[NETFILTER]: ctnetlink: change table dumping not to require an unique ID
[linux-2.6] / arch / sparc64 / kernel / us2e_cpufreq.c
1 /* us2e_cpufreq.c: UltraSPARC-IIe cpu frequency support
2  *
3  * Copyright (C) 2003 David S. Miller (davem@redhat.com)
4  *
5  * Many thanks to Dominik Brodowski for fixing up the cpufreq
6  * infrastructure in order to make this driver easier to implement.
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/smp.h>
13 #include <linux/cpufreq.h>
14 #include <linux/threads.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18
19 #include <asm/asi.h>
20 #include <asm/timer.h>
21
22 static struct cpufreq_driver *cpufreq_us2e_driver;
23
24 struct us2e_freq_percpu_info {
25         struct cpufreq_frequency_table table[6];
26 };
27
28 /* Indexed by cpu number. */
29 static struct us2e_freq_percpu_info *us2e_freq_table;
30
31 #define HBIRD_MEM_CNTL0_ADDR    0x1fe0000f010UL
32 #define HBIRD_ESTAR_MODE_ADDR   0x1fe0000f080UL
33
34 /* UltraSPARC-IIe has five dividers: 1, 2, 4, 6, and 8.  These are controlled
35  * in the ESTAR mode control register.
36  */
37 #define ESTAR_MODE_DIV_1        0x0000000000000000UL
38 #define ESTAR_MODE_DIV_2        0x0000000000000001UL
39 #define ESTAR_MODE_DIV_4        0x0000000000000003UL
40 #define ESTAR_MODE_DIV_6        0x0000000000000002UL
41 #define ESTAR_MODE_DIV_8        0x0000000000000004UL
42 #define ESTAR_MODE_DIV_MASK     0x0000000000000007UL
43
44 #define MCTRL0_SREFRESH_ENAB    0x0000000000010000UL
45 #define MCTRL0_REFR_COUNT_MASK  0x0000000000007f00UL
46 #define MCTRL0_REFR_COUNT_SHIFT 8
47 #define MCTRL0_REFR_INTERVAL    7800
48 #define MCTRL0_REFR_CLKS_P_CNT  64
49
50 static unsigned long read_hbreg(unsigned long addr)
51 {
52         unsigned long ret;
53
54         __asm__ __volatile__("ldxa      [%1] %2, %0"
55                              : "=&r" (ret)
56                              : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
57         return ret;
58 }
59
60 static void write_hbreg(unsigned long addr, unsigned long val)
61 {
62         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
63                              "membar    #Sync"
64                              : /* no outputs */
65                              : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)
66                              : "memory");
67         if (addr == HBIRD_ESTAR_MODE_ADDR) {
68                 /* Need to wait 16 clock cycles for the PLL to lock.  */
69                 udelay(1);
70         }
71 }
72
73 static void self_refresh_ctl(int enable)
74 {
75         unsigned long mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
76
77         if (enable)
78                 mctrl |= MCTRL0_SREFRESH_ENAB;
79         else
80                 mctrl &= ~MCTRL0_SREFRESH_ENAB;
81         write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
82         (void) read_hbreg(HBIRD_MEM_CNTL0_ADDR);
83 }
84
85 static void frob_mem_refresh(int cpu_slowing_down,
86                              unsigned long clock_tick,
87                              unsigned long old_divisor, unsigned long divisor)
88 {
89         unsigned long old_refr_count, refr_count, mctrl;
90
91         refr_count  = (clock_tick * MCTRL0_REFR_INTERVAL);
92         refr_count /= (MCTRL0_REFR_CLKS_P_CNT * divisor * 1000000000UL);
93
94         mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
95         old_refr_count = (mctrl & MCTRL0_REFR_COUNT_MASK)
96                 >> MCTRL0_REFR_COUNT_SHIFT;
97
98         mctrl &= ~MCTRL0_REFR_COUNT_MASK;
99         mctrl |= refr_count << MCTRL0_REFR_COUNT_SHIFT;
100         write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
101         mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
102
103         if (cpu_slowing_down && !(mctrl & MCTRL0_SREFRESH_ENAB)) {
104                 unsigned long usecs;
105
106                 /* We have to wait for both refresh counts (old
107                  * and new) to go to zero.
108                  */
109                 usecs = (MCTRL0_REFR_CLKS_P_CNT *
110                          (refr_count + old_refr_count) *
111                          1000000UL *
112                          old_divisor) / clock_tick;
113                 udelay(usecs + 1UL);
114         }
115 }
116
117 static void us2e_transition(unsigned long estar, unsigned long new_bits,
118                             unsigned long clock_tick,
119                             unsigned long old_divisor, unsigned long divisor)
120 {
121         unsigned long flags;
122
123         local_irq_save(flags);
124
125         estar &= ~ESTAR_MODE_DIV_MASK;
126
127         /* This is based upon the state transition diagram in the IIe manual.  */
128         if (old_divisor == 2 && divisor == 1) {
129                 self_refresh_ctl(0);
130                 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
131                 frob_mem_refresh(0, clock_tick, old_divisor, divisor);
132         } else if (old_divisor == 1 && divisor == 2) {
133                 frob_mem_refresh(1, clock_tick, old_divisor, divisor);
134                 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
135                 self_refresh_ctl(1);
136         } else if (old_divisor == 1 && divisor > 2) {
137                 us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
138                                 1, 2);
139                 us2e_transition(estar, new_bits, clock_tick,
140                                 2, divisor);
141         } else if (old_divisor > 2 && divisor == 1) {
142                 us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
143                                 old_divisor, 2);
144                 us2e_transition(estar, new_bits, clock_tick,
145                                 2, divisor);
146         } else if (old_divisor < divisor) {
147                 frob_mem_refresh(0, clock_tick, old_divisor, divisor);
148                 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
149         } else if (old_divisor > divisor) {
150                 write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
151                 frob_mem_refresh(1, clock_tick, old_divisor, divisor);
152         } else {
153                 BUG();
154         }
155
156         local_irq_restore(flags);
157 }
158
159 static unsigned long index_to_estar_mode(unsigned int index)
160 {
161         switch (index) {
162         case 0:
163                 return ESTAR_MODE_DIV_1;
164
165         case 1:
166                 return ESTAR_MODE_DIV_2;
167
168         case 2:
169                 return ESTAR_MODE_DIV_4;
170
171         case 3:
172                 return ESTAR_MODE_DIV_6;
173
174         case 4:
175                 return ESTAR_MODE_DIV_8;
176
177         default:
178                 BUG();
179         };
180 }
181
182 static unsigned long index_to_divisor(unsigned int index)
183 {
184         switch (index) {
185         case 0:
186                 return 1;
187
188         case 1:
189                 return 2;
190
191         case 2:
192                 return 4;
193
194         case 3:
195                 return 6;
196
197         case 4:
198                 return 8;
199
200         default:
201                 BUG();
202         };
203 }
204
205 static unsigned long estar_to_divisor(unsigned long estar)
206 {
207         unsigned long ret;
208
209         switch (estar & ESTAR_MODE_DIV_MASK) {
210         case ESTAR_MODE_DIV_1:
211                 ret = 1;
212                 break;
213         case ESTAR_MODE_DIV_2:
214                 ret = 2;
215                 break;
216         case ESTAR_MODE_DIV_4:
217                 ret = 4;
218                 break;
219         case ESTAR_MODE_DIV_6:
220                 ret = 6;
221                 break;
222         case ESTAR_MODE_DIV_8:
223                 ret = 8;
224                 break;
225         default:
226                 BUG();
227         };
228
229         return ret;
230 }
231
232 static unsigned int us2e_freq_get(unsigned int cpu)
233 {
234         cpumask_t cpus_allowed;
235         unsigned long clock_tick, estar;
236
237         if (!cpu_online(cpu))
238                 return 0;
239
240         cpus_allowed = current->cpus_allowed;
241         set_cpus_allowed(current, cpumask_of_cpu(cpu));
242
243         clock_tick = sparc64_get_clock_tick(cpu) / 1000;
244         estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
245
246         set_cpus_allowed(current, cpus_allowed);
247
248         return clock_tick / estar_to_divisor(estar);
249 }
250
251 static void us2e_set_cpu_divider_index(unsigned int cpu, unsigned int index)
252 {
253         unsigned long new_bits, new_freq;
254         unsigned long clock_tick, divisor, old_divisor, estar;
255         cpumask_t cpus_allowed;
256         struct cpufreq_freqs freqs;
257
258         if (!cpu_online(cpu))
259                 return;
260
261         cpus_allowed = current->cpus_allowed;
262         set_cpus_allowed(current, cpumask_of_cpu(cpu));
263
264         new_freq = clock_tick = sparc64_get_clock_tick(cpu) / 1000;
265         new_bits = index_to_estar_mode(index);
266         divisor = index_to_divisor(index);
267         new_freq /= divisor;
268
269         estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
270
271         old_divisor = estar_to_divisor(estar);
272
273         freqs.old = clock_tick / old_divisor;
274         freqs.new = new_freq;
275         freqs.cpu = cpu;
276         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
277
278         if (old_divisor != divisor)
279                 us2e_transition(estar, new_bits, clock_tick * 1000,
280                                 old_divisor, divisor);
281
282         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
283
284         set_cpus_allowed(current, cpus_allowed);
285 }
286
287 static int us2e_freq_target(struct cpufreq_policy *policy,
288                           unsigned int target_freq,
289                           unsigned int relation)
290 {
291         unsigned int new_index = 0;
292
293         if (cpufreq_frequency_table_target(policy,
294                                            &us2e_freq_table[policy->cpu].table[0],
295                                            target_freq, relation, &new_index))
296                 return -EINVAL;
297
298         us2e_set_cpu_divider_index(policy->cpu, new_index);
299
300         return 0;
301 }
302
303 static int us2e_freq_verify(struct cpufreq_policy *policy)
304 {
305         return cpufreq_frequency_table_verify(policy,
306                                               &us2e_freq_table[policy->cpu].table[0]);
307 }
308
309 static int __init us2e_freq_cpu_init(struct cpufreq_policy *policy)
310 {
311         unsigned int cpu = policy->cpu;
312         unsigned long clock_tick = sparc64_get_clock_tick(cpu) / 1000;
313         struct cpufreq_frequency_table *table =
314                 &us2e_freq_table[cpu].table[0];
315
316         table[0].index = 0;
317         table[0].frequency = clock_tick / 1;
318         table[1].index = 1;
319         table[1].frequency = clock_tick / 2;
320         table[2].index = 2;
321         table[2].frequency = clock_tick / 4;
322         table[2].index = 3;
323         table[2].frequency = clock_tick / 6;
324         table[2].index = 4;
325         table[2].frequency = clock_tick / 8;
326         table[2].index = 5;
327         table[3].frequency = CPUFREQ_TABLE_END;
328
329         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
330         policy->cpuinfo.transition_latency = 0;
331         policy->cur = clock_tick;
332
333         return cpufreq_frequency_table_cpuinfo(policy, table);
334 }
335
336 static int us2e_freq_cpu_exit(struct cpufreq_policy *policy)
337 {
338         if (cpufreq_us2e_driver)
339                 us2e_set_cpu_divider_index(policy->cpu, 0);
340
341         return 0;
342 }
343
344 static int __init us2e_freq_init(void)
345 {
346         unsigned long manuf, impl, ver;
347         int ret;
348
349         if (tlb_type != spitfire)
350                 return -ENODEV;
351
352         __asm__("rdpr %%ver, %0" : "=r" (ver));
353         manuf = ((ver >> 48) & 0xffff);
354         impl  = ((ver >> 32) & 0xffff);
355
356         if (manuf == 0x17 && impl == 0x13) {
357                 struct cpufreq_driver *driver;
358
359                 ret = -ENOMEM;
360                 driver = kzalloc(sizeof(struct cpufreq_driver), GFP_KERNEL);
361                 if (!driver)
362                         goto err_out;
363
364                 us2e_freq_table = kzalloc(
365                         (NR_CPUS * sizeof(struct us2e_freq_percpu_info)),
366                         GFP_KERNEL);
367                 if (!us2e_freq_table)
368                         goto err_out;
369
370                 driver->init = us2e_freq_cpu_init;
371                 driver->verify = us2e_freq_verify;
372                 driver->target = us2e_freq_target;
373                 driver->get = us2e_freq_get;
374                 driver->exit = us2e_freq_cpu_exit;
375                 driver->owner = THIS_MODULE,
376                 strcpy(driver->name, "UltraSPARC-IIe");
377
378                 cpufreq_us2e_driver = driver;
379                 ret = cpufreq_register_driver(driver);
380                 if (ret)
381                         goto err_out;
382
383                 return 0;
384
385 err_out:
386                 if (driver) {
387                         kfree(driver);
388                         cpufreq_us2e_driver = NULL;
389                 }
390                 kfree(us2e_freq_table);
391                 us2e_freq_table = NULL;
392                 return ret;
393         }
394
395         return -ENODEV;
396 }
397
398 static void __exit us2e_freq_exit(void)
399 {
400         if (cpufreq_us2e_driver) {
401                 cpufreq_unregister_driver(cpufreq_us2e_driver);
402                 kfree(cpufreq_us2e_driver);
403                 cpufreq_us2e_driver = NULL;
404                 kfree(us2e_freq_table);
405                 us2e_freq_table = NULL;
406         }
407 }
408
409 MODULE_AUTHOR("David S. Miller <davem@redhat.com>");
410 MODULE_DESCRIPTION("cpufreq driver for UltraSPARC-IIe");
411 MODULE_LICENSE("GPL");
412
413 module_init(us2e_freq_init);
414 module_exit(us2e_freq_exit);