * We need one extra frame for the MFI command
1574 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1576 * Use DMA pool facility provided by PCI layer
1578 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1579 instance->pdev, total_sz, 64,
1582 if (!instance->frame_dma_pool) {
1583 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1587 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1588 instance->pdev, 128, 4, 0);
1590 if (!instance->sense_dma_pool) {
1591 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1593 pci_pool_destroy(instance->frame_dma_pool);
1594 instance->frame_dma_pool = NULL;
1600 * Allocate and attach a frame to each of the commands in cmd_list.
1601 * By making cmd->index as the context instead of the &cmd, we can
1602 * always use 32bit context regardless of the architecture
1604 for (i = 0; i < max_cmd; i++) {
1606 cmd = instance->cmd_list[i];
1608 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1609 GFP_KERNEL, &cmd->frame_phys_addr);
1611 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1612 GFP_KERNEL, &cmd->sense_phys_addr);
1615 * megasas_teardown_frame_pool() takes care of freeing
1616 * whatever has been allocated
1618 if (!cmd->frame || !cmd->sense) {
1619 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1620 megasas_teardown_frame_pool(instance);
1624 cmd->frame->io.context = cmd->index;
1631 * megasas_free_cmds - Free all the cmds in the free cmd pool
1632 * @instance: Adapter soft state
1634 static void megasas_free_cmds(struct megasas_instance *instance)
1637 /* First free the MFI frame pool */
1638 megasas_teardown_frame_pool(instance);
1640 /* Free all the commands in the cmd_list */
1641 for (i = 0; i < instance->max_fw_cmds; i++)
1642 kfree(instance->cmd_list[i]);
1644 /* Free the cmd_list buffer itself */
1645 kfree(instance->cmd_list);
1646 instance->cmd_list = NULL;
1648 INIT_LIST_HEAD(&instance->cmd_pool);
1652 * megasas_alloc_cmds - Allocates the command packets
1653 * @instance: Adapter soft state
1655 * Each command that is issued to the FW, whether IO commands from the OS or
1656 * internal commands like IOCTLs, are wrapped in local data structure called
1657 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1660 * Each frame has a 32-bit field called context (tag). This context is used
1661 * to get back the megasas_cmd from the frame when a frame gets completed in
1662 * the ISR. Typically the address of the megasas_cmd itself would be used as
1663 * the context. But we wanted to keep the differences between 32 and 64 bit
1664 * systems to the mininum. We always use 32 bit integers for the context. In
1665 * this driver, the 32 bit values are the indices into an array cmd_list.
1666 * This array is used only to look up the megasas_cmd given the context. The
1667 * free commands themselves are maintained in a linked list called cmd_pool.
1669 static int megasas_alloc_cmds(struct megasas_instance *instance)
1674 struct megasas_cmd *cmd;
1676 max_cmd = instance->max_fw_cmds;
1679 * instance->cmd_list is an array of struct megasas_cmd pointers.
1680 * Allocate the dynamic array first and then allocate individual
1683 instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1686 if (!instance->cmd_list) {
1687 printk(KERN_DEBUG "megasas: out of memory\n");
1691 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1693 for (i = 0; i < max_cmd; i++) {
1694 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1697 if (!instance->cmd_list[i]) {
1699 for (j = 0; j < i; j++)
1700 kfree(instance->cmd_list[j]);
1702 kfree(instance->cmd_list);
1703 instance->cmd_list = NULL;
1710 * Add all the commands to command pool (instance->cmd_pool)
1712 for (i = 0; i < max_cmd; i++) {
1713 cmd = instance->cmd_list[i];
1714 memset(cmd, 0, sizeof(struct megasas_cmd));
1716 cmd->instance = instance;
1718 list_add_tail(&cmd->list, &instance->cmd_pool);
1722 * Create a frame pool and assign one frame to each cmd
1724 if (megasas_create_frame_pool(instance)) {
1725 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1726 megasas_free_cmds(instance);
1733 * megasas_get_controller_info - Returns FW's controller structure
1734 * @instance: Adapter soft state
1735 * @ctrl_info: Controller information structure
1737 * Issues an internal command (DCMD) to get the FW's controller structure.
1738 * This information is mainly used to find out the maximum IO transfer per
1739 * command supported by the FW.
1742 megasas_get_ctrl_info(struct megasas_instance *instance,
1743 struct megasas_ctrl_info *ctrl_info)
1746 struct megasas_cmd *cmd;
1747 struct megasas_dcmd_frame *dcmd;
1748 struct megasas_ctrl_info *ci;
1749 dma_addr_t ci_h = 0;
1751 cmd = megasas_get_cmd(instance);
1754 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1758 dcmd = &cmd->frame->dcmd;
1760 ci = pci_alloc_consistent(instance->pdev,
1761 sizeof(struct megasas_ctrl_info), &ci_h);
1764 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1765 megasas_return_cmd(instance, cmd);
1769 memset(ci, 0, sizeof(*ci));
1770 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1772 dcmd->cmd = MFI_CMD_DCMD;
1773 dcmd->cmd_status = 0xFF;
1774 dcmd->sge_count = 1;
1775 dcmd->flags = MFI_FRAME_DIR_READ;
1777 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1778 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1779 dcmd->sgl.sge32[0].phys_addr = ci_h;
1780 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1782 if (!megasas_issue_polled(instance, cmd)) {
1784 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1789 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1792 megasas_return_cmd(instance, cmd);
1797 * megasas_complete_cmd_dpc - Returns FW's controller structure
1798 * @instance_addr: Address of adapter soft state
1800 * Tasklet to complete cmds
1802 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1807 struct megasas_cmd *cmd;
1808 struct megasas_instance *instance = (struct megasas_instance *)instance_addr;
1810 /* If we have already declared adapter dead, donot complete cmds */
1811 if (instance->hw_crit_error)
1814 producer = *instance->producer;
1815 consumer = *instance->consumer;
1817 while (consumer != producer) {
1818 context = instance->reply_queue[consumer];
1820 cmd = instance->cmd_list[context];
1822 megasas_complete_cmd(instance, cmd, DID_OK);
1825 if (consumer == (instance->max_fw_cmds + 1)) {
1830 *instance->consumer = producer;
1834 * megasas_init_mfi - Initializes the FW
1835 * @instance: Adapter soft state
1837 * This is the main function for initializing MFI firmware.
1839 static int megasas_init_mfi(struct megasas_instance *instance)
1845 struct megasas_register_set __iomem *reg_set;
1847 struct megasas_cmd *cmd;
1848 struct megasas_ctrl_info *ctrl_info;
1850 struct megasas_init_frame *init_frame;
1851 struct megasas_init_queue_info *initq_info;
1852 dma_addr_t init_frame_h;
1853 dma_addr_t initq_info_h;
1856 * Map the message registers
1858 instance->base_addr = pci_resource_start(instance->pdev, 0);
1860 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1861 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1865 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1867 if (!instance->reg_set) {
1868 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1872 reg_set = instance->reg_set;
1874 switch(instance->pdev->device)
1876 case PCI_DEVICE_ID_LSI_SAS1078R:
1877 instance->instancet = &megasas_instance_template_ppc;
1879 case PCI_DEVICE_ID_LSI_SAS1064R:
1880 case PCI_DEVICE_ID_DELL_PERC5:
1882 instance->instancet = &megasas_instance_template_xscale;
1887 * We expect the FW state to be READY
1889 if (megasas_transition_to_ready(instance))
1890 goto fail_ready_state;
1893 * Get various operational parameters from status register
1895 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
1897 * Reduce the max supported cmds by 1. This is to ensure that the
1898 * reply_q_sz (1 more than the max cmd that driver may send)
1899 * does not exceed max cmds that the FW can support
1901 instance->max_fw_cmds = instance->max_fw_cmds-1;
1902 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
1905 * Create a pool of commands
1907 if (megasas_alloc_cmds(instance))
1908 goto fail_alloc_cmds;
1911 * Allocate memory for reply queue. Length of reply queue should
1912 * be _one_ more than the maximum commands handled by the firmware.
1914 * Note: When FW completes commands, it places corresponding contex
1915 * values in this circular reply queue. This circular queue is a fairly
1916 * typical producer-consumer queue. FW is the producer (of completed
1917 * commands) and the driver is the consumer.
1919 context_sz = sizeof(u32);
1920 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1922 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1924 &instance->reply_queue_h);
1926 if (!instance->reply_queue) {
1927 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1928 goto fail_reply_queue;
1932 * Prepare a init frame. Note the init frame points to queue info
1933 * structure. Each frame has SGL allocated after first 64 bytes. For
1934 * this frame - since we don't need any SGL - we use SGL's space as
1935 * queue info structure
1937 * We will not get a NULL command below. We just created the pool.
1939 cmd = megasas_get_cmd(instance);
1941 init_frame = (struct megasas_init_frame *)cmd->frame;
1942 initq_info = (struct megasas_init_queue_info *)
1943 ((unsigned long)init_frame + 64);
1945 init_frame_h = cmd->frame_phys_addr;
1946 initq_info_h = init_frame_h + 64;
1948 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1949 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1951 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1952 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1954 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1955 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1957 init_frame->cmd = MFI_CMD_INIT;
1958 init_frame->cmd_status = 0xFF;
1959 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1961 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1964 * disable the intr before firing the init frame to FW
1966 instance->instancet->disable_intr(instance->reg_set);
1969 * Issue the init frame in polled mode
1971 if (megasas_issue_polled(instance, cmd)) {
1972 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1976 megasas_return_cmd(instance, cmd);
1978 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1981 * Compute the max allowed sectors per IO: The controller info has two
1982 * limits on max sectors. Driver should use the minimum of these two.
1984 * 1 << stripe_sz_ops.min = max sectors per strip
1986 * Note that older firmwares ( < FW ver 30) didn't report information
1987 * to calculate max_sectors_1. So the number ended up as zero always.
1989 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1991 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1992 ctrl_info->max_strips_per_io;
1993 max_sectors_2 = ctrl_info->max_request_size;
1995 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1996 ? max_sectors_1 : max_sectors_2;
1998 instance->max_sectors_per_req = instance->max_num_sge *
2004 * Setup tasklet for cmd completion
2007 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2008 (unsigned long)instance);
2012 megasas_return_cmd(instance, cmd);
2014 pci_free_consistent(instance->pdev, reply_q_sz,
2015 instance->reply_queue, instance->reply_queue_h);
2017 megasas_free_cmds(instance);
2021 iounmap(instance->reg_set);
2024 pci_release_regions(instance->pdev);
2030 * megasas_release_mfi - Reverses the FW initialization
2031 * @intance: Adapter soft state
2033 static void megasas_release_mfi(struct megasas_instance *instance)
2035 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2037 pci_free_consistent(instance->pdev, reply_q_sz,
2038 instance->reply_queue, instance->reply_queue_h);
2040 megasas_free_cmds(instance);
2042 iounmap(instance->reg_set);
2044 pci_release_regions(instance->pdev);
2048 * megasas_get_seq_num - Gets latest event sequence numbers
2049 * @instance: Adapter soft state
2050 * @eli: FW event log sequence numbers information
2052 * FW maintains a log of all events in a non-volatile area. Upper layers would
2053 * usually find out the latest sequence number of the events, the seq number at
2054 * the boot etc. They would "read" all the events below the latest seq number
2055 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2056 * number), they would subsribe to AEN (asynchronous event notification) and
2057 * wait for the events to happen.
2060 megasas_get_seq_num(struct megasas_instance *instance,
2061 struct megasas_evt_log_info *eli)
2063 struct megasas_cmd *cmd;
2064 struct megasas_dcmd_frame *dcmd;
2065 struct megasas_evt_log_info *el_info;
2066 dma_addr_t el_info_h = 0;
2068 cmd = megasas_get_cmd(instance);
2074 dcmd = &cmd->frame->dcmd;
2075 el_info = pci_alloc_consistent(instance->pdev,
2076 sizeof(struct megasas_evt_log_info),
2080 megasas_return_cmd(instance, cmd);
2084 memset(el_info, 0, sizeof(*el_info));
2085 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2087 dcmd->cmd = MFI_CMD_DCMD;
2088 dcmd->cmd_status = 0x0;
2089 dcmd->sge_count = 1;
2090 dcmd->flags = MFI_FRAME_DIR_READ;
2092 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2093 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2094 dcmd->sgl.sge32[0].phys_addr = el_info_h;
2095 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2097 megasas_issue_blocked_cmd(instance, cmd);
2100 * Copy the data back into callers buffer
2102 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2104 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2105 el_info, el_info_h);
2107 megasas_return_cmd(instance, cmd);
2113 * megasas_register_aen - Registers for asynchronous event notification
2114 * @instance: Adapter soft state
2115 * @seq_num: The starting sequence number
2116 * @class_locale: Class of the event
2118 * This function subscribes for AEN for events beyond the @seq_num. It requests
2119 * to be notified if and only if the event is of type @class_locale
2122 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2123 u32 class_locale_word)
2126 struct megasas_cmd *cmd;
2127 struct megasas_dcmd_frame *dcmd;
2128 union megasas_evt_class_locale curr_aen;
2129 union megasas_evt_class_locale prev_aen;
2132 * If there an AEN pending already (aen_cmd), check if the
2133 * class_locale of that pending AEN is inclusive of the new
2134 * AEN request we currently have. If it is, then we don't have
2135 * to do anything. In other words, whichever events the current
2136 * AEN request is subscribing to, have already been subscribed
2139 * If the old_cmd is _not_ inclusive, then we have to abort
2140 * that command, form a class_locale that is superset of both
2141 * old and current and re-issue to the FW
2144 curr_aen.word = class_locale_word;
2146 if (instance->aen_cmd) {
2148 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2151 * A class whose enum value is smaller is inclusive of all
2152 * higher values. If a PROGRESS (= -1) was previously
2153 * registered, then a new registration requests for higher
2154 * classes need not be sent to FW. They are automatically
2157 * Locale numbers don't have such hierarchy. They are bitmap
2160 if ((prev_aen.members.class <= curr_aen.members.class) &&
2161 !((prev_aen.members.locale & curr_aen.members.locale) ^
2162 curr_aen.members.locale)) {
2164 * Previously issued event registration includes
2165 * current request. Nothing to do.
2169 curr_aen.members.locale |= prev_aen.members.locale;
2171 if (prev_aen.members.class < curr_aen.members.class)
2172 curr_aen.members.class = prev_aen.members.class;
2174 instance->aen_cmd->abort_aen = 1;
2175 ret_val = megasas_issue_blocked_abort_cmd(instance,
2180 printk(KERN_DEBUG "megasas: Failed to abort "
2181 "previous AEN command\n");
2187 cmd = megasas_get_cmd(instance);
2192 dcmd = &cmd->frame->dcmd;
2194 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2197 * Prepare DCMD for aen registration
2199 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2201 dcmd->cmd = MFI_CMD_DCMD;
2202 dcmd->cmd_status = 0x0;
2203 dcmd->sge_count = 1;
2204 dcmd->flags = MFI_FRAME_DIR_READ;
2206 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2207 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2208 dcmd->mbox.w[0] = seq_num;
2209 dcmd->mbox.w[1] = curr_aen.word;
2210 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2211 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2214 * Store reference to the cmd used to register for AEN. When an
2215 * application wants us to register for AEN, we have to abort this
2216 * cmd and re-register with a new EVENT LOCALE supplied by that app
2218 instance->aen_cmd = cmd;
2221 * Issue the aen registration frame
2223 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2229 * megasas_start_aen - Subscribes to AEN during driver load time
2230 * @instance: Adapter soft state
2232 static int megasas_start_aen(struct megasas_instance *instance)
2234 struct megasas_evt_log_info eli;
2235 union megasas_evt_class_locale class_locale;
2238 * Get the latest sequence number from FW
2240 memset(&eli, 0, sizeof(eli));
2242 if (megasas_get_seq_num(instance, &eli))
2246 * Register AEN with FW for latest sequence number plus 1
2248 class_locale.members.reserved = 0;
2249 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2250 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2252 return megasas_register_aen(instance, eli.newest_seq_num + 1,
2257 * megasas_io_attach - Attaches this driver to SCSI mid-layer
2258 * @instance: Adapter soft state
2260 static int megasas_io_attach(struct megasas_instance *instance)
2262 struct Scsi_Host *host = instance->host;
2265 * Export parameters required by SCSI mid-layer
2267 host->irq = instance->pdev->irq;
2268 host->unique_id = instance->unique_id;
2269 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2270 host->this_id = instance->init_id;
2271 host->sg_tablesize = instance->max_num_sge;
2272 host->max_sectors = instance->max_sectors_per_req;
2273 host->cmd_per_lun = 128;
2274 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2275 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2276 host->max_lun = MEGASAS_MAX_LUN;
2277 host->max_cmd_len = 16;
2280 * Notify the mid-layer about the new controller
2282 if (scsi_add_host(host, &instance->pdev->dev)) {
2283 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2288 * Trigger SCSI to scan our drives
2290 scsi_scan_host(host);
2295 * megasas_probe_one - PCI hotplug entry point
2296 * @pdev: PCI device structure
2297 * @id: PCI ids of supported hotplugged adapter
2299 static int __devinit
2300 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2303 struct Scsi_Host *host;
2304 struct megasas_instance *instance;
2307 * Announce PCI information
2309 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2310 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2311 pdev->subsystem_device);
2313 printk("bus %d:slot %d:func %d\n",
2314 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2317 * PCI prepping: enable device set bus mastering and dma mask
2319 rval = pci_enable_device(pdev);
2325 pci_set_master(pdev);
2328 * All our contollers are capable of performing 64-bit DMA
2331 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2333 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2334 goto fail_set_dma_mask;
2337 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2338 goto fail_set_dma_mask;
2341 host = scsi_host_alloc(&megasas_template,
2342 sizeof(struct megasas_instance));
2345 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2346 goto fail_alloc_instance;
2349 instance = (struct megasas_instance *)host->hostdata;
2350 memset(instance, 0, sizeof(*instance));
2352 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2353 &instance->producer_h);
2354 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2355 &instance->consumer_h);
2357 if (!instance->producer || !instance->consumer) {
2358 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2359 "producer, consumer\n");
2360 goto fail_alloc_dma_buf;
2363 *instance->producer = 0;
2364 *instance->consumer = 0;
2366 instance->evt_detail = pci_alloc_consistent(pdev,
2368 megasas_evt_detail),
2369 &instance->evt_detail_h);
2371 if (!instance->evt_detail) {
2372 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2373 "event detail structure\n");
2374 goto fail_alloc_dma_buf;
2378 * Initialize locks and queues
2380 INIT_LIST_HEAD(&instance->cmd_pool);
2382 atomic_set(&instance->fw_outstanding,0);
2384 init_waitqueue_head(&instance->int_cmd_wait_q);
2385 init_waitqueue_head(&instance->abort_cmd_wait_q);
2387 spin_lock_init(&instance->cmd_pool_lock);
2389 sema_init(&instance->aen_mutex, 1);
2390 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2393 * Initialize PCI related and misc parameters
2395 instance->pdev = pdev;
2396 instance->host = host;
2397 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2398 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2400 megasas_dbg_lvl = 0;
2403 * Initialize MFI Firmware
2405 if (megasas_init_mfi(instance))
2411 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2412 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2416 instance->instancet->enable_intr(instance->reg_set);
2419 * Store instance in PCI softstate
2421 pci_set_drvdata(pdev, instance);
2424 * Add this controller to megasas_mgmt_info structure so that it
2425 * can be exported to management applications
2427 megasas_mgmt_info.count++;
2428 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2429 megasas_mgmt_info.max_index++;
2432 * Initiate AEN (Asynchronous Event Notification)
2434 if (megasas_start_aen(instance)) {
2435 printk(KERN_DEBUG "megasas: start aen failed\n");
2436 goto fail_start_aen;
2440 * Register with SCSI mid-layer
2442 if (megasas_io_attach(instance))
2443 goto fail_io_attach;
2449 megasas_mgmt_info.count--;
2450 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2451 megasas_mgmt_info.max_index--;
2453 pci_set_drvdata(pdev, NULL);
2454 instance->instancet->disable_intr(instance->reg_set);
2455 free_irq(instance->pdev->irq, instance);
2457 megasas_release_mfi(instance);
2462 if (instance->evt_detail)
2463 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2464 instance->evt_detail,
2465 instance->evt_detail_h);
2467 if (instance->producer)
2468 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2469 instance->producer_h);
2470 if (instance->consumer)
2471 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2472 instance->consumer_h);
2473 scsi_host_put(host);
2475 fail_alloc_instance:
2477 pci_disable_device(pdev);
2483 * megasas_flush_cache - Requests FW to flush all its caches
2484 * @instance: Adapter soft state
2486 static void megasas_flush_cache(struct megasas_instance *instance)
2488 struct megasas_cmd *cmd;
2489 struct megasas_dcmd_frame *dcmd;
2491 cmd = megasas_get_cmd(instance);
2496 dcmd = &cmd->frame->dcmd;
2498 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2500 dcmd->cmd = MFI_CMD_DCMD;
2501 dcmd->cmd_status = 0x0;
2502 dcmd->sge_count = 0;
2503 dcmd->flags = MFI_FRAME_DIR_NONE;
2505 dcmd->data_xfer_len = 0;
2506 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2507 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2509 megasas_issue_blocked_cmd(instance, cmd);
2511 megasas_return_cmd(instance, cmd);
2517 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2518 * @instance: Adapter soft state
2520 static void megasas_shutdown_controller(struct megasas_instance *instance)
2522 struct megasas_cmd *cmd;
2523 struct megasas_dcmd_frame *dcmd;
2525 cmd = megasas_get_cmd(instance);
2530 if (instance->aen_cmd)
2531 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2533 dcmd = &cmd->frame->dcmd;
2535 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2537 dcmd->cmd = MFI_CMD_DCMD;
2538 dcmd->cmd_status = 0x0;
2539 dcmd->sge_count = 0;
2540 dcmd->flags = MFI_FRAME_DIR_NONE;
2542 dcmd->data_xfer_len = 0;
2543 dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2545 megasas_issue_blocked_cmd(instance, cmd);
2547 megasas_return_cmd(instance, cmd);
2553 * megasas_detach_one - PCI hot"un"plug entry point
2554 * @pdev: PCI device structure
2556 static void megasas_detach_one(struct pci_dev *pdev)
2559 struct Scsi_Host *host;
2560 struct megasas_instance *instance;
2562 instance = pci_get_drvdata(pdev);
2563 host = instance->host;
2565 scsi_remove_host(instance->host);
2566 megasas_flush_cache(instance);
2567 megasas_shutdown_controller(instance);
2568 tasklet_kill(&instance->isr_tasklet);
2571 * Take the instance off the instance array. Note that we will not
2572 * decrement the max_index. We let this array be sparse array
2574 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2575 if (megasas_mgmt_info.instance[i] == instance) {
2576 megasas_mgmt_info.count--;
2577 megasas_mgmt_info.instance[i] = NULL;
2583 pci_set_drvdata(instance->pdev, NULL);
2585 instance->instancet->disable_intr(instance->reg_set);
2587 free_irq(instance->pdev->irq, instance);
2589 megasas_release_mfi(instance);
2591 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2592 instance->evt_detail, instance->evt_detail_h);
2594 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2595 instance->producer_h);
2597 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2598 instance->consumer_h);
2600 scsi_host_put(host);
2602 pci_set_drvdata(pdev, NULL);
2604 pci_disable_device(pdev);
2610 * megasas_shutdown - Shutdown entry point
2611 * @device: Generic device structure
2613 static void megasas_shutdown(struct pci_dev *pdev)
2615 struct megasas_instance *instance = pci_get_drvdata(pdev);
2616 megasas_flush_cache(instance);
2620 * megasas_mgmt_open - char node "open" entry point
2622 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2625 * Allow only those users with admin rights
2627 if (!capable(CAP_SYS_ADMIN))
2634 * megasas_mgmt_release - char node "release" entry point
2636 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2638 filep->private_data = NULL;
2639 fasync_helper(-1, filep, 0, &megasas_async_queue);
2645 * megasas_mgmt_fasync - Async notifier registration from applications
2647 * This function adds the calling process to a driver global queue. When an
2648 * event occurs, SIGIO will be sent to all processes in this queue.
2650 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2654 mutex_lock(&megasas_async_queue_mutex);
2656 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2658 mutex_unlock(&megasas_async_queue_mutex);
2661 /* For sanity check when we get ioctl */
2662 filep->private_data = filep;
2666 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2672 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2673 * @instance: Adapter soft state
2674 * @argp: User's ioctl packet
2677 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2678 struct megasas_iocpacket __user * user_ioc,
2679 struct megasas_iocpacket *ioc)
2681 struct megasas_sge32 *kern_sge32;
2682 struct megasas_cmd *cmd;
2683 void *kbuff_arr[MAX_IOCTL_SGE];
2684 dma_addr_t buf_handle = 0;
2687 dma_addr_t sense_handle;
2690 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2692 if (ioc->sge_count > MAX_IOCTL_SGE) {
2693 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2694 ioc->sge_count, MAX_IOCTL_SGE);
2698 cmd = megasas_get_cmd(instance);
2700 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2705 * User's IOCTL packet has 2 frames (maximum). Copy those two
2706 * frames into our cmd's frames. cmd->frame's context will get
2707 * overwritten when we copy from user's frames. So set that value
2710 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2711 cmd->frame->hdr.context = cmd->index;
2714 * The management interface between applications and the fw uses
2715 * MFI frames. E.g, RAID configuration changes, LD property changes
2716 * etc are accomplishes through different kinds of MFI frames. The
2717 * driver needs to care only about substituting user buffers with
2718 * kernel buffers in SGLs. The location of SGL is embedded in the
2719 * struct iocpacket itself.
2721 kern_sge32 = (struct megasas_sge32 *)
2722 ((unsigned long)cmd->frame + ioc->sgl_off);
2725 * For each user buffer, create a mirror buffer and copy in
2727 for (i = 0; i < ioc->sge_count; i++) {
2728 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
2729 ioc->sgl[i].iov_len,
2730 &buf_handle, GFP_KERNEL);
2731 if (!kbuff_arr[i]) {
2732 printk(KERN_DEBUG "megasas: Failed to alloc "
2733 "kernel SGL buffer for IOCTL \n");
2739 * We don't change the dma_coherent_mask, so
2740 * pci_alloc_consistent only returns 32bit addresses
2742 kern_sge32[i].phys_addr = (u32) buf_handle;
2743 kern_sge32[i].length = ioc->sgl[i].iov_len;
2746 * We created a kernel buffer corresponding to the
2747 * user buffer. Now copy in from the user buffer
2749 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2750 (u32) (ioc->sgl[i].iov_len))) {
2756 if (ioc->sense_len) {
2757 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
2758 &sense_handle, GFP_KERNEL);
2765 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2766 *sense_ptr = sense_handle;
2770 * Set the sync_cmd flag so that the ISR knows not to complete this
2771 * cmd to the SCSI mid-layer
2774 megasas_issue_blocked_cmd(instance, cmd);
2778 * copy out the kernel buffers to user buffers
2780 for (i = 0; i < ioc->sge_count; i++) {
2781 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2782 ioc->sgl[i].iov_len)) {
2789 * copy out the sense
2791 if (ioc->sense_len) {
2793 * sense_ptr points to the location that has the user
2794 * sense buffer address
2796 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2799 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2800 sense, ioc->sense_len)) {
2807 * copy the status codes returned by the fw
2809 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2810 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2811 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2817 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
2818 sense, sense_handle);
2821 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2822 dma_free_coherent(&instance->pdev->dev,
2823 kern_sge32[i].length,
2824 kbuff_arr[i], kern_sge32[i].phys_addr);
2827 megasas_return_cmd(instance, cmd);
2831 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2835 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2837 if ((megasas_mgmt_info.instance[i]) &&
2838 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2839 return megasas_mgmt_info.instance[i];
2845 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2847 struct megasas_iocpacket __user *user_ioc =
2848 (struct megasas_iocpacket __user *)arg;
2849 struct megasas_iocpacket *ioc;
2850 struct megasas_instance *instance;
2853 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2857 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2862 instance = megasas_lookup_instance(ioc->host_no);
2869 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2871 if (down_interruptible(&instance->ioctl_sem)) {
2872 error = -ERESTARTSYS;
2875 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2876 up(&instance->ioctl_sem);
2883 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2885 struct megasas_instance *instance;
2886 struct megasas_aen aen;
2889 if (file->private_data != file) {
2890 printk(KERN_DEBUG "megasas: fasync_helper was not "
2895 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2898 instance = megasas_lookup_instance(aen.host_no);
2903 down(&instance->aen_mutex);
2904 error = megasas_register_aen(instance, aen.seq_num,
2905 aen.class_locale_word);
2906 up(&instance->aen_mutex);
2911 * megasas_mgmt_ioctl - char node ioctl entry point
2914 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2917 case MEGASAS_IOC_FIRMWARE:
2918 return megasas_mgmt_ioctl_fw(file, arg);
2920 case MEGASAS_IOC_GET_AEN:
2921 return megasas_mgmt_ioctl_aen(file, arg);
2927 #ifdef CONFIG_COMPAT
2928 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2930 struct compat_megasas_iocpacket __user *cioc =
2931 (struct compat_megasas_iocpacket __user *)arg;
2932 struct megasas_iocpacket __user *ioc =
2933 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2937 if (clear_user(ioc, sizeof(*ioc)))
2940 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2941 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2942 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2943 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2944 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2945 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2948 for (i = 0; i < MAX_IOCTL_SGE; i++) {
2951 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2952 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2953 copy_in_user(&ioc->sgl[i].iov_len,
2954 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2958 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2960 if (copy_in_user(&cioc->frame.hdr.cmd_status,
2961 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2962 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2969 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2973 case MEGASAS_IOC_FIRMWARE32:
2974 return megasas_mgmt_compat_ioctl_fw(file, arg);
2975 case MEGASAS_IOC_GET_AEN:
2976 return megasas_mgmt_ioctl_aen(file, arg);
2984 * File operations structure for management interface
2986 static const struct file_operations megasas_mgmt_fops = {
2987 .owner = THIS_MODULE,
2988 .open = megasas_mgmt_open,
2989 .release = megasas_mgmt_release,
2990 .fasync = megasas_mgmt_fasync,
2991 .unlocked_ioctl = megasas_mgmt_ioctl,
2992 #ifdef CONFIG_COMPAT
2993 .compat_ioctl = megasas_mgmt_compat_ioctl,
2998 * PCI hotplug support registration structure
3000 static struct pci_driver megasas_pci_driver = {
3002 .name = "megaraid_sas",
3003 .id_table = megasas_pci_table,
3004 .probe = megasas_probe_one,
3005 .remove = __devexit_p(megasas_detach_one),
3006 .shutdown = megasas_shutdown,
3010 * Sysfs driver attributes
3012 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3014 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3018 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3021 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3023 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3027 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3031 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3033 return sprintf(buf,"%u",megasas_dbg_lvl);
3037 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3040 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3041 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3047 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
3048 megasas_sysfs_set_dbg_lvl);
3051 * megasas_init - Driver load entry point
3053 static int __init megasas_init(void)
3058 * Announce driver version and other information
3060 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3061 MEGASAS_EXT_VERSION);
3063 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3066 * Register character device node
3068 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3071 printk(KERN_DEBUG "megasas: failed to open device node\n");
3075 megasas_mgmt_majorno = rval;
3078 * Register ourselves as PCI hotplug module
3080 rval = pci_register_driver(&megasas_pci_driver);
3083 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3087 rval = driver_create_file(&megasas_pci_driver.driver,
3088 &driver_attr_version);
3090 goto err_dcf_attr_ver;
3091 rval = driver_create_file(&megasas_pci_driver.driver,
3092 &driver_attr_release_date);
3094 goto err_dcf_rel_date;
3095 rval = driver_create_file(&megasas_pci_driver.driver,
3096 &driver_attr_dbg_lvl);
3098 goto err_dcf_dbg_lvl;
3102 driver_remove_file(&megasas_pci_driver.driver,
3103 &driver_attr_release_date);
3105 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3107 pci_unregister_driver(&megasas_pci_driver);
3109 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3114 * megasas_exit - Driver unload entry point
3116 static void __exit megasas_exit(void)
3118 driver_remove_file(&megasas_pci_driver.driver,
3119 &driver_attr_dbg_lvl);
3120 driver_remove_file(&megasas_pci_driver.driver,
3121 &driver_attr_release_date);
3122 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3124 pci_unregister_driver(&megasas_pci_driver);
3125 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3128 module_init(megasas_init);
3129 module_exit(megasas_exit);