Merge branch 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus
[linux-2.6] / arch / powerpc / platforms / cell / spu_manage.c
1 /*
2  * spu management operations for of based platforms
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  * Copyright 2006 Sony Corp.
6  * (C) Copyright 2007 TOSHIBA CORPORATION
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; version 2 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21
22 #include <linux/interrupt.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/wait.h>
28 #include <linux/mm.h>
29 #include <linux/io.h>
30 #include <linux/mutex.h>
31 #include <linux/device.h>
32
33 #include <asm/spu.h>
34 #include <asm/spu_priv1.h>
35 #include <asm/firmware.h>
36 #include <asm/prom.h>
37
38 #include "interrupt.h"
39
40 struct device_node *spu_devnode(struct spu *spu)
41 {
42         return spu->devnode;
43 }
44
45 EXPORT_SYMBOL_GPL(spu_devnode);
46
47 static u64 __init find_spu_unit_number(struct device_node *spe)
48 {
49         const unsigned int *prop;
50         int proplen;
51
52         /* new device trees should provide the physical-id attribute */
53         prop = of_get_property(spe, "physical-id", &proplen);
54         if (proplen == 4)
55                 return (u64)*prop;
56
57         /* celleb device tree provides the unit-id */
58         prop = of_get_property(spe, "unit-id", &proplen);
59         if (proplen == 4)
60                 return (u64)*prop;
61
62         /* legacy device trees provide the id in the reg attribute */
63         prop = of_get_property(spe, "reg", &proplen);
64         if (proplen == 4)
65                 return (u64)*prop;
66
67         return 0;
68 }
69
70 static void spu_unmap(struct spu *spu)
71 {
72         if (!firmware_has_feature(FW_FEATURE_LPAR))
73                 iounmap(spu->priv1);
74         iounmap(spu->priv2);
75         iounmap(spu->problem);
76         iounmap((__force u8 __iomem *)spu->local_store);
77 }
78
79 static int __init spu_map_interrupts_old(struct spu *spu,
80         struct device_node *np)
81 {
82         unsigned int isrc;
83         const u32 *tmp;
84         int nid;
85
86         /* Get the interrupt source unit from the device-tree */
87         tmp = of_get_property(np, "isrc", NULL);
88         if (!tmp)
89                 return -ENODEV;
90         isrc = tmp[0];
91
92         tmp = of_get_property(np->parent->parent, "node-id", NULL);
93         if (!tmp) {
94                 printk(KERN_WARNING "%s: can't find node-id\n", __FUNCTION__);
95                 nid = spu->node;
96         } else
97                 nid = tmp[0];
98
99         /* Add the node number */
100         isrc |= nid << IIC_IRQ_NODE_SHIFT;
101
102         /* Now map interrupts of all 3 classes */
103         spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
104         spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
105         spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
106
107         /* Right now, we only fail if class 2 failed */
108         return spu->irqs[2] == NO_IRQ ? -EINVAL : 0;
109 }
110
111 static void __iomem * __init spu_map_prop_old(struct spu *spu,
112                                               struct device_node *n,
113                                               const char *name)
114 {
115         const struct address_prop {
116                 unsigned long address;
117                 unsigned int len;
118         } __attribute__((packed)) *prop;
119         int proplen;
120
121         prop = of_get_property(n, name, &proplen);
122         if (prop == NULL || proplen != sizeof (struct address_prop))
123                 return NULL;
124
125         return ioremap(prop->address, prop->len);
126 }
127
128 static int __init spu_map_device_old(struct spu *spu)
129 {
130         struct device_node *node = spu->devnode;
131         const char *prop;
132         int ret;
133
134         ret = -ENODEV;
135         spu->name = of_get_property(node, "name", NULL);
136         if (!spu->name)
137                 goto out;
138
139         prop = of_get_property(node, "local-store", NULL);
140         if (!prop)
141                 goto out;
142         spu->local_store_phys = *(unsigned long *)prop;
143
144         /* we use local store as ram, not io memory */
145         spu->local_store = (void __force *)
146                 spu_map_prop_old(spu, node, "local-store");
147         if (!spu->local_store)
148                 goto out;
149
150         prop = of_get_property(node, "problem", NULL);
151         if (!prop)
152                 goto out_unmap;
153         spu->problem_phys = *(unsigned long *)prop;
154
155         spu->problem = spu_map_prop_old(spu, node, "problem");
156         if (!spu->problem)
157                 goto out_unmap;
158
159         spu->priv2 = spu_map_prop_old(spu, node, "priv2");
160         if (!spu->priv2)
161                 goto out_unmap;
162
163         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
164                 spu->priv1 = spu_map_prop_old(spu, node, "priv1");
165                 if (!spu->priv1)
166                         goto out_unmap;
167         }
168
169         ret = 0;
170         goto out;
171
172 out_unmap:
173         spu_unmap(spu);
174 out:
175         return ret;
176 }
177
178 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
179 {
180         struct of_irq oirq;
181         int ret;
182         int i;
183
184         for (i=0; i < 3; i++) {
185                 ret = of_irq_map_one(np, i, &oirq);
186                 if (ret) {
187                         pr_debug("spu_new: failed to get irq %d\n", i);
188                         goto err;
189                 }
190                 ret = -EINVAL;
191                 pr_debug("  irq %d no 0x%x on %s\n", i, oirq.specifier[0],
192                          oirq.controller->full_name);
193                 spu->irqs[i] = irq_create_of_mapping(oirq.controller,
194                                         oirq.specifier, oirq.size);
195                 if (spu->irqs[i] == NO_IRQ) {
196                         pr_debug("spu_new: failed to map it !\n");
197                         goto err;
198                 }
199         }
200         return 0;
201
202 err:
203         pr_debug("failed to map irq %x for spu %s\n", *oirq.specifier,
204                 spu->name);
205         for (; i >= 0; i--) {
206                 if (spu->irqs[i] != NO_IRQ)
207                         irq_dispose_mapping(spu->irqs[i]);
208         }
209         return ret;
210 }
211
212 static int spu_map_resource(struct spu *spu, int nr,
213                             void __iomem** virt, unsigned long *phys)
214 {
215         struct device_node *np = spu->devnode;
216         struct resource resource = { };
217         unsigned long len;
218         int ret;
219
220         ret = of_address_to_resource(np, nr, &resource);
221         if (ret)
222                 return ret;
223         if (phys)
224                 *phys = resource.start;
225         len = resource.end - resource.start + 1;
226         *virt = ioremap(resource.start, len);
227         if (!*virt)
228                 return -EINVAL;
229         return 0;
230 }
231
232 static int __init spu_map_device(struct spu *spu)
233 {
234         struct device_node *np = spu->devnode;
235         int ret = -ENODEV;
236
237         spu->name = of_get_property(np, "name", NULL);
238         if (!spu->name)
239                 goto out;
240
241         ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
242                                &spu->local_store_phys);
243         if (ret) {
244                 pr_debug("spu_new: failed to map %s resource 0\n",
245                          np->full_name);
246                 goto out;
247         }
248         ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
249                                &spu->problem_phys);
250         if (ret) {
251                 pr_debug("spu_new: failed to map %s resource 1\n",
252                          np->full_name);
253                 goto out_unmap;
254         }
255         ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
256         if (ret) {
257                 pr_debug("spu_new: failed to map %s resource 2\n",
258                          np->full_name);
259                 goto out_unmap;
260         }
261         if (!firmware_has_feature(FW_FEATURE_LPAR))
262                 ret = spu_map_resource(spu, 3,
263                                (void __iomem**)&spu->priv1, NULL);
264         if (ret) {
265                 pr_debug("spu_new: failed to map %s resource 3\n",
266                          np->full_name);
267                 goto out_unmap;
268         }
269         pr_debug("spu_new: %s maps:\n", np->full_name);
270         pr_debug("  local store   : 0x%016lx -> 0x%p\n",
271                  spu->local_store_phys, spu->local_store);
272         pr_debug("  problem state : 0x%016lx -> 0x%p\n",
273                  spu->problem_phys, spu->problem);
274         pr_debug("  priv2         :                       0x%p\n", spu->priv2);
275         pr_debug("  priv1         :                       0x%p\n", spu->priv1);
276
277         return 0;
278
279 out_unmap:
280         spu_unmap(spu);
281 out:
282         pr_debug("failed to map spe %s: %d\n", spu->name, ret);
283         return ret;
284 }
285
286 static int __init of_enumerate_spus(int (*fn)(void *data))
287 {
288         int ret;
289         struct device_node *node;
290         unsigned int n = 0;
291
292         ret = -ENODEV;
293         for (node = of_find_node_by_type(NULL, "spe");
294                         node; node = of_find_node_by_type(node, "spe")) {
295                 ret = fn(node);
296                 if (ret) {
297                         printk(KERN_WARNING "%s: Error initializing %s\n",
298                                 __FUNCTION__, node->name);
299                         break;
300                 }
301                 n++;
302         }
303         return ret ? ret : n;
304 }
305
306 static int __init of_create_spu(struct spu *spu, void *data)
307 {
308         int ret;
309         struct device_node *spe = (struct device_node *)data;
310         static int legacy_map = 0, legacy_irq = 0;
311
312         spu->devnode = of_node_get(spe);
313         spu->spe_id = find_spu_unit_number(spe);
314
315         spu->node = of_node_to_nid(spe);
316         if (spu->node >= MAX_NUMNODES) {
317                 printk(KERN_WARNING "SPE %s on node %d ignored,"
318                        " node number too big\n", spe->full_name, spu->node);
319                 printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
320                 ret = -ENODEV;
321                 goto out;
322         }
323
324         ret = spu_map_device(spu);
325         if (ret) {
326                 if (!legacy_map) {
327                         legacy_map = 1;
328                         printk(KERN_WARNING "%s: Legacy device tree found, "
329                                 "trying to map old style\n", __FUNCTION__);
330                 }
331                 ret = spu_map_device_old(spu);
332                 if (ret) {
333                         printk(KERN_ERR "Unable to map %s\n",
334                                 spu->name);
335                         goto out;
336                 }
337         }
338
339         ret = spu_map_interrupts(spu, spe);
340         if (ret) {
341                 if (!legacy_irq) {
342                         legacy_irq = 1;
343                         printk(KERN_WARNING "%s: Legacy device tree found, "
344                                 "trying old style irq\n", __FUNCTION__);
345                 }
346                 ret = spu_map_interrupts_old(spu, spe);
347                 if (ret) {
348                         printk(KERN_ERR "%s: could not map interrupts",
349                                 spu->name);
350                         goto out_unmap;
351                 }
352         }
353
354         pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
355                 spu->local_store, spu->problem, spu->priv1,
356                 spu->priv2, spu->number);
357         goto out;
358
359 out_unmap:
360         spu_unmap(spu);
361 out:
362         return ret;
363 }
364
365 static int of_destroy_spu(struct spu *spu)
366 {
367         spu_unmap(spu);
368         of_node_put(spu->devnode);
369         return 0;
370 }
371
372 /* Hardcoded affinity idxs for qs20 */
373 #define QS20_SPES_PER_BE 8
374 static int qs20_reg_idxs[QS20_SPES_PER_BE] =   { 0, 2, 4, 6, 7, 5, 3, 1 };
375 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
376
377 static struct spu *spu_lookup_reg(int node, u32 reg)
378 {
379         struct spu *spu;
380         u32 *spu_reg;
381
382         list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
383                 spu_reg = (u32*)of_get_property(spu_devnode(spu), "reg", NULL);
384                 if (*spu_reg == reg)
385                         return spu;
386         }
387         return NULL;
388 }
389
390 static void init_affinity_qs20_harcoded(void)
391 {
392         int node, i;
393         struct spu *last_spu, *spu;
394         u32 reg;
395
396         for (node = 0; node < MAX_NUMNODES; node++) {
397                 last_spu = NULL;
398                 for (i = 0; i < QS20_SPES_PER_BE; i++) {
399                         reg = qs20_reg_idxs[i];
400                         spu = spu_lookup_reg(node, reg);
401                         if (!spu)
402                                 continue;
403                         spu->has_mem_affinity = qs20_reg_memory[reg];
404                         if (last_spu)
405                                 list_add_tail(&spu->aff_list,
406                                                 &last_spu->aff_list);
407                         last_spu = spu;
408                 }
409         }
410 }
411
412 static int of_has_vicinity(void)
413 {
414         struct spu* spu;
415
416         spu = list_first_entry(&cbe_spu_info[0].spus, struct spu, cbe_list);
417         return of_find_property(spu_devnode(spu), "vicinity", NULL) != NULL;
418 }
419
420 static struct spu *devnode_spu(int cbe, struct device_node *dn)
421 {
422         struct spu *spu;
423
424         list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
425                 if (spu_devnode(spu) == dn)
426                         return spu;
427         return NULL;
428 }
429
430 static struct spu *
431 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
432 {
433         struct spu *spu;
434         struct device_node *spu_dn;
435         const phandle *vic_handles;
436         int lenp, i;
437
438         list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
439                 spu_dn = spu_devnode(spu);
440                 if (spu_dn == avoid)
441                         continue;
442                 vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
443                 for (i=0; i < (lenp / sizeof(phandle)); i++) {
444                         if (vic_handles[i] == target->linux_phandle)
445                                 return spu;
446                 }
447         }
448         return NULL;
449 }
450
451 static void init_affinity_node(int cbe)
452 {
453         struct spu *spu, *last_spu;
454         struct device_node *vic_dn, *last_spu_dn;
455         phandle avoid_ph;
456         const phandle *vic_handles;
457         const char *name;
458         int lenp, i, added;
459
460         last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
461                                                                 cbe_list);
462         avoid_ph = 0;
463         for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
464                 last_spu_dn = spu_devnode(last_spu);
465                 vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
466
467                 /*
468                  * Walk through each phandle in vicinity property of the spu
469                  * (tipically two vicinity phandles per spe node)
470                  */
471                 for (i = 0; i < (lenp / sizeof(phandle)); i++) {
472                         if (vic_handles[i] == avoid_ph)
473                                 continue;
474
475                         vic_dn = of_find_node_by_phandle(vic_handles[i]);
476                         if (!vic_dn)
477                                 continue;
478
479                         /* a neighbour might be spe, mic-tm, or bif0 */
480                         name = of_get_property(vic_dn, "name", NULL);
481                         if (!name)
482                                 continue;
483
484                         if (strcmp(name, "spe") == 0) {
485                                 spu = devnode_spu(cbe, vic_dn);
486                                 avoid_ph = last_spu_dn->linux_phandle;
487                         } else {
488                                 /*
489                                  * "mic-tm" and "bif0" nodes do not have
490                                  * vicinity property. So we need to find the
491                                  * spe which has vic_dn as neighbour, but
492                                  * skipping the one we came from (last_spu_dn)
493                                  */
494                                 spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
495                                 if (!spu)
496                                         continue;
497                                 if (!strcmp(name, "mic-tm")) {
498                                         last_spu->has_mem_affinity = 1;
499                                         spu->has_mem_affinity = 1;
500                                 }
501                                 avoid_ph = vic_dn->linux_phandle;
502                         }
503
504                         list_add_tail(&spu->aff_list, &last_spu->aff_list);
505                         last_spu = spu;
506                         break;
507                 }
508         }
509 }
510
511 static void init_affinity_fw(void)
512 {
513         int cbe;
514
515         for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
516                 init_affinity_node(cbe);
517 }
518
519 static int __init init_affinity(void)
520 {
521         if (of_has_vicinity()) {
522                 init_affinity_fw();
523         } else {
524                 long root = of_get_flat_dt_root();
525                 if (of_flat_dt_is_compatible(root, "IBM,CPBW-1.0"))
526                         init_affinity_qs20_harcoded();
527                 else
528                         printk("No affinity configuration found");
529         }
530
531         return 0;
532 }
533
534 const struct spu_management_ops spu_management_of_ops = {
535         .enumerate_spus = of_enumerate_spus,
536         .create_spu = of_create_spu,
537         .destroy_spu = of_destroy_spu,
538         .init_affinity = init_affinity,
539 };