2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 #include "xfs_trans.h"
27 #include "xfs_dmapi.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dir_sf.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_alloc.h"
38 #include "xfs_btree.h"
39 #include "xfs_error.h"
41 #include "xfs_iomap.h"
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
45 STATIC void xfs_count_page_state(struct page *, int *, int *, int *);
46 STATIC void xfs_convert_page(struct inode *, struct page *, xfs_iomap_t *,
47 struct writeback_control *wbc, void *, int, int);
49 #if defined(XFS_RW_TRACE)
59 vnode_t *vp = LINVFS_GET_VP(inode);
60 loff_t isize = i_size_read(inode);
61 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
62 int delalloc = -1, unmapped = -1, unwritten = -1;
64 if (page_has_buffers(page))
65 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
67 bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops);
72 ktrace_enter(ip->i_rwtrace,
73 (void *)((unsigned long)tag),
77 (void *)((unsigned long)mask),
78 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
79 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
80 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
81 (void *)((unsigned long)(isize & 0xffffffff)),
82 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
83 (void *)((unsigned long)(offset & 0xffffffff)),
84 (void *)((unsigned long)delalloc),
85 (void *)((unsigned long)unmapped),
86 (void *)((unsigned long)unwritten),
91 #define xfs_page_trace(tag, inode, page, mask)
95 * Schedule IO completion handling on a xfsdatad if this was
96 * the final hold on this ioend.
102 if (atomic_dec_and_test(&ioend->io_remaining))
103 queue_work(xfsdatad_workqueue, &ioend->io_work);
110 vn_iowake(ioend->io_vnode);
111 mempool_free(ioend, xfs_ioend_pool);
115 * Issue transactions to convert a buffer range from unwritten
116 * to written extents.
119 xfs_end_bio_unwritten(
122 xfs_ioend_t *ioend = data;
123 vnode_t *vp = ioend->io_vnode;
124 xfs_off_t offset = ioend->io_offset;
125 size_t size = ioend->io_size;
126 struct buffer_head *bh, *next;
129 if (ioend->io_uptodate)
130 VOP_BMAP(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL, error);
132 /* ioend->io_buffer_head is only non-NULL for buffered I/O */
133 for (bh = ioend->io_buffer_head; bh; bh = next) {
134 next = bh->b_private;
137 clear_buffer_unwritten(bh);
138 end_buffer_async_write(bh, ioend->io_uptodate);
141 xfs_destroy_ioend(ioend);
145 * Allocate and initialise an IO completion structure.
146 * We need to track unwritten extent write completion here initially.
147 * We'll need to extend this for updating the ondisk inode size later
156 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
159 * Set the count to 1 initially, which will prevent an I/O
160 * completion callback from happening before we have started
161 * all the I/O from calling the completion routine too early.
163 atomic_set(&ioend->io_remaining, 1);
164 ioend->io_uptodate = 1; /* cleared if any I/O fails */
165 ioend->io_vnode = LINVFS_GET_VP(inode);
166 ioend->io_buffer_head = NULL;
167 atomic_inc(&ioend->io_vnode->v_iocount);
168 ioend->io_offset = 0;
171 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten, ioend);
177 linvfs_unwritten_done(
178 struct buffer_head *bh,
181 xfs_ioend_t *ioend = bh->b_private;
182 static spinlock_t unwritten_done_lock = SPIN_LOCK_UNLOCKED;
185 ASSERT(buffer_unwritten(bh));
189 ioend->io_uptodate = 0;
192 * Deep magic here. We reuse b_private in the buffer_heads to build
193 * a chain for completing the I/O from user context after we've issued
194 * a transaction to convert the unwritten extent.
196 spin_lock_irqsave(&unwritten_done_lock, flags);
197 bh->b_private = ioend->io_buffer_head;
198 ioend->io_buffer_head = bh;
199 spin_unlock_irqrestore(&unwritten_done_lock, flags);
201 xfs_finish_ioend(ioend);
212 vnode_t *vp = LINVFS_GET_VP(inode);
213 int error, nmaps = 1;
215 VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error);
216 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
222 * Finds the corresponding mapping in block @map array of the
223 * given @offset within a @page.
229 unsigned long offset)
231 loff_t full_offset; /* offset from start of file */
233 ASSERT(offset < PAGE_CACHE_SIZE);
235 full_offset = page->index; /* NB: using 64bit number */
236 full_offset <<= PAGE_CACHE_SHIFT; /* offset from file start */
237 full_offset += offset; /* offset from page start */
239 if (full_offset < iomapp->iomap_offset)
241 if (iomapp->iomap_offset + (iomapp->iomap_bsize -1) >= full_offset)
249 struct buffer_head *bh,
250 unsigned long offset,
258 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
259 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
260 ASSERT(iomapp->iomap_bn != IOMAP_DADDR_NULL);
263 delta <<= PAGE_CACHE_SHIFT;
265 delta -= iomapp->iomap_offset;
266 delta >>= block_bits;
268 sector_shift = block_bits - BBSHIFT;
269 bn = iomapp->iomap_bn >> sector_shift;
271 BUG_ON(!bn && !(iomapp->iomap_flags & IOMAP_REALTIME));
272 ASSERT((bn << sector_shift) >= iomapp->iomap_bn);
276 bh->b_bdev = iomapp->iomap_target->pbr_bdev;
277 set_buffer_mapped(bh);
278 clear_buffer_delay(bh);
282 * Look for a page at index which is unlocked and contains our
283 * unwritten extent flagged buffers at its head. Returns page
284 * locked and with an extra reference count, and length of the
285 * unwritten extent component on this page that we can write,
286 * in units of filesystem blocks.
289 xfs_probe_unwritten_page(
290 struct address_space *mapping,
294 unsigned long max_offset,
300 page = find_trylock_page(mapping, index);
303 if (PageWriteback(page))
306 if (page->mapping && page_has_buffers(page)) {
307 struct buffer_head *bh, *head;
308 unsigned long p_offset = 0;
311 bh = head = page_buffers(page);
313 if (!buffer_unwritten(bh) || !buffer_uptodate(bh))
315 if (!xfs_offset_to_map(page, iomapp, p_offset))
317 if (p_offset >= max_offset)
319 xfs_map_at_offset(page, bh, p_offset, bbits, iomapp);
320 set_buffer_unwritten_io(bh);
321 bh->b_private = ioend;
322 p_offset += bh->b_size;
324 } while ((bh = bh->b_this_page) != head);
336 * Look for a page at index which is unlocked and not mapped
337 * yet - clustering for mmap write case.
340 xfs_probe_unmapped_page(
341 struct address_space *mapping,
343 unsigned int pg_offset)
348 page = find_trylock_page(mapping, index);
351 if (PageWriteback(page))
354 if (page->mapping && PageDirty(page)) {
355 if (page_has_buffers(page)) {
356 struct buffer_head *bh, *head;
358 bh = head = page_buffers(page);
360 if (buffer_mapped(bh) || !buffer_uptodate(bh))
363 if (ret >= pg_offset)
365 } while ((bh = bh->b_this_page) != head);
367 ret = PAGE_CACHE_SIZE;
376 xfs_probe_unmapped_cluster(
378 struct page *startpage,
379 struct buffer_head *bh,
380 struct buffer_head *head)
382 pgoff_t tindex, tlast, tloff;
383 unsigned int pg_offset, len, total = 0;
384 struct address_space *mapping = inode->i_mapping;
386 /* First sum forwards in this page */
388 if (buffer_mapped(bh))
391 } while ((bh = bh->b_this_page) != head);
393 /* If we reached the end of the page, sum forwards in
397 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
398 /* Prune this back to avoid pathological behavior */
399 tloff = min(tlast, startpage->index + 64);
400 for (tindex = startpage->index + 1; tindex < tloff; tindex++) {
401 len = xfs_probe_unmapped_page(mapping, tindex,
407 if (tindex == tlast &&
408 (pg_offset = i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
409 total += xfs_probe_unmapped_page(mapping,
417 * Probe for a given page (index) in the inode and test if it is delayed
418 * and without unwritten buffers. Returns page locked and with an extra
422 xfs_probe_delalloc_page(
428 page = find_trylock_page(inode->i_mapping, index);
431 if (PageWriteback(page))
434 if (page->mapping && page_has_buffers(page)) {
435 struct buffer_head *bh, *head;
438 bh = head = page_buffers(page);
440 if (buffer_unwritten(bh)) {
443 } else if (buffer_delay(bh)) {
446 } while ((bh = bh->b_this_page) != head);
460 struct page *start_page,
461 struct buffer_head *head,
462 struct buffer_head *curr,
463 unsigned long p_offset,
466 struct writeback_control *wbc,
470 struct buffer_head *bh = curr;
474 unsigned long nblocks = 0;
476 offset = start_page->index;
477 offset <<= PAGE_CACHE_SHIFT;
480 ioend = xfs_alloc_ioend(inode);
482 /* First map forwards in the page consecutive buffers
483 * covering this unwritten extent
486 if (!buffer_unwritten(bh))
488 tmp = xfs_offset_to_map(start_page, iomapp, p_offset);
491 xfs_map_at_offset(start_page, bh, p_offset, block_bits, iomapp);
492 set_buffer_unwritten_io(bh);
493 bh->b_private = ioend;
494 p_offset += bh->b_size;
496 } while ((bh = bh->b_this_page) != head);
498 atomic_add(nblocks, &ioend->io_remaining);
500 /* If we reached the end of the page, map forwards in any
501 * following pages which are also covered by this extent.
504 struct address_space *mapping = inode->i_mapping;
505 pgoff_t tindex, tloff, tlast;
507 unsigned int pg_offset, bbits = inode->i_blkbits;
510 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
511 tloff = (iomapp->iomap_offset + iomapp->iomap_bsize) >> PAGE_CACHE_SHIFT;
512 tloff = min(tlast, tloff);
513 for (tindex = start_page->index + 1; tindex < tloff; tindex++) {
514 page = xfs_probe_unwritten_page(mapping,
515 tindex, iomapp, ioend,
516 PAGE_CACHE_SIZE, &bs, bbits);
520 atomic_add(bs, &ioend->io_remaining);
521 xfs_convert_page(inode, page, iomapp, wbc, ioend,
523 /* stop if converting the next page might add
524 * enough blocks that the corresponding byte
525 * count won't fit in our ulong page buf length */
526 if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits))
530 if (tindex == tlast &&
531 (pg_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1)))) {
532 page = xfs_probe_unwritten_page(mapping,
533 tindex, iomapp, ioend,
534 pg_offset, &bs, bbits);
537 atomic_add(bs, &ioend->io_remaining);
538 xfs_convert_page(inode, page, iomapp, wbc, ioend,
540 if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits))
547 ioend->io_size = (xfs_off_t)nblocks << block_bits;
548 ioend->io_offset = offset;
549 xfs_finish_ioend(ioend);
556 struct writeback_control *wbc,
557 struct buffer_head *bh_arr[],
562 struct buffer_head *bh;
565 BUG_ON(PageWriteback(page));
567 set_page_writeback(page);
569 clear_page_dirty(page);
573 for (i = 0; i < bh_count; i++) {
575 mark_buffer_async_write(bh);
576 if (buffer_unwritten(bh))
577 set_buffer_unwritten_io(bh);
578 set_buffer_uptodate(bh);
579 clear_buffer_dirty(bh);
582 for (i = 0; i < bh_count; i++)
583 submit_bh(WRITE, bh_arr[i]);
585 if (probed_page && clear_dirty)
586 wbc->nr_to_write--; /* Wrote an "extra" page */
591 * Allocate & map buffers for page given the extent map. Write it out.
592 * except for the original page of a writepage, this is called on
593 * delalloc/unwritten pages only, for the original page it is possible
594 * that the page has no mapping at all.
601 struct writeback_control *wbc,
606 struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head;
607 xfs_iomap_t *mp = iomapp, *tmp;
608 unsigned long offset, end_offset;
610 int bbits = inode->i_blkbits;
613 end_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1));
616 * page_dirty is initially a count of buffers on the page before
617 * EOF and is decrememted as we move each into a cleanable state.
619 len = 1 << inode->i_blkbits;
620 end_offset = max(end_offset, PAGE_CACHE_SIZE);
621 end_offset = roundup(end_offset, len);
622 page_dirty = end_offset / len;
625 bh = head = page_buffers(page);
627 if (offset >= end_offset)
629 if (!(PageUptodate(page) || buffer_uptodate(bh)))
631 if (buffer_mapped(bh) && all_bh &&
632 !(buffer_unwritten(bh) || buffer_delay(bh))) {
635 bh_arr[index++] = bh;
640 tmp = xfs_offset_to_map(page, mp, offset);
643 ASSERT(!(tmp->iomap_flags & IOMAP_HOLE));
644 ASSERT(!(tmp->iomap_flags & IOMAP_DELAY));
646 /* If this is a new unwritten extent buffer (i.e. one
647 * that we haven't passed in private data for, we must
648 * now map this buffer too.
650 if (buffer_unwritten(bh) && !bh->b_end_io) {
651 ASSERT(tmp->iomap_flags & IOMAP_UNWRITTEN);
652 xfs_map_unwritten(inode, page, head, bh, offset,
653 bbits, tmp, wbc, startio, all_bh);
654 } else if (! (buffer_unwritten(bh) && buffer_locked(bh))) {
655 xfs_map_at_offset(page, bh, offset, bbits, tmp);
656 if (buffer_unwritten(bh)) {
657 set_buffer_unwritten_io(bh);
658 bh->b_private = private;
663 bh_arr[index++] = bh;
665 set_buffer_dirty(bh);
667 mark_buffer_dirty(bh);
670 } while (offset += len, (bh = bh->b_this_page) != head);
672 if (startio && index) {
673 xfs_submit_page(page, wbc, bh_arr, index, 1, !page_dirty);
680 * Convert & write out a cluster of pages in the same extent as defined
681 * by mp and following the start page.
688 struct writeback_control *wbc,
695 for (; tindex <= tlast; tindex++) {
696 page = xfs_probe_delalloc_page(inode, tindex);
699 xfs_convert_page(inode, page, iomapp, wbc, NULL,
705 * Calling this without startio set means we are being asked to make a dirty
706 * page ready for freeing it's buffers. When called with startio set then
707 * we are coming from writepage.
709 * When called with startio set it is important that we write the WHOLE
711 * The bh->b_state's cannot know if any of the blocks or which block for
712 * that matter are dirty due to mmap writes, and therefore bh uptodate is
713 * only vaild if the page itself isn't completely uptodate. Some layers
714 * may clear the page dirty flag prior to calling write page, under the
715 * assumption the entire page will be written out; by not writing out the
716 * whole page the page can be reused before all valid dirty data is
717 * written out. Note: in the case of a page that has been dirty'd by
718 * mapwrite and but partially setup by block_prepare_write the
719 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
720 * valid state, thus the whole page must be written out thing.
724 xfs_page_state_convert(
727 struct writeback_control *wbc,
729 int unmapped) /* also implies page uptodate */
731 struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head;
732 xfs_iomap_t *iomp, iomap;
734 unsigned long p_offset = 0;
735 __uint64_t end_offset;
736 pgoff_t end_index, last_index, tlast;
737 int len, err, i, cnt = 0, uptodate = 1;
741 /* wait for other IO threads? */
742 flags = (startio && wbc->sync_mode != WB_SYNC_NONE) ? 0 : BMAPI_TRYLOCK;
744 /* Is this page beyond the end of the file? */
745 offset = i_size_read(inode);
746 end_index = offset >> PAGE_CACHE_SHIFT;
747 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
748 if (page->index >= end_index) {
749 if ((page->index >= end_index + 1) ||
750 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
757 end_offset = min_t(unsigned long long,
758 (loff_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
759 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
762 * page_dirty is initially a count of buffers on the page before
763 * EOF and is decrememted as we move each into a cleanable state.
765 len = 1 << inode->i_blkbits;
766 p_offset = max(p_offset, PAGE_CACHE_SIZE);
767 p_offset = roundup(p_offset, len);
768 page_dirty = p_offset / len;
772 bh = head = page_buffers(page);
775 if (offset >= end_offset)
777 if (!buffer_uptodate(bh))
779 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio)
783 iomp = xfs_offset_to_map(page, &iomap, p_offset);
787 * First case, map an unwritten extent and prepare for
788 * extent state conversion transaction on completion.
790 if (buffer_unwritten(bh)) {
794 err = xfs_map_blocks(inode, offset, len, &iomap,
795 BMAPI_WRITE|BMAPI_IGNSTATE);
799 iomp = xfs_offset_to_map(page, &iomap,
804 err = xfs_map_unwritten(inode, page,
806 inode->i_blkbits, iomp,
807 wbc, startio, unmapped);
812 set_bit(BH_Lock, &bh->b_state);
814 BUG_ON(!buffer_locked(bh));
819 * Second case, allocate space for a delalloc buffer.
820 * We can return EAGAIN here in the release page case.
822 } else if (buffer_delay(bh)) {
824 err = xfs_map_blocks(inode, offset, len, &iomap,
825 BMAPI_ALLOCATE | flags);
829 iomp = xfs_offset_to_map(page, &iomap,
833 xfs_map_at_offset(page, bh, p_offset,
834 inode->i_blkbits, iomp);
838 set_buffer_dirty(bh);
840 mark_buffer_dirty(bh);
844 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
845 (unmapped || startio)) {
847 if (!buffer_mapped(bh)) {
851 * Getting here implies an unmapped buffer
852 * was found, and we are in a path where we
853 * need to write the whole page out.
856 size = xfs_probe_unmapped_cluster(
857 inode, page, bh, head);
858 err = xfs_map_blocks(inode, offset,
860 BMAPI_WRITE|BMAPI_MMAP);
864 iomp = xfs_offset_to_map(page, &iomap,
868 xfs_map_at_offset(page,
870 inode->i_blkbits, iomp);
874 set_buffer_dirty(bh);
876 mark_buffer_dirty(bh);
880 } else if (startio) {
881 if (buffer_uptodate(bh) &&
882 !test_and_set_bit(BH_Lock, &bh->b_state)) {
888 } while (offset += len, p_offset += len,
889 ((bh = bh->b_this_page) != head));
891 if (uptodate && bh == head)
892 SetPageUptodate(page);
895 xfs_submit_page(page, wbc, bh_arr, cnt, 0, !page_dirty);
899 offset = (iomp->iomap_offset + iomp->iomap_bsize - 1) >>
901 tlast = min_t(pgoff_t, offset, last_index);
902 xfs_cluster_write(inode, page->index + 1, iomp, wbc,
903 startio, unmapped, tlast);
909 for (i = 0; i < cnt; i++) {
910 unlock_buffer(bh_arr[i]);
914 * If it's delalloc and we have nowhere to put it,
915 * throw it away, unless the lower layers told
918 if (err != -EAGAIN) {
920 block_invalidatepage(page, 0);
922 ClearPageUptodate(page);
931 unsigned long blocks,
932 struct buffer_head *bh_result,
937 vnode_t *vp = LINVFS_GET_VP(inode);
944 offset = (xfs_off_t)iblock << inode->i_blkbits;
946 size = (ssize_t) min_t(xfs_off_t, LONG_MAX,
947 (xfs_off_t)blocks << inode->i_blkbits);
949 size = 1 << inode->i_blkbits;
951 VOP_BMAP(vp, offset, size,
952 create ? flags : BMAPI_READ, &iomap, &retpbbm, error);
959 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
963 /* For unwritten extents do not report a disk address on
964 * the read case (treat as if we're reading into a hole).
966 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
967 delta = offset - iomap.iomap_offset;
968 delta >>= inode->i_blkbits;
970 bn = iomap.iomap_bn >> (inode->i_blkbits - BBSHIFT);
972 BUG_ON(!bn && !(iomap.iomap_flags & IOMAP_REALTIME));
973 bh_result->b_blocknr = bn;
974 set_buffer_mapped(bh_result);
976 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
978 bh_result->b_private = inode;
979 set_buffer_unwritten(bh_result);
980 set_buffer_delay(bh_result);
984 /* If this is a realtime file, data might be on a new device */
985 bh_result->b_bdev = iomap.iomap_target->pbr_bdev;
987 /* If we previously allocated a block out beyond eof and
988 * we are now coming back to use it then we will need to
989 * flag it as new even if it has a disk address.
992 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
993 (offset >= i_size_read(inode)) || (iomap.iomap_flags & IOMAP_NEW)))
994 set_buffer_new(bh_result);
996 if (iomap.iomap_flags & IOMAP_DELAY) {
999 set_buffer_uptodate(bh_result);
1000 set_buffer_mapped(bh_result);
1001 set_buffer_delay(bh_result);
1006 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1007 offset = min_t(xfs_off_t,
1008 iomap.iomap_bsize - iomap.iomap_delta,
1009 (xfs_off_t)blocks << inode->i_blkbits);
1010 bh_result->b_size = (u32) min_t(xfs_off_t, UINT_MAX, offset);
1018 struct inode *inode,
1020 struct buffer_head *bh_result,
1023 return __linvfs_get_block(inode, iblock, 0, bh_result,
1024 create, 0, BMAPI_WRITE);
1028 linvfs_get_blocks_direct(
1029 struct inode *inode,
1031 unsigned long max_blocks,
1032 struct buffer_head *bh_result,
1035 return __linvfs_get_block(inode, iblock, max_blocks, bh_result,
1036 create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1040 linvfs_end_io_direct(
1046 xfs_ioend_t *ioend = iocb->private;
1049 * Non-NULL private data means we need to issue a transaction to
1050 * convert a range from unwritten to written extents. This needs
1051 * to happen from process contect but aio+dio I/O completion
1052 * happens from irq context so we need to defer it to a workqueue.
1053 * This is not nessecary for synchronous direct I/O, but we do
1054 * it anyway to keep the code uniform and simpler.
1056 * The core direct I/O code might be changed to always call the
1057 * completion handler in the future, in which case all this can
1060 if (private && size > 0) {
1061 ioend->io_offset = offset;
1062 ioend->io_size = size;
1063 xfs_finish_ioend(ioend);
1066 xfs_destroy_ioend(ioend);
1070 * blockdev_direct_IO can return an error even afer the I/O
1071 * completion handler was called. Thus we need to protect
1072 * against double-freeing.
1074 iocb->private = NULL;
1081 const struct iovec *iov,
1083 unsigned long nr_segs)
1085 struct file *file = iocb->ki_filp;
1086 struct inode *inode = file->f_mapping->host;
1087 vnode_t *vp = LINVFS_GET_VP(inode);
1093 VOP_BMAP(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps, error);
1097 iocb->private = xfs_alloc_ioend(inode);
1099 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1100 iomap.iomap_target->pbr_bdev,
1101 iov, offset, nr_segs,
1102 linvfs_get_blocks_direct,
1103 linvfs_end_io_direct);
1105 if (unlikely(ret <= 0 && iocb->private))
1106 xfs_destroy_ioend(iocb->private);
1113 struct address_space *mapping,
1116 struct inode *inode = (struct inode *)mapping->host;
1117 vnode_t *vp = LINVFS_GET_VP(inode);
1120 vn_trace_entry(vp, "linvfs_bmap", (inst_t *)__return_address);
1122 VOP_RWLOCK(vp, VRWLOCK_READ);
1123 VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error);
1124 VOP_RWUNLOCK(vp, VRWLOCK_READ);
1125 return generic_block_bmap(mapping, block, linvfs_get_block);
1130 struct file *unused,
1133 return mpage_readpage(page, linvfs_get_block);
1138 struct file *unused,
1139 struct address_space *mapping,
1140 struct list_head *pages,
1143 return mpage_readpages(mapping, pages, nr_pages, linvfs_get_block);
1147 xfs_count_page_state(
1153 struct buffer_head *bh, *head;
1155 *delalloc = *unmapped = *unwritten = 0;
1157 bh = head = page_buffers(page);
1159 if (buffer_uptodate(bh) && !buffer_mapped(bh))
1161 else if (buffer_unwritten(bh) && !buffer_delay(bh))
1162 clear_buffer_unwritten(bh);
1163 else if (buffer_unwritten(bh))
1165 else if (buffer_delay(bh))
1167 } while ((bh = bh->b_this_page) != head);
1172 * writepage: Called from one of two places:
1174 * 1. we are flushing a delalloc buffer head.
1176 * 2. we are writing out a dirty page. Typically the page dirty
1177 * state is cleared before we get here. In this case is it
1178 * conceivable we have no buffer heads.
1180 * For delalloc space on the page we need to allocate space and
1181 * flush it. For unmapped buffer heads on the page we should
1182 * allocate space if the page is uptodate. For any other dirty
1183 * buffer heads on the page we should flush them.
1185 * If we detect that a transaction would be required to flush
1186 * the page, we have to check the process flags first, if we
1187 * are already in a transaction or disk I/O during allocations
1188 * is off, we need to fail the writepage and redirty the page.
1194 struct writeback_control *wbc)
1198 int delalloc, unmapped, unwritten;
1199 struct inode *inode = page->mapping->host;
1201 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1204 * We need a transaction if:
1205 * 1. There are delalloc buffers on the page
1206 * 2. The page is uptodate and we have unmapped buffers
1207 * 3. The page is uptodate and we have no buffers
1208 * 4. There are unwritten buffers on the page
1211 if (!page_has_buffers(page)) {
1215 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1216 if (!PageUptodate(page))
1218 need_trans = delalloc + unmapped + unwritten;
1222 * If we need a transaction and the process flags say
1223 * we are already in a transaction, or no IO is allowed
1224 * then mark the page dirty again and leave the page
1227 if (PFLAGS_TEST_FSTRANS() && need_trans)
1231 * Delay hooking up buffer heads until we have
1232 * made our go/no-go decision.
1234 if (!page_has_buffers(page))
1235 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1238 * Convert delayed allocate, unwritten or unmapped space
1239 * to real space and flush out to disk.
1241 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1242 if (error == -EAGAIN)
1244 if (unlikely(error < 0))
1250 redirty_page_for_writepage(wbc, page);
1259 linvfs_invalidate_page(
1261 unsigned long offset)
1263 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1264 page->mapping->host, page, offset);
1265 return block_invalidatepage(page, offset);
1269 * Called to move a page into cleanable state - and from there
1270 * to be released. Possibly the page is already clean. We always
1271 * have buffer heads in this call.
1273 * Returns 0 if the page is ok to release, 1 otherwise.
1275 * Possible scenarios are:
1277 * 1. We are being called to release a page which has been written
1278 * to via regular I/O. buffer heads will be dirty and possibly
1279 * delalloc. If no delalloc buffer heads in this case then we
1280 * can just return zero.
1282 * 2. We are called to release a page which has been written via
1283 * mmap, all we need to do is ensure there is no delalloc
1284 * state in the buffer heads, if not we can let the caller
1285 * free them and we should come back later via writepage.
1288 linvfs_release_page(
1292 struct inode *inode = page->mapping->host;
1293 int dirty, delalloc, unmapped, unwritten;
1294 struct writeback_control wbc = {
1295 .sync_mode = WB_SYNC_ALL,
1299 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask);
1301 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1302 if (!delalloc && !unwritten)
1305 if (!(gfp_mask & __GFP_FS))
1308 /* If we are already inside a transaction or the thread cannot
1309 * do I/O, we cannot release this page.
1311 if (PFLAGS_TEST_FSTRANS())
1315 * Convert delalloc space to real space, do not flush the
1316 * data out to disk, that will be done by the caller.
1317 * Never need to allocate space here - we will always
1318 * come back to writepage in that case.
1320 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1321 if (dirty == 0 && !unwritten)
1326 return try_to_free_buffers(page);
1330 linvfs_prepare_write(
1336 return block_prepare_write(page, from, to, linvfs_get_block);
1339 struct address_space_operations linvfs_aops = {
1340 .readpage = linvfs_readpage,
1341 .readpages = linvfs_readpages,
1342 .writepage = linvfs_writepage,
1343 .sync_page = block_sync_page,
1344 .releasepage = linvfs_release_page,
1345 .invalidatepage = linvfs_invalidate_page,
1346 .prepare_write = linvfs_prepare_write,
1347 .commit_write = generic_commit_write,
1348 .bmap = linvfs_bmap,
1349 .direct_IO = linvfs_direct_IO,