1 #include <linux/bitops.h>
2 #include <linux/slab.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
19 #include "btrfs_inode.h"
21 /* temporary define until extent_map moves out of btrfs */
22 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
23 unsigned long extra_flags,
24 void (*ctor)(void *, struct kmem_cache *,
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
30 static LIST_HEAD(buffers);
31 static LIST_HEAD(states);
35 static spinlock_t leak_lock = SPIN_LOCK_UNLOCKED;
38 #define BUFFER_LRU_MAX 64
43 struct rb_node rb_node;
46 struct extent_page_data {
48 struct extent_io_tree *tree;
49 get_extent_t *get_extent;
51 /* tells writepage not to lock the state bits for this range
52 * it still does the unlocking
57 int __init extent_io_init(void)
59 extent_state_cache = btrfs_cache_create("extent_state",
60 sizeof(struct extent_state), 0,
62 if (!extent_state_cache)
65 extent_buffer_cache = btrfs_cache_create("extent_buffers",
66 sizeof(struct extent_buffer), 0,
68 if (!extent_buffer_cache)
69 goto free_state_cache;
73 kmem_cache_destroy(extent_state_cache);
77 void extent_io_exit(void)
79 struct extent_state *state;
80 struct extent_buffer *eb;
82 while (!list_empty(&states)) {
83 state = list_entry(states.next, struct extent_state, leak_list);
84 printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs));
85 list_del(&state->leak_list);
86 kmem_cache_free(extent_state_cache, state);
90 while (!list_empty(&buffers)) {
91 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 printk("buffer leak start %Lu len %lu refs %d\n", eb->start, eb->len, atomic_read(&eb->refs));
93 list_del(&eb->leak_list);
94 kmem_cache_free(extent_buffer_cache, eb);
96 if (extent_state_cache)
97 kmem_cache_destroy(extent_state_cache);
98 if (extent_buffer_cache)
99 kmem_cache_destroy(extent_buffer_cache);
102 void extent_io_tree_init(struct extent_io_tree *tree,
103 struct address_space *mapping, gfp_t mask)
105 tree->state.rb_node = NULL;
106 tree->buffer.rb_node = NULL;
108 tree->dirty_bytes = 0;
109 spin_lock_init(&tree->lock);
110 spin_lock_init(&tree->buffer_lock);
111 tree->mapping = mapping;
113 EXPORT_SYMBOL(extent_io_tree_init);
115 struct extent_state *alloc_extent_state(gfp_t mask)
117 struct extent_state *state;
122 state = kmem_cache_alloc(extent_state_cache, mask);
129 spin_lock_irqsave(&leak_lock, flags);
130 list_add(&state->leak_list, &states);
131 spin_unlock_irqrestore(&leak_lock, flags);
133 atomic_set(&state->refs, 1);
134 init_waitqueue_head(&state->wq);
137 EXPORT_SYMBOL(alloc_extent_state);
139 void free_extent_state(struct extent_state *state)
143 if (atomic_dec_and_test(&state->refs)) {
147 WARN_ON(state->tree);
149 spin_lock_irqsave(&leak_lock, flags);
150 list_del(&state->leak_list);
151 spin_unlock_irqrestore(&leak_lock, flags);
153 kmem_cache_free(extent_state_cache, state);
156 EXPORT_SYMBOL(free_extent_state);
158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
159 struct rb_node *node)
161 struct rb_node ** p = &root->rb_node;
162 struct rb_node * parent = NULL;
163 struct tree_entry *entry;
167 entry = rb_entry(parent, struct tree_entry, rb_node);
169 if (offset < entry->start)
171 else if (offset > entry->end)
177 entry = rb_entry(node, struct tree_entry, rb_node);
178 rb_link_node(node, parent, p);
179 rb_insert_color(node, root);
183 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
184 struct rb_node **prev_ret,
185 struct rb_node **next_ret)
187 struct rb_root *root = &tree->state;
188 struct rb_node * n = root->rb_node;
189 struct rb_node *prev = NULL;
190 struct rb_node *orig_prev = NULL;
191 struct tree_entry *entry;
192 struct tree_entry *prev_entry = NULL;
195 entry = rb_entry(n, struct tree_entry, rb_node);
199 if (offset < entry->start)
201 else if (offset > entry->end)
210 while(prev && offset > prev_entry->end) {
211 prev = rb_next(prev);
212 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 while(prev && offset < prev_entry->start) {
221 prev = rb_prev(prev);
222 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
229 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
232 struct rb_node *prev = NULL;
235 ret = __etree_search(tree, offset, &prev, NULL);
242 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
243 u64 offset, struct rb_node *node)
245 struct rb_root *root = &tree->buffer;
246 struct rb_node ** p = &root->rb_node;
247 struct rb_node * parent = NULL;
248 struct extent_buffer *eb;
252 eb = rb_entry(parent, struct extent_buffer, rb_node);
254 if (offset < eb->start)
256 else if (offset > eb->start)
262 rb_link_node(node, parent, p);
263 rb_insert_color(node, root);
267 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
270 struct rb_root *root = &tree->buffer;
271 struct rb_node * n = root->rb_node;
272 struct extent_buffer *eb;
275 eb = rb_entry(n, struct extent_buffer, rb_node);
276 if (offset < eb->start)
278 else if (offset > eb->start)
287 * utility function to look for merge candidates inside a given range.
288 * Any extents with matching state are merged together into a single
289 * extent in the tree. Extents with EXTENT_IO in their state field
290 * are not merged because the end_io handlers need to be able to do
291 * operations on them without sleeping (or doing allocations/splits).
293 * This should be called with the tree lock held.
295 static int merge_state(struct extent_io_tree *tree,
296 struct extent_state *state)
298 struct extent_state *other;
299 struct rb_node *other_node;
301 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
304 other_node = rb_prev(&state->rb_node);
306 other = rb_entry(other_node, struct extent_state, rb_node);
307 if (other->end == state->start - 1 &&
308 other->state == state->state) {
309 state->start = other->start;
311 rb_erase(&other->rb_node, &tree->state);
312 free_extent_state(other);
315 other_node = rb_next(&state->rb_node);
317 other = rb_entry(other_node, struct extent_state, rb_node);
318 if (other->start == state->end + 1 &&
319 other->state == state->state) {
320 other->start = state->start;
322 rb_erase(&state->rb_node, &tree->state);
323 free_extent_state(state);
329 static void set_state_cb(struct extent_io_tree *tree,
330 struct extent_state *state,
333 if (tree->ops && tree->ops->set_bit_hook) {
334 tree->ops->set_bit_hook(tree->mapping->host, state->start,
335 state->end, state->state, bits);
339 static void clear_state_cb(struct extent_io_tree *tree,
340 struct extent_state *state,
343 if (tree->ops && tree->ops->set_bit_hook) {
344 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
345 state->end, state->state, bits);
350 * insert an extent_state struct into the tree. 'bits' are set on the
351 * struct before it is inserted.
353 * This may return -EEXIST if the extent is already there, in which case the
354 * state struct is freed.
356 * The tree lock is not taken internally. This is a utility function and
357 * probably isn't what you want to call (see set/clear_extent_bit).
359 static int insert_state(struct extent_io_tree *tree,
360 struct extent_state *state, u64 start, u64 end,
363 struct rb_node *node;
366 printk("end < start %Lu %Lu\n", end, start);
369 if (bits & EXTENT_DIRTY)
370 tree->dirty_bytes += end - start + 1;
371 set_state_cb(tree, state, bits);
372 state->state |= bits;
373 state->start = start;
375 node = tree_insert(&tree->state, end, &state->rb_node);
377 struct extent_state *found;
378 found = rb_entry(node, struct extent_state, rb_node);
379 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
380 free_extent_state(state);
384 merge_state(tree, state);
389 * split a given extent state struct in two, inserting the preallocated
390 * struct 'prealloc' as the newly created second half. 'split' indicates an
391 * offset inside 'orig' where it should be split.
394 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
395 * are two extent state structs in the tree:
396 * prealloc: [orig->start, split - 1]
397 * orig: [ split, orig->end ]
399 * The tree locks are not taken by this function. They need to be held
402 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
403 struct extent_state *prealloc, u64 split)
405 struct rb_node *node;
406 prealloc->start = orig->start;
407 prealloc->end = split - 1;
408 prealloc->state = orig->state;
411 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
413 struct extent_state *found;
414 found = rb_entry(node, struct extent_state, rb_node);
415 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
416 free_extent_state(prealloc);
419 prealloc->tree = tree;
424 * utility function to clear some bits in an extent state struct.
425 * it will optionally wake up any one waiting on this state (wake == 1), or
426 * forcibly remove the state from the tree (delete == 1).
428 * If no bits are set on the state struct after clearing things, the
429 * struct is freed and removed from the tree
431 static int clear_state_bit(struct extent_io_tree *tree,
432 struct extent_state *state, int bits, int wake,
435 int ret = state->state & bits;
437 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
438 u64 range = state->end - state->start + 1;
439 WARN_ON(range > tree->dirty_bytes);
440 tree->dirty_bytes -= range;
442 clear_state_cb(tree, state, bits);
443 state->state &= ~bits;
446 if (delete || state->state == 0) {
448 clear_state_cb(tree, state, state->state);
449 rb_erase(&state->rb_node, &tree->state);
451 free_extent_state(state);
456 merge_state(tree, state);
462 * clear some bits on a range in the tree. This may require splitting
463 * or inserting elements in the tree, so the gfp mask is used to
464 * indicate which allocations or sleeping are allowed.
466 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
467 * the given range from the tree regardless of state (ie for truncate).
469 * the range [start, end] is inclusive.
471 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
472 * bits were already set, or zero if none of the bits were already set.
474 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
475 int bits, int wake, int delete, gfp_t mask)
477 struct extent_state *state;
478 struct extent_state *prealloc = NULL;
479 struct rb_node *node;
485 if (!prealloc && (mask & __GFP_WAIT)) {
486 prealloc = alloc_extent_state(mask);
491 spin_lock_irqsave(&tree->lock, flags);
493 * this search will find the extents that end after
496 node = tree_search(tree, start);
499 state = rb_entry(node, struct extent_state, rb_node);
500 if (state->start > end)
502 WARN_ON(state->end < start);
505 * | ---- desired range ---- |
507 * | ------------- state -------------- |
509 * We need to split the extent we found, and may flip
510 * bits on second half.
512 * If the extent we found extends past our range, we
513 * just split and search again. It'll get split again
514 * the next time though.
516 * If the extent we found is inside our range, we clear
517 * the desired bit on it.
520 if (state->start < start) {
522 prealloc = alloc_extent_state(GFP_ATOMIC);
523 err = split_state(tree, state, prealloc, start);
524 BUG_ON(err == -EEXIST);
528 if (state->end <= end) {
529 start = state->end + 1;
530 set |= clear_state_bit(tree, state, bits,
533 start = state->start;
538 * | ---- desired range ---- |
540 * We need to split the extent, and clear the bit
543 if (state->start <= end && state->end > end) {
545 prealloc = alloc_extent_state(GFP_ATOMIC);
546 err = split_state(tree, state, prealloc, end + 1);
547 BUG_ON(err == -EEXIST);
551 set |= clear_state_bit(tree, prealloc, bits,
557 start = state->end + 1;
558 set |= clear_state_bit(tree, state, bits, wake, delete);
562 spin_unlock_irqrestore(&tree->lock, flags);
564 free_extent_state(prealloc);
571 spin_unlock_irqrestore(&tree->lock, flags);
572 if (mask & __GFP_WAIT)
576 EXPORT_SYMBOL(clear_extent_bit);
578 static int wait_on_state(struct extent_io_tree *tree,
579 struct extent_state *state)
582 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
583 spin_unlock_irq(&tree->lock);
585 spin_lock_irq(&tree->lock);
586 finish_wait(&state->wq, &wait);
591 * waits for one or more bits to clear on a range in the state tree.
592 * The range [start, end] is inclusive.
593 * The tree lock is taken by this function
595 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
597 struct extent_state *state;
598 struct rb_node *node;
600 spin_lock_irq(&tree->lock);
604 * this search will find all the extents that end after
607 node = tree_search(tree, start);
611 state = rb_entry(node, struct extent_state, rb_node);
613 if (state->start > end)
616 if (state->state & bits) {
617 start = state->start;
618 atomic_inc(&state->refs);
619 wait_on_state(tree, state);
620 free_extent_state(state);
623 start = state->end + 1;
628 if (need_resched()) {
629 spin_unlock_irq(&tree->lock);
631 spin_lock_irq(&tree->lock);
635 spin_unlock_irq(&tree->lock);
638 EXPORT_SYMBOL(wait_extent_bit);
640 static void set_state_bits(struct extent_io_tree *tree,
641 struct extent_state *state,
644 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
645 u64 range = state->end - state->start + 1;
646 tree->dirty_bytes += range;
648 set_state_cb(tree, state, bits);
649 state->state |= bits;
653 * set some bits on a range in the tree. This may require allocations
654 * or sleeping, so the gfp mask is used to indicate what is allowed.
656 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
657 * range already has the desired bits set. The start of the existing
658 * range is returned in failed_start in this case.
660 * [start, end] is inclusive
661 * This takes the tree lock.
663 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
664 int exclusive, u64 *failed_start, gfp_t mask)
666 struct extent_state *state;
667 struct extent_state *prealloc = NULL;
668 struct rb_node *node;
675 if (!prealloc && (mask & __GFP_WAIT)) {
676 prealloc = alloc_extent_state(mask);
681 spin_lock_irqsave(&tree->lock, flags);
683 * this search will find all the extents that end after
686 node = tree_search(tree, start);
688 err = insert_state(tree, prealloc, start, end, bits);
690 BUG_ON(err == -EEXIST);
694 state = rb_entry(node, struct extent_state, rb_node);
695 last_start = state->start;
696 last_end = state->end;
699 * | ---- desired range ---- |
702 * Just lock what we found and keep going
704 if (state->start == start && state->end <= end) {
705 set = state->state & bits;
706 if (set && exclusive) {
707 *failed_start = state->start;
711 set_state_bits(tree, state, bits);
712 start = state->end + 1;
713 merge_state(tree, state);
718 * | ---- desired range ---- |
721 * | ------------- state -------------- |
723 * We need to split the extent we found, and may flip bits on
726 * If the extent we found extends past our
727 * range, we just split and search again. It'll get split
728 * again the next time though.
730 * If the extent we found is inside our range, we set the
733 if (state->start < start) {
734 set = state->state & bits;
735 if (exclusive && set) {
736 *failed_start = start;
740 err = split_state(tree, state, prealloc, start);
741 BUG_ON(err == -EEXIST);
745 if (state->end <= end) {
746 set_state_bits(tree, state, bits);
747 start = state->end + 1;
748 merge_state(tree, state);
750 start = state->start;
755 * | ---- desired range ---- |
756 * | state | or | state |
758 * There's a hole, we need to insert something in it and
759 * ignore the extent we found.
761 if (state->start > start) {
763 if (end < last_start)
766 this_end = last_start -1;
767 err = insert_state(tree, prealloc, start, this_end,
770 BUG_ON(err == -EEXIST);
773 start = this_end + 1;
777 * | ---- desired range ---- |
779 * We need to split the extent, and set the bit
782 if (state->start <= end && state->end > end) {
783 set = state->state & bits;
784 if (exclusive && set) {
785 *failed_start = start;
789 err = split_state(tree, state, prealloc, end + 1);
790 BUG_ON(err == -EEXIST);
792 set_state_bits(tree, prealloc, bits);
793 merge_state(tree, prealloc);
801 spin_unlock_irqrestore(&tree->lock, flags);
803 free_extent_state(prealloc);
810 spin_unlock_irqrestore(&tree->lock, flags);
811 if (mask & __GFP_WAIT)
815 EXPORT_SYMBOL(set_extent_bit);
817 /* wrappers around set/clear extent bit */
818 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
821 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
824 EXPORT_SYMBOL(set_extent_dirty);
826 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
829 return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
831 EXPORT_SYMBOL(set_extent_ordered);
833 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
834 int bits, gfp_t mask)
836 return set_extent_bit(tree, start, end, bits, 0, NULL,
839 EXPORT_SYMBOL(set_extent_bits);
841 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
842 int bits, gfp_t mask)
844 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
846 EXPORT_SYMBOL(clear_extent_bits);
848 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
851 return set_extent_bit(tree, start, end,
852 EXTENT_DELALLOC | EXTENT_DIRTY,
855 EXPORT_SYMBOL(set_extent_delalloc);
857 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
860 return clear_extent_bit(tree, start, end,
861 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
863 EXPORT_SYMBOL(clear_extent_dirty);
865 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
868 return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
870 EXPORT_SYMBOL(clear_extent_ordered);
872 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
875 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
878 EXPORT_SYMBOL(set_extent_new);
880 int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
883 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
885 EXPORT_SYMBOL(clear_extent_new);
887 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
890 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
893 EXPORT_SYMBOL(set_extent_uptodate);
895 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
898 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
900 EXPORT_SYMBOL(clear_extent_uptodate);
902 int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
905 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
908 EXPORT_SYMBOL(set_extent_writeback);
910 int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
913 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
915 EXPORT_SYMBOL(clear_extent_writeback);
917 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
919 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
921 EXPORT_SYMBOL(wait_on_extent_writeback);
924 * either insert or lock state struct between start and end use mask to tell
925 * us if waiting is desired.
927 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
932 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
933 &failed_start, mask);
934 if (err == -EEXIST && (mask & __GFP_WAIT)) {
935 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
936 start = failed_start;
940 WARN_ON(start > end);
944 EXPORT_SYMBOL(lock_extent);
946 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
952 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
953 &failed_start, mask);
954 if (err == -EEXIST) {
955 if (failed_start > start)
956 clear_extent_bit(tree, start, failed_start - 1,
957 EXTENT_LOCKED, 1, 0, mask);
962 EXPORT_SYMBOL(try_lock_extent);
964 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
967 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
969 EXPORT_SYMBOL(unlock_extent);
972 * helper function to set pages and extents in the tree dirty
974 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
976 unsigned long index = start >> PAGE_CACHE_SHIFT;
977 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
980 while (index <= end_index) {
981 page = find_get_page(tree->mapping, index);
983 __set_page_dirty_nobuffers(page);
984 page_cache_release(page);
987 set_extent_dirty(tree, start, end, GFP_NOFS);
990 EXPORT_SYMBOL(set_range_dirty);
993 * helper function to set both pages and extents in the tree writeback
995 int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
997 unsigned long index = start >> PAGE_CACHE_SHIFT;
998 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1001 while (index <= end_index) {
1002 page = find_get_page(tree->mapping, index);
1004 set_page_writeback(page);
1005 page_cache_release(page);
1008 set_extent_writeback(tree, start, end, GFP_NOFS);
1011 EXPORT_SYMBOL(set_range_writeback);
1014 * find the first offset in the io tree with 'bits' set. zero is
1015 * returned if we find something, and *start_ret and *end_ret are
1016 * set to reflect the state struct that was found.
1018 * If nothing was found, 1 is returned, < 0 on error
1020 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1021 u64 *start_ret, u64 *end_ret, int bits)
1023 struct rb_node *node;
1024 struct extent_state *state;
1027 spin_lock_irq(&tree->lock);
1029 * this search will find all the extents that end after
1032 node = tree_search(tree, start);
1038 state = rb_entry(node, struct extent_state, rb_node);
1039 if (state->end >= start && (state->state & bits)) {
1040 *start_ret = state->start;
1041 *end_ret = state->end;
1045 node = rb_next(node);
1050 spin_unlock_irq(&tree->lock);
1053 EXPORT_SYMBOL(find_first_extent_bit);
1055 /* find the first state struct with 'bits' set after 'start', and
1056 * return it. tree->lock must be held. NULL will returned if
1057 * nothing was found after 'start'
1059 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1060 u64 start, int bits)
1062 struct rb_node *node;
1063 struct extent_state *state;
1066 * this search will find all the extents that end after
1069 node = tree_search(tree, start);
1075 state = rb_entry(node, struct extent_state, rb_node);
1076 if (state->end >= start && (state->state & bits)) {
1079 node = rb_next(node);
1086 EXPORT_SYMBOL(find_first_extent_bit_state);
1089 * find a contiguous range of bytes in the file marked as delalloc, not
1090 * more than 'max_bytes'. start and end are used to return the range,
1092 * 1 is returned if we find something, 0 if nothing was in the tree
1094 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1095 u64 *start, u64 *end, u64 max_bytes)
1097 struct rb_node *node;
1098 struct extent_state *state;
1099 u64 cur_start = *start;
1101 u64 total_bytes = 0;
1103 spin_lock_irq(&tree->lock);
1106 * this search will find all the extents that end after
1109 node = tree_search(tree, cur_start);
1117 state = rb_entry(node, struct extent_state, rb_node);
1118 if (found && (state->start != cur_start ||
1119 (state->state & EXTENT_BOUNDARY))) {
1122 if (!(state->state & EXTENT_DELALLOC)) {
1128 *start = state->start;
1131 cur_start = state->end + 1;
1132 node = rb_next(node);
1135 total_bytes += state->end - state->start + 1;
1136 if (total_bytes >= max_bytes)
1140 spin_unlock_irq(&tree->lock);
1144 static noinline int __unlock_for_delalloc(struct inode *inode,
1145 struct page *locked_page,
1149 struct page *pages[16];
1150 unsigned long index = start >> PAGE_CACHE_SHIFT;
1151 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1152 unsigned long nr_pages = end_index - index + 1;
1155 if (index == locked_page->index && end_index == index)
1158 while(nr_pages > 0) {
1159 ret = find_get_pages_contig(inode->i_mapping, index,
1160 min(nr_pages, ARRAY_SIZE(pages)), pages);
1161 for (i = 0; i < ret; i++) {
1162 if (pages[i] != locked_page)
1163 unlock_page(pages[i]);
1164 page_cache_release(pages[i]);
1173 static noinline int lock_delalloc_pages(struct inode *inode,
1174 struct page *locked_page,
1178 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1179 unsigned long start_index = index;
1180 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1181 unsigned long pages_locked = 0;
1182 struct page *pages[16];
1183 unsigned long nrpages;
1187 /* the caller is responsible for locking the start index */
1188 if (index == locked_page->index && index == end_index)
1191 /* skip the page at the start index */
1192 nrpages = end_index - index + 1;
1193 while(nrpages > 0) {
1194 ret = find_get_pages_contig(inode->i_mapping, index,
1195 min(nrpages, ARRAY_SIZE(pages)), pages);
1200 /* now we have an array of pages, lock them all */
1201 for (i = 0; i < ret; i++) {
1203 * the caller is taking responsibility for
1206 if (pages[i] != locked_page) {
1207 lock_page(pages[i]);
1208 if (!PageDirty(pages[i]) ||
1209 pages[i]->mapping != inode->i_mapping) {
1211 unlock_page(pages[i]);
1212 page_cache_release(pages[i]);
1216 page_cache_release(pages[i]);
1225 if (ret && pages_locked) {
1226 __unlock_for_delalloc(inode, locked_page,
1228 ((u64)(start_index + pages_locked - 1)) <<
1235 * find a contiguous range of bytes in the file marked as delalloc, not
1236 * more than 'max_bytes'. start and end are used to return the range,
1238 * 1 is returned if we find something, 0 if nothing was in the tree
1240 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1241 struct extent_io_tree *tree,
1242 struct page *locked_page,
1243 u64 *start, u64 *end,
1253 /* step one, find a bunch of delalloc bytes starting at start */
1254 delalloc_start = *start;
1256 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1258 if (!found || delalloc_end <= *start) {
1259 *start = delalloc_start;
1260 *end = delalloc_end;
1265 * start comes from the offset of locked_page. We have to lock
1266 * pages in order, so we can't process delalloc bytes before
1269 if (delalloc_start < *start) {
1270 delalloc_start = *start;
1274 * make sure to limit the number of pages we try to lock down
1277 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) {
1278 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1280 /* step two, lock all the pages after the page that has start */
1281 ret = lock_delalloc_pages(inode, locked_page,
1282 delalloc_start, delalloc_end);
1283 if (ret == -EAGAIN) {
1284 /* some of the pages are gone, lets avoid looping by
1285 * shortening the size of the delalloc range we're searching
1288 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1289 max_bytes = PAGE_CACHE_SIZE - offset;
1299 /* step three, lock the state bits for the whole range */
1300 lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1302 /* then test to make sure it is all still delalloc */
1303 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1304 EXTENT_DELALLOC, 1);
1306 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1307 __unlock_for_delalloc(inode, locked_page,
1308 delalloc_start, delalloc_end);
1312 *start = delalloc_start;
1313 *end = delalloc_end;
1318 int extent_clear_unlock_delalloc(struct inode *inode,
1319 struct extent_io_tree *tree,
1320 u64 start, u64 end, struct page *locked_page,
1323 int clear_delalloc, int clear_dirty,
1328 struct page *pages[16];
1329 unsigned long index = start >> PAGE_CACHE_SHIFT;
1330 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1331 unsigned long nr_pages = end_index - index + 1;
1336 clear_bits |= EXTENT_LOCKED;
1338 clear_bits |= EXTENT_DIRTY;
1341 clear_bits |= EXTENT_DELALLOC;
1343 clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1344 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback))
1347 while(nr_pages > 0) {
1348 ret = find_get_pages_contig(inode->i_mapping, index,
1349 min(nr_pages, ARRAY_SIZE(pages)), pages);
1350 for (i = 0; i < ret; i++) {
1351 if (pages[i] == locked_page) {
1352 page_cache_release(pages[i]);
1356 clear_page_dirty_for_io(pages[i]);
1358 set_page_writeback(pages[i]);
1360 end_page_writeback(pages[i]);
1362 unlock_page(pages[i]);
1363 page_cache_release(pages[i]);
1371 EXPORT_SYMBOL(extent_clear_unlock_delalloc);
1374 * count the number of bytes in the tree that have a given bit(s)
1375 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1376 * cached. The total number found is returned.
1378 u64 count_range_bits(struct extent_io_tree *tree,
1379 u64 *start, u64 search_end, u64 max_bytes,
1382 struct rb_node *node;
1383 struct extent_state *state;
1384 u64 cur_start = *start;
1385 u64 total_bytes = 0;
1388 if (search_end <= cur_start) {
1389 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1394 spin_lock_irq(&tree->lock);
1395 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1396 total_bytes = tree->dirty_bytes;
1400 * this search will find all the extents that end after
1403 node = tree_search(tree, cur_start);
1409 state = rb_entry(node, struct extent_state, rb_node);
1410 if (state->start > search_end)
1412 if (state->end >= cur_start && (state->state & bits)) {
1413 total_bytes += min(search_end, state->end) + 1 -
1414 max(cur_start, state->start);
1415 if (total_bytes >= max_bytes)
1418 *start = state->start;
1422 node = rb_next(node);
1427 spin_unlock_irq(&tree->lock);
1431 * helper function to lock both pages and extents in the tree.
1432 * pages must be locked first.
1434 int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1436 unsigned long index = start >> PAGE_CACHE_SHIFT;
1437 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1441 while (index <= end_index) {
1442 page = grab_cache_page(tree->mapping, index);
1448 err = PTR_ERR(page);
1453 lock_extent(tree, start, end, GFP_NOFS);
1458 * we failed above in getting the page at 'index', so we undo here
1459 * up to but not including the page at 'index'
1462 index = start >> PAGE_CACHE_SHIFT;
1463 while (index < end_index) {
1464 page = find_get_page(tree->mapping, index);
1466 page_cache_release(page);
1471 EXPORT_SYMBOL(lock_range);
1474 * helper function to unlock both pages and extents in the tree.
1476 int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1478 unsigned long index = start >> PAGE_CACHE_SHIFT;
1479 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1482 while (index <= end_index) {
1483 page = find_get_page(tree->mapping, index);
1485 page_cache_release(page);
1488 unlock_extent(tree, start, end, GFP_NOFS);
1491 EXPORT_SYMBOL(unlock_range);
1494 * set the private field for a given byte offset in the tree. If there isn't
1495 * an extent_state there already, this does nothing.
1497 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1499 struct rb_node *node;
1500 struct extent_state *state;
1503 spin_lock_irq(&tree->lock);
1505 * this search will find all the extents that end after
1508 node = tree_search(tree, start);
1513 state = rb_entry(node, struct extent_state, rb_node);
1514 if (state->start != start) {
1518 state->private = private;
1520 spin_unlock_irq(&tree->lock);
1524 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1526 struct rb_node *node;
1527 struct extent_state *state;
1530 spin_lock_irq(&tree->lock);
1532 * this search will find all the extents that end after
1535 node = tree_search(tree, start);
1540 state = rb_entry(node, struct extent_state, rb_node);
1541 if (state->start != start) {
1545 *private = state->private;
1547 spin_unlock_irq(&tree->lock);
1552 * searches a range in the state tree for a given mask.
1553 * If 'filled' == 1, this returns 1 only if every extent in the tree
1554 * has the bits set. Otherwise, 1 is returned if any bit in the
1555 * range is found set.
1557 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1558 int bits, int filled)
1560 struct extent_state *state = NULL;
1561 struct rb_node *node;
1563 unsigned long flags;
1565 spin_lock_irqsave(&tree->lock, flags);
1566 node = tree_search(tree, start);
1567 while (node && start <= end) {
1568 state = rb_entry(node, struct extent_state, rb_node);
1570 if (filled && state->start > start) {
1575 if (state->start > end)
1578 if (state->state & bits) {
1582 } else if (filled) {
1586 start = state->end + 1;
1589 node = rb_next(node);
1596 spin_unlock_irqrestore(&tree->lock, flags);
1599 EXPORT_SYMBOL(test_range_bit);
1602 * helper function to set a given page up to date if all the
1603 * extents in the tree for that page are up to date
1605 static int check_page_uptodate(struct extent_io_tree *tree,
1608 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1609 u64 end = start + PAGE_CACHE_SIZE - 1;
1610 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1611 SetPageUptodate(page);
1616 * helper function to unlock a page if all the extents in the tree
1617 * for that page are unlocked
1619 static int check_page_locked(struct extent_io_tree *tree,
1622 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1623 u64 end = start + PAGE_CACHE_SIZE - 1;
1624 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1630 * helper function to end page writeback if all the extents
1631 * in the tree for that page are done with writeback
1633 static int check_page_writeback(struct extent_io_tree *tree,
1636 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1637 u64 end = start + PAGE_CACHE_SIZE - 1;
1638 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1639 end_page_writeback(page);
1643 /* lots and lots of room for performance fixes in the end_bio funcs */
1646 * after a writepage IO is done, we need to:
1647 * clear the uptodate bits on error
1648 * clear the writeback bits in the extent tree for this IO
1649 * end_page_writeback if the page has no more pending IO
1651 * Scheduling is not allowed, so the extent state tree is expected
1652 * to have one and only one object corresponding to this IO.
1654 static void end_bio_extent_writepage(struct bio *bio, int err)
1656 int uptodate = err == 0;
1657 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1658 struct extent_io_tree *tree;
1665 struct page *page = bvec->bv_page;
1666 tree = &BTRFS_I(page->mapping->host)->io_tree;
1668 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1670 end = start + bvec->bv_len - 1;
1672 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1677 if (--bvec >= bio->bi_io_vec)
1678 prefetchw(&bvec->bv_page->flags);
1679 if (tree->ops && tree->ops->writepage_end_io_hook) {
1680 ret = tree->ops->writepage_end_io_hook(page, start,
1681 end, NULL, uptodate);
1686 if (!uptodate && tree->ops &&
1687 tree->ops->writepage_io_failed_hook) {
1688 ret = tree->ops->writepage_io_failed_hook(bio, page,
1691 uptodate = (err == 0);
1697 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1698 ClearPageUptodate(page);
1702 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1705 end_page_writeback(page);
1707 check_page_writeback(tree, page);
1708 } while (bvec >= bio->bi_io_vec);
1714 * after a readpage IO is done, we need to:
1715 * clear the uptodate bits on error
1716 * set the uptodate bits if things worked
1717 * set the page up to date if all extents in the tree are uptodate
1718 * clear the lock bit in the extent tree
1719 * unlock the page if there are no other extents locked for it
1721 * Scheduling is not allowed, so the extent state tree is expected
1722 * to have one and only one object corresponding to this IO.
1724 static void end_bio_extent_readpage(struct bio *bio, int err)
1726 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1727 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1728 struct extent_io_tree *tree;
1735 struct page *page = bvec->bv_page;
1736 tree = &BTRFS_I(page->mapping->host)->io_tree;
1738 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1740 end = start + bvec->bv_len - 1;
1742 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1747 if (--bvec >= bio->bi_io_vec)
1748 prefetchw(&bvec->bv_page->flags);
1750 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1751 ret = tree->ops->readpage_end_io_hook(page, start, end,
1756 if (!uptodate && tree->ops &&
1757 tree->ops->readpage_io_failed_hook) {
1758 ret = tree->ops->readpage_io_failed_hook(bio, page,
1762 test_bit(BIO_UPTODATE, &bio->bi_flags);
1768 set_extent_uptodate(tree, start, end,
1771 unlock_extent(tree, start, end, GFP_ATOMIC);
1775 SetPageUptodate(page);
1777 ClearPageUptodate(page);
1783 check_page_uptodate(tree, page);
1785 ClearPageUptodate(page);
1788 check_page_locked(tree, page);
1790 } while (bvec >= bio->bi_io_vec);
1796 * IO done from prepare_write is pretty simple, we just unlock
1797 * the structs in the extent tree when done, and set the uptodate bits
1800 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1802 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1803 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1804 struct extent_io_tree *tree;
1809 struct page *page = bvec->bv_page;
1810 tree = &BTRFS_I(page->mapping->host)->io_tree;
1812 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1814 end = start + bvec->bv_len - 1;
1816 if (--bvec >= bio->bi_io_vec)
1817 prefetchw(&bvec->bv_page->flags);
1820 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1822 ClearPageUptodate(page);
1826 unlock_extent(tree, start, end, GFP_ATOMIC);
1828 } while (bvec >= bio->bi_io_vec);
1834 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1839 bio = bio_alloc(gfp_flags, nr_vecs);
1841 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1842 while (!bio && (nr_vecs /= 2))
1843 bio = bio_alloc(gfp_flags, nr_vecs);
1848 bio->bi_bdev = bdev;
1849 bio->bi_sector = first_sector;
1854 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1855 unsigned long bio_flags)
1858 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1859 struct page *page = bvec->bv_page;
1860 struct extent_io_tree *tree = bio->bi_private;
1864 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1865 end = start + bvec->bv_len - 1;
1867 bio->bi_private = NULL;
1871 if (tree->ops && tree->ops->submit_bio_hook)
1872 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1873 mirror_num, bio_flags);
1875 submit_bio(rw, bio);
1876 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1882 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1883 struct page *page, sector_t sector,
1884 size_t size, unsigned long offset,
1885 struct block_device *bdev,
1886 struct bio **bio_ret,
1887 unsigned long max_pages,
1888 bio_end_io_t end_io_func,
1890 unsigned long prev_bio_flags,
1891 unsigned long bio_flags)
1897 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1898 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1899 size_t page_size = min(size, PAGE_CACHE_SIZE);
1901 if (bio_ret && *bio_ret) {
1904 contig = bio->bi_sector == sector;
1906 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1909 if (prev_bio_flags != bio_flags || !contig ||
1910 (tree->ops && tree->ops->merge_bio_hook &&
1911 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1913 bio_add_page(bio, page, page_size, offset) < page_size) {
1914 ret = submit_one_bio(rw, bio, mirror_num,
1921 if (this_compressed)
1924 nr = bio_get_nr_vecs(bdev);
1926 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1928 printk("failed to allocate bio nr %d\n", nr);
1931 bio_add_page(bio, page, page_size, offset);
1932 bio->bi_end_io = end_io_func;
1933 bio->bi_private = tree;
1938 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1944 void set_page_extent_mapped(struct page *page)
1946 if (!PagePrivate(page)) {
1947 SetPagePrivate(page);
1948 page_cache_get(page);
1949 set_page_private(page, EXTENT_PAGE_PRIVATE);
1952 EXPORT_SYMBOL(set_page_extent_mapped);
1954 void set_page_extent_head(struct page *page, unsigned long len)
1956 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1960 * basic readpage implementation. Locked extent state structs are inserted
1961 * into the tree that are removed when the IO is done (by the end_io
1964 static int __extent_read_full_page(struct extent_io_tree *tree,
1966 get_extent_t *get_extent,
1967 struct bio **bio, int mirror_num,
1968 unsigned long *bio_flags)
1970 struct inode *inode = page->mapping->host;
1971 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1972 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1976 u64 last_byte = i_size_read(inode);
1980 struct extent_map *em;
1981 struct block_device *bdev;
1984 size_t page_offset = 0;
1986 size_t disk_io_size;
1987 size_t blocksize = inode->i_sb->s_blocksize;
1988 unsigned long this_bio_flag = 0;
1990 set_page_extent_mapped(page);
1993 lock_extent(tree, start, end, GFP_NOFS);
1995 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1997 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2000 iosize = PAGE_CACHE_SIZE - zero_offset;
2001 userpage = kmap_atomic(page, KM_USER0);
2002 memset(userpage + zero_offset, 0, iosize);
2003 flush_dcache_page(page);
2004 kunmap_atomic(userpage, KM_USER0);
2007 while (cur <= end) {
2008 if (cur >= last_byte) {
2010 iosize = PAGE_CACHE_SIZE - page_offset;
2011 userpage = kmap_atomic(page, KM_USER0);
2012 memset(userpage + page_offset, 0, iosize);
2013 flush_dcache_page(page);
2014 kunmap_atomic(userpage, KM_USER0);
2015 set_extent_uptodate(tree, cur, cur + iosize - 1,
2017 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2020 em = get_extent(inode, page, page_offset, cur,
2022 if (IS_ERR(em) || !em) {
2024 unlock_extent(tree, cur, end, GFP_NOFS);
2027 extent_offset = cur - em->start;
2028 if (extent_map_end(em) <= cur) {
2029 printk("bad mapping em [%Lu %Lu] cur %Lu\n", em->start, extent_map_end(em), cur);
2031 BUG_ON(extent_map_end(em) <= cur);
2033 printk("2bad mapping end %Lu cur %Lu\n", end, cur);
2037 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2038 this_bio_flag = EXTENT_BIO_COMPRESSED;
2040 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2041 cur_end = min(extent_map_end(em) - 1, end);
2042 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2043 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2044 disk_io_size = em->block_len;
2045 sector = em->block_start >> 9;
2047 sector = (em->block_start + extent_offset) >> 9;
2048 disk_io_size = iosize;
2051 block_start = em->block_start;
2052 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2053 block_start = EXTENT_MAP_HOLE;
2054 free_extent_map(em);
2057 /* we've found a hole, just zero and go on */
2058 if (block_start == EXTENT_MAP_HOLE) {
2060 userpage = kmap_atomic(page, KM_USER0);
2061 memset(userpage + page_offset, 0, iosize);
2062 flush_dcache_page(page);
2063 kunmap_atomic(userpage, KM_USER0);
2065 set_extent_uptodate(tree, cur, cur + iosize - 1,
2067 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2069 page_offset += iosize;
2072 /* the get_extent function already copied into the page */
2073 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
2074 check_page_uptodate(tree, page);
2075 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2077 page_offset += iosize;
2080 /* we have an inline extent but it didn't get marked up
2081 * to date. Error out
2083 if (block_start == EXTENT_MAP_INLINE) {
2085 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2087 page_offset += iosize;
2092 if (tree->ops && tree->ops->readpage_io_hook) {
2093 ret = tree->ops->readpage_io_hook(page, cur,
2097 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2099 ret = submit_extent_page(READ, tree, page,
2100 sector, disk_io_size, page_offset,
2102 end_bio_extent_readpage, mirror_num,
2106 *bio_flags = this_bio_flag;
2111 page_offset += iosize;
2114 if (!PageError(page))
2115 SetPageUptodate(page);
2121 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2122 get_extent_t *get_extent)
2124 struct bio *bio = NULL;
2125 unsigned long bio_flags = 0;
2128 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2131 submit_one_bio(READ, bio, 0, bio_flags);
2134 EXPORT_SYMBOL(extent_read_full_page);
2137 * the writepage semantics are similar to regular writepage. extent
2138 * records are inserted to lock ranges in the tree, and as dirty areas
2139 * are found, they are marked writeback. Then the lock bits are removed
2140 * and the end_io handler clears the writeback ranges
2142 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2145 struct inode *inode = page->mapping->host;
2146 struct extent_page_data *epd = data;
2147 struct extent_io_tree *tree = epd->tree;
2148 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2150 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2154 u64 last_byte = i_size_read(inode);
2159 struct extent_map *em;
2160 struct block_device *bdev;
2163 size_t pg_offset = 0;
2165 loff_t i_size = i_size_read(inode);
2166 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2171 unsigned long nr_written = 0;
2173 WARN_ON(!PageLocked(page));
2174 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2175 if (page->index > end_index ||
2176 (page->index == end_index && !pg_offset)) {
2177 page->mapping->a_ops->invalidatepage(page, 0);
2182 if (page->index == end_index) {
2185 userpage = kmap_atomic(page, KM_USER0);
2186 memset(userpage + pg_offset, 0,
2187 PAGE_CACHE_SIZE - pg_offset);
2188 kunmap_atomic(userpage, KM_USER0);
2189 flush_dcache_page(page);
2193 set_page_extent_mapped(page);
2195 delalloc_start = start;
2198 if (!epd->extent_locked) {
2199 while(delalloc_end < page_end) {
2200 nr_delalloc = find_lock_delalloc_range(inode, tree,
2205 if (nr_delalloc == 0) {
2206 delalloc_start = delalloc_end + 1;
2209 tree->ops->fill_delalloc(inode, page, delalloc_start,
2210 delalloc_end, &page_started,
2212 delalloc_start = delalloc_end + 1;
2215 /* did the fill delalloc function already unlock and start
2220 goto update_nr_written;
2223 lock_extent(tree, start, page_end, GFP_NOFS);
2225 unlock_start = start;
2227 if (tree->ops && tree->ops->writepage_start_hook) {
2228 ret = tree->ops->writepage_start_hook(page, start,
2230 if (ret == -EAGAIN) {
2231 unlock_extent(tree, start, page_end, GFP_NOFS);
2232 redirty_page_for_writepage(wbc, page);
2235 goto update_nr_written;
2242 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
2243 printk("found delalloc bits after lock_extent\n");
2246 if (last_byte <= start) {
2247 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2248 unlock_extent(tree, start, page_end, GFP_NOFS);
2249 if (tree->ops && tree->ops->writepage_end_io_hook)
2250 tree->ops->writepage_end_io_hook(page, start,
2252 unlock_start = page_end + 1;
2256 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2257 blocksize = inode->i_sb->s_blocksize;
2259 while (cur <= end) {
2260 if (cur >= last_byte) {
2261 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2262 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2263 if (tree->ops && tree->ops->writepage_end_io_hook)
2264 tree->ops->writepage_end_io_hook(page, cur,
2266 unlock_start = page_end + 1;
2269 em = epd->get_extent(inode, page, pg_offset, cur,
2271 if (IS_ERR(em) || !em) {
2276 extent_offset = cur - em->start;
2277 BUG_ON(extent_map_end(em) <= cur);
2279 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2280 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2281 sector = (em->block_start + extent_offset) >> 9;
2283 block_start = em->block_start;
2284 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2285 free_extent_map(em);
2289 * compressed and inline extents are written through other
2292 if (compressed || block_start == EXTENT_MAP_HOLE ||
2293 block_start == EXTENT_MAP_INLINE) {
2294 clear_extent_dirty(tree, cur,
2295 cur + iosize - 1, GFP_NOFS);
2297 unlock_extent(tree, unlock_start, cur + iosize -1,
2301 * end_io notification does not happen here for
2302 * compressed extents
2304 if (!compressed && tree->ops &&
2305 tree->ops->writepage_end_io_hook)
2306 tree->ops->writepage_end_io_hook(page, cur,
2309 else if (compressed) {
2310 /* we don't want to end_page_writeback on
2311 * a compressed extent. this happens
2318 pg_offset += iosize;
2322 /* leave this out until we have a page_mkwrite call */
2323 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2326 pg_offset += iosize;
2330 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2331 if (tree->ops && tree->ops->writepage_io_hook) {
2332 ret = tree->ops->writepage_io_hook(page, cur,
2340 unsigned long max_nr = end_index + 1;
2342 set_range_writeback(tree, cur, cur + iosize - 1);
2343 if (!PageWriteback(page)) {
2344 printk("warning page %lu not writeback, "
2345 "cur %llu end %llu\n", page->index,
2346 (unsigned long long)cur,
2347 (unsigned long long)end);
2350 ret = submit_extent_page(WRITE, tree, page, sector,
2351 iosize, pg_offset, bdev,
2353 end_bio_extent_writepage,
2359 pg_offset += iosize;
2364 /* make sure the mapping tag for page dirty gets cleared */
2365 set_page_writeback(page);
2366 end_page_writeback(page);
2368 if (unlock_start <= page_end)
2369 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2373 wbc->nr_to_write -= nr_written;
2374 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2375 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2376 page->mapping->writeback_index = page->index + nr_written;
2381 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2382 * @mapping: address space structure to write
2383 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2384 * @writepage: function called for each page
2385 * @data: data passed to writepage function
2387 * If a page is already under I/O, write_cache_pages() skips it, even
2388 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2389 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2390 * and msync() need to guarantee that all the data which was dirty at the time
2391 * the call was made get new I/O started against them. If wbc->sync_mode is
2392 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2393 * existing IO to complete.
2395 int extent_write_cache_pages(struct extent_io_tree *tree,
2396 struct address_space *mapping,
2397 struct writeback_control *wbc,
2398 writepage_t writepage, void *data)
2400 struct backing_dev_info *bdi = mapping->backing_dev_info;
2403 struct pagevec pvec;
2406 pgoff_t end; /* Inclusive */
2408 int range_whole = 0;
2410 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2411 wbc->encountered_congestion = 1;
2415 pagevec_init(&pvec, 0);
2416 if (wbc->range_cyclic) {
2417 index = mapping->writeback_index; /* Start from prev offset */
2420 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2421 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2422 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2427 while (!done && (index <= end) &&
2428 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2429 PAGECACHE_TAG_DIRTY,
2430 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2434 for (i = 0; i < nr_pages; i++) {
2435 struct page *page = pvec.pages[i];
2438 * At this point we hold neither mapping->tree_lock nor
2439 * lock on the page itself: the page may be truncated or
2440 * invalidated (changing page->mapping to NULL), or even
2441 * swizzled back from swapper_space to tmpfs file
2444 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2445 tree->ops->write_cache_pages_lock_hook(page);
2449 if (unlikely(page->mapping != mapping)) {
2454 if (!wbc->range_cyclic && page->index > end) {
2460 if (wbc->sync_mode != WB_SYNC_NONE)
2461 wait_on_page_writeback(page);
2463 if (PageWriteback(page) ||
2464 !clear_page_dirty_for_io(page)) {
2469 ret = (*writepage)(page, wbc, data);
2471 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2475 if (ret || wbc->nr_to_write <= 0)
2477 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2478 wbc->encountered_congestion = 1;
2482 pagevec_release(&pvec);
2485 if (!scanned && !done) {
2487 * We hit the last page and there is more work to be done: wrap
2488 * back to the start of the file
2496 EXPORT_SYMBOL(extent_write_cache_pages);
2498 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2499 get_extent_t *get_extent,
2500 struct writeback_control *wbc)
2503 struct address_space *mapping = page->mapping;
2504 struct extent_page_data epd = {
2507 .get_extent = get_extent,
2510 struct writeback_control wbc_writepages = {
2512 .sync_mode = WB_SYNC_NONE,
2513 .older_than_this = NULL,
2515 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2516 .range_end = (loff_t)-1,
2520 ret = __extent_writepage(page, wbc, &epd);
2522 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2523 __extent_writepage, &epd);
2525 submit_one_bio(WRITE, epd.bio, 0, 0);
2529 EXPORT_SYMBOL(extent_write_full_page);
2531 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2532 u64 start, u64 end, get_extent_t *get_extent,
2536 struct address_space *mapping = inode->i_mapping;
2538 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2541 struct extent_page_data epd = {
2544 .get_extent = get_extent,
2547 struct writeback_control wbc_writepages = {
2548 .bdi = inode->i_mapping->backing_dev_info,
2550 .older_than_this = NULL,
2551 .nr_to_write = nr_pages * 2,
2552 .range_start = start,
2553 .range_end = end + 1,
2556 while(start <= end) {
2557 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2558 if (clear_page_dirty_for_io(page))
2559 ret = __extent_writepage(page, &wbc_writepages, &epd);
2561 if (tree->ops && tree->ops->writepage_end_io_hook)
2562 tree->ops->writepage_end_io_hook(page, start,
2563 start + PAGE_CACHE_SIZE - 1,
2567 page_cache_release(page);
2568 start += PAGE_CACHE_SIZE;
2572 submit_one_bio(WRITE, epd.bio, 0, 0);
2575 EXPORT_SYMBOL(extent_write_locked_range);
2578 int extent_writepages(struct extent_io_tree *tree,
2579 struct address_space *mapping,
2580 get_extent_t *get_extent,
2581 struct writeback_control *wbc)
2584 struct extent_page_data epd = {
2587 .get_extent = get_extent,
2591 ret = extent_write_cache_pages(tree, mapping, wbc,
2592 __extent_writepage, &epd);
2594 submit_one_bio(WRITE, epd.bio, 0, 0);
2598 EXPORT_SYMBOL(extent_writepages);
2600 int extent_readpages(struct extent_io_tree *tree,
2601 struct address_space *mapping,
2602 struct list_head *pages, unsigned nr_pages,
2603 get_extent_t get_extent)
2605 struct bio *bio = NULL;
2607 struct pagevec pvec;
2608 unsigned long bio_flags = 0;
2610 pagevec_init(&pvec, 0);
2611 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2612 struct page *page = list_entry(pages->prev, struct page, lru);
2614 prefetchw(&page->flags);
2615 list_del(&page->lru);
2617 * what we want to do here is call add_to_page_cache_lru,
2618 * but that isn't exported, so we reproduce it here
2620 if (!add_to_page_cache(page, mapping,
2621 page->index, GFP_KERNEL)) {
2623 /* open coding of lru_cache_add, also not exported */
2624 page_cache_get(page);
2625 if (!pagevec_add(&pvec, page))
2626 __pagevec_lru_add(&pvec);
2627 __extent_read_full_page(tree, page, get_extent,
2628 &bio, 0, &bio_flags);
2630 page_cache_release(page);
2632 if (pagevec_count(&pvec))
2633 __pagevec_lru_add(&pvec);
2634 BUG_ON(!list_empty(pages));
2636 submit_one_bio(READ, bio, 0, bio_flags);
2639 EXPORT_SYMBOL(extent_readpages);
2642 * basic invalidatepage code, this waits on any locked or writeback
2643 * ranges corresponding to the page, and then deletes any extent state
2644 * records from the tree
2646 int extent_invalidatepage(struct extent_io_tree *tree,
2647 struct page *page, unsigned long offset)
2649 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2650 u64 end = start + PAGE_CACHE_SIZE - 1;
2651 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2653 start += (offset + blocksize -1) & ~(blocksize - 1);
2657 lock_extent(tree, start, end, GFP_NOFS);
2658 wait_on_extent_writeback(tree, start, end);
2659 clear_extent_bit(tree, start, end,
2660 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2664 EXPORT_SYMBOL(extent_invalidatepage);
2667 * simple commit_write call, set_range_dirty is used to mark both
2668 * the pages and the extent records as dirty
2670 int extent_commit_write(struct extent_io_tree *tree,
2671 struct inode *inode, struct page *page,
2672 unsigned from, unsigned to)
2674 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2676 set_page_extent_mapped(page);
2677 set_page_dirty(page);
2679 if (pos > inode->i_size) {
2680 i_size_write(inode, pos);
2681 mark_inode_dirty(inode);
2685 EXPORT_SYMBOL(extent_commit_write);
2687 int extent_prepare_write(struct extent_io_tree *tree,
2688 struct inode *inode, struct page *page,
2689 unsigned from, unsigned to, get_extent_t *get_extent)
2691 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2692 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2694 u64 orig_block_start;
2697 struct extent_map *em;
2698 unsigned blocksize = 1 << inode->i_blkbits;
2699 size_t page_offset = 0;
2700 size_t block_off_start;
2701 size_t block_off_end;
2707 set_page_extent_mapped(page);
2709 block_start = (page_start + from) & ~((u64)blocksize - 1);
2710 block_end = (page_start + to - 1) | (blocksize - 1);
2711 orig_block_start = block_start;
2713 lock_extent(tree, page_start, page_end, GFP_NOFS);
2714 while(block_start <= block_end) {
2715 em = get_extent(inode, page, page_offset, block_start,
2716 block_end - block_start + 1, 1);
2717 if (IS_ERR(em) || !em) {
2720 cur_end = min(block_end, extent_map_end(em) - 1);
2721 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2722 block_off_end = block_off_start + blocksize;
2723 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2725 if (!PageUptodate(page) && isnew &&
2726 (block_off_end > to || block_off_start < from)) {
2729 kaddr = kmap_atomic(page, KM_USER0);
2730 if (block_off_end > to)
2731 memset(kaddr + to, 0, block_off_end - to);
2732 if (block_off_start < from)
2733 memset(kaddr + block_off_start, 0,
2734 from - block_off_start);
2735 flush_dcache_page(page);
2736 kunmap_atomic(kaddr, KM_USER0);
2738 if ((em->block_start != EXTENT_MAP_HOLE &&
2739 em->block_start != EXTENT_MAP_INLINE) &&
2740 !isnew && !PageUptodate(page) &&
2741 (block_off_end > to || block_off_start < from) &&
2742 !test_range_bit(tree, block_start, cur_end,
2743 EXTENT_UPTODATE, 1)) {
2745 u64 extent_offset = block_start - em->start;
2747 sector = (em->block_start + extent_offset) >> 9;
2748 iosize = (cur_end - block_start + blocksize) &
2749 ~((u64)blocksize - 1);
2751 * we've already got the extent locked, but we
2752 * need to split the state such that our end_bio
2753 * handler can clear the lock.
2755 set_extent_bit(tree, block_start,
2756 block_start + iosize - 1,
2757 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2758 ret = submit_extent_page(READ, tree, page,
2759 sector, iosize, page_offset, em->bdev,
2761 end_bio_extent_preparewrite, 0,
2764 block_start = block_start + iosize;
2766 set_extent_uptodate(tree, block_start, cur_end,
2768 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2769 block_start = cur_end + 1;
2771 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2772 free_extent_map(em);
2775 wait_extent_bit(tree, orig_block_start,
2776 block_end, EXTENT_LOCKED);
2778 check_page_uptodate(tree, page);
2780 /* FIXME, zero out newly allocated blocks on error */
2783 EXPORT_SYMBOL(extent_prepare_write);
2786 * a helper for releasepage, this tests for areas of the page that
2787 * are locked or under IO and drops the related state bits if it is safe
2790 int try_release_extent_state(struct extent_map_tree *map,
2791 struct extent_io_tree *tree, struct page *page,
2794 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2795 u64 end = start + PAGE_CACHE_SIZE - 1;
2798 if (test_range_bit(tree, start, end,
2799 EXTENT_IOBITS | EXTENT_ORDERED, 0))
2802 if ((mask & GFP_NOFS) == GFP_NOFS)
2804 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2809 EXPORT_SYMBOL(try_release_extent_state);
2812 * a helper for releasepage. As long as there are no locked extents
2813 * in the range corresponding to the page, both state records and extent
2814 * map records are removed
2816 int try_release_extent_mapping(struct extent_map_tree *map,
2817 struct extent_io_tree *tree, struct page *page,
2820 struct extent_map *em;
2821 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2822 u64 end = start + PAGE_CACHE_SIZE - 1;
2824 if ((mask & __GFP_WAIT) &&
2825 page->mapping->host->i_size > 16 * 1024 * 1024) {
2827 while (start <= end) {
2828 len = end - start + 1;
2829 spin_lock(&map->lock);
2830 em = lookup_extent_mapping(map, start, len);
2831 if (!em || IS_ERR(em)) {
2832 spin_unlock(&map->lock);
2835 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2836 em->start != start) {
2837 spin_unlock(&map->lock);
2838 free_extent_map(em);
2841 if (!test_range_bit(tree, em->start,
2842 extent_map_end(em) - 1,
2843 EXTENT_LOCKED | EXTENT_WRITEBACK |
2846 remove_extent_mapping(map, em);
2847 /* once for the rb tree */
2848 free_extent_map(em);
2850 start = extent_map_end(em);
2851 spin_unlock(&map->lock);
2854 free_extent_map(em);
2857 return try_release_extent_state(map, tree, page, mask);
2859 EXPORT_SYMBOL(try_release_extent_mapping);
2861 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2862 get_extent_t *get_extent)
2864 struct inode *inode = mapping->host;
2865 u64 start = iblock << inode->i_blkbits;
2866 sector_t sector = 0;
2867 size_t blksize = (1 << inode->i_blkbits);
2868 struct extent_map *em;
2870 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2872 em = get_extent(inode, NULL, 0, start, blksize, 0);
2873 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2875 if (!em || IS_ERR(em))
2878 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2881 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2883 free_extent_map(em);
2887 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2891 struct address_space *mapping;
2894 return eb->first_page;
2895 i += eb->start >> PAGE_CACHE_SHIFT;
2896 mapping = eb->first_page->mapping;
2901 * extent_buffer_page is only called after pinning the page
2902 * by increasing the reference count. So we know the page must
2903 * be in the radix tree.
2906 p = radix_tree_lookup(&mapping->page_tree, i);
2912 static inline unsigned long num_extent_pages(u64 start, u64 len)
2914 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2915 (start >> PAGE_CACHE_SHIFT);
2918 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2923 struct extent_buffer *eb = NULL;
2925 unsigned long flags;
2928 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2931 mutex_init(&eb->mutex);
2933 spin_lock_irqsave(&leak_lock, flags);
2934 list_add(&eb->leak_list, &buffers);
2935 spin_unlock_irqrestore(&leak_lock, flags);
2937 atomic_set(&eb->refs, 1);
2942 static void __free_extent_buffer(struct extent_buffer *eb)
2945 unsigned long flags;
2946 spin_lock_irqsave(&leak_lock, flags);
2947 list_del(&eb->leak_list);
2948 spin_unlock_irqrestore(&leak_lock, flags);
2950 kmem_cache_free(extent_buffer_cache, eb);
2953 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2954 u64 start, unsigned long len,
2958 unsigned long num_pages = num_extent_pages(start, len);
2960 unsigned long index = start >> PAGE_CACHE_SHIFT;
2961 struct extent_buffer *eb;
2962 struct extent_buffer *exists = NULL;
2964 struct address_space *mapping = tree->mapping;
2967 spin_lock(&tree->buffer_lock);
2968 eb = buffer_search(tree, start);
2970 atomic_inc(&eb->refs);
2971 spin_unlock(&tree->buffer_lock);
2972 mark_page_accessed(eb->first_page);
2975 spin_unlock(&tree->buffer_lock);
2977 eb = __alloc_extent_buffer(tree, start, len, mask);
2982 eb->first_page = page0;
2985 page_cache_get(page0);
2986 mark_page_accessed(page0);
2987 set_page_extent_mapped(page0);
2988 set_page_extent_head(page0, len);
2989 uptodate = PageUptodate(page0);
2993 for (; i < num_pages; i++, index++) {
2994 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2999 set_page_extent_mapped(p);
3000 mark_page_accessed(p);
3003 set_page_extent_head(p, len);
3005 set_page_private(p, EXTENT_PAGE_PRIVATE);
3007 if (!PageUptodate(p))
3012 eb->flags |= EXTENT_UPTODATE;
3013 eb->flags |= EXTENT_BUFFER_FILLED;
3015 spin_lock(&tree->buffer_lock);
3016 exists = buffer_tree_insert(tree, start, &eb->rb_node);
3018 /* add one reference for the caller */
3019 atomic_inc(&exists->refs);
3020 spin_unlock(&tree->buffer_lock);
3023 spin_unlock(&tree->buffer_lock);
3025 /* add one reference for the tree */
3026 atomic_inc(&eb->refs);
3030 if (!atomic_dec_and_test(&eb->refs))
3032 for (index = 1; index < i; index++)
3033 page_cache_release(extent_buffer_page(eb, index));
3034 page_cache_release(extent_buffer_page(eb, 0));
3035 __free_extent_buffer(eb);
3038 EXPORT_SYMBOL(alloc_extent_buffer);
3040 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3041 u64 start, unsigned long len,
3044 struct extent_buffer *eb;
3046 spin_lock(&tree->buffer_lock);
3047 eb = buffer_search(tree, start);
3049 atomic_inc(&eb->refs);
3050 spin_unlock(&tree->buffer_lock);
3053 mark_page_accessed(eb->first_page);
3057 EXPORT_SYMBOL(find_extent_buffer);
3059 void free_extent_buffer(struct extent_buffer *eb)
3064 if (!atomic_dec_and_test(&eb->refs))
3069 EXPORT_SYMBOL(free_extent_buffer);
3071 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3072 struct extent_buffer *eb)
3076 unsigned long num_pages;
3079 u64 start = eb->start;
3080 u64 end = start + eb->len - 1;
3082 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
3083 num_pages = num_extent_pages(eb->start, eb->len);
3085 for (i = 0; i < num_pages; i++) {
3086 page = extent_buffer_page(eb, i);
3089 set_page_extent_head(page, eb->len);
3091 set_page_private(page, EXTENT_PAGE_PRIVATE);
3094 * if we're on the last page or the first page and the
3095 * block isn't aligned on a page boundary, do extra checks
3096 * to make sure we don't clean page that is partially dirty
3098 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3099 ((i == num_pages - 1) &&
3100 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3101 start = (u64)page->index << PAGE_CACHE_SHIFT;
3102 end = start + PAGE_CACHE_SIZE - 1;
3103 if (test_range_bit(tree, start, end,
3109 clear_page_dirty_for_io(page);
3110 spin_lock_irq(&page->mapping->tree_lock);
3111 if (!PageDirty(page)) {
3112 radix_tree_tag_clear(&page->mapping->page_tree,
3114 PAGECACHE_TAG_DIRTY);
3116 spin_unlock_irq(&page->mapping->tree_lock);
3121 EXPORT_SYMBOL(clear_extent_buffer_dirty);
3123 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3124 struct extent_buffer *eb)
3126 return wait_on_extent_writeback(tree, eb->start,
3127 eb->start + eb->len - 1);
3129 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
3131 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3132 struct extent_buffer *eb)
3135 unsigned long num_pages;
3137 num_pages = num_extent_pages(eb->start, eb->len);
3138 for (i = 0; i < num_pages; i++) {
3139 struct page *page = extent_buffer_page(eb, i);
3140 /* writepage may need to do something special for the
3141 * first page, we have to make sure page->private is
3142 * properly set. releasepage may drop page->private
3143 * on us if the page isn't already dirty.
3147 set_page_extent_head(page, eb->len);
3148 } else if (PagePrivate(page) &&
3149 page->private != EXTENT_PAGE_PRIVATE) {
3150 set_page_extent_mapped(page);
3152 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3153 set_extent_dirty(tree, page_offset(page),
3154 page_offset(page) + PAGE_CACHE_SIZE -1,
3160 EXPORT_SYMBOL(set_extent_buffer_dirty);
3162 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3163 struct extent_buffer *eb)
3167 unsigned long num_pages;
3169 num_pages = num_extent_pages(eb->start, eb->len);
3170 eb->flags &= ~EXTENT_UPTODATE;
3172 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3174 for (i = 0; i < num_pages; i++) {
3175 page = extent_buffer_page(eb, i);
3177 ClearPageUptodate(page);
3182 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3183 struct extent_buffer *eb)
3187 unsigned long num_pages;
3189 num_pages = num_extent_pages(eb->start, eb->len);
3191 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3193 for (i = 0; i < num_pages; i++) {
3194 page = extent_buffer_page(eb, i);
3195 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3196 ((i == num_pages - 1) &&
3197 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3198 check_page_uptodate(tree, page);
3201 SetPageUptodate(page);
3205 EXPORT_SYMBOL(set_extent_buffer_uptodate);
3207 int extent_range_uptodate(struct extent_io_tree *tree,
3212 int pg_uptodate = 1;
3214 unsigned long index;
3216 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3219 while(start <= end) {
3220 index = start >> PAGE_CACHE_SHIFT;
3221 page = find_get_page(tree->mapping, index);
3222 uptodate = PageUptodate(page);
3223 page_cache_release(page);
3228 start += PAGE_CACHE_SIZE;
3233 int extent_buffer_uptodate(struct extent_io_tree *tree,
3234 struct extent_buffer *eb)
3237 unsigned long num_pages;
3240 int pg_uptodate = 1;
3242 if (eb->flags & EXTENT_UPTODATE)
3245 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3246 EXTENT_UPTODATE, 1);
3250 num_pages = num_extent_pages(eb->start, eb->len);
3251 for (i = 0; i < num_pages; i++) {
3252 page = extent_buffer_page(eb, i);
3253 if (!PageUptodate(page)) {
3260 EXPORT_SYMBOL(extent_buffer_uptodate);
3262 int read_extent_buffer_pages(struct extent_io_tree *tree,
3263 struct extent_buffer *eb,
3264 u64 start, int wait,
3265 get_extent_t *get_extent, int mirror_num)
3268 unsigned long start_i;
3272 int locked_pages = 0;
3273 int all_uptodate = 1;
3274 int inc_all_pages = 0;
3275 unsigned long num_pages;
3276 struct bio *bio = NULL;
3277 unsigned long bio_flags = 0;
3279 if (eb->flags & EXTENT_UPTODATE)
3282 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3283 EXTENT_UPTODATE, 1)) {
3288 WARN_ON(start < eb->start);
3289 start_i = (start >> PAGE_CACHE_SHIFT) -
3290 (eb->start >> PAGE_CACHE_SHIFT);
3295 num_pages = num_extent_pages(eb->start, eb->len);
3296 for (i = start_i; i < num_pages; i++) {
3297 page = extent_buffer_page(eb, i);
3299 if (!trylock_page(page))
3305 if (!PageUptodate(page)) {
3311 eb->flags |= EXTENT_UPTODATE;
3313 printk("all up to date but ret is %d\n", ret);
3318 for (i = start_i; i < num_pages; i++) {
3319 page = extent_buffer_page(eb, i);
3321 page_cache_get(page);
3322 if (!PageUptodate(page)) {
3325 ClearPageError(page);
3326 err = __extent_read_full_page(tree, page,
3328 mirror_num, &bio_flags);
3331 printk("err %d from __extent_read_full_page\n", ret);
3339 submit_one_bio(READ, bio, mirror_num, bio_flags);
3343 printk("ret %d wait %d returning\n", ret, wait);
3346 for (i = start_i; i < num_pages; i++) {
3347 page = extent_buffer_page(eb, i);
3348 wait_on_page_locked(page);
3349 if (!PageUptodate(page)) {
3350 printk("page not uptodate after wait_on_page_locked\n");
3355 eb->flags |= EXTENT_UPTODATE;
3360 while(locked_pages > 0) {
3361 page = extent_buffer_page(eb, i);
3368 EXPORT_SYMBOL(read_extent_buffer_pages);
3370 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3371 unsigned long start,
3378 char *dst = (char *)dstv;
3379 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3380 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3382 WARN_ON(start > eb->len);
3383 WARN_ON(start + len > eb->start + eb->len);
3385 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3388 page = extent_buffer_page(eb, i);
3390 cur = min(len, (PAGE_CACHE_SIZE - offset));
3391 kaddr = kmap_atomic(page, KM_USER1);
3392 memcpy(dst, kaddr + offset, cur);
3393 kunmap_atomic(kaddr, KM_USER1);
3401 EXPORT_SYMBOL(read_extent_buffer);
3403 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3404 unsigned long min_len, char **token, char **map,
3405 unsigned long *map_start,
3406 unsigned long *map_len, int km)
3408 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3411 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3412 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3413 unsigned long end_i = (start_offset + start + min_len - 1) >>
3420 offset = start_offset;
3424 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3426 if (start + min_len > eb->len) {
3427 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
3431 p = extent_buffer_page(eb, i);
3432 kaddr = kmap_atomic(p, km);
3434 *map = kaddr + offset;
3435 *map_len = PAGE_CACHE_SIZE - offset;
3438 EXPORT_SYMBOL(map_private_extent_buffer);
3440 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3441 unsigned long min_len,
3442 char **token, char **map,
3443 unsigned long *map_start,
3444 unsigned long *map_len, int km)
3448 if (eb->map_token) {
3449 unmap_extent_buffer(eb, eb->map_token, km);
3450 eb->map_token = NULL;
3453 err = map_private_extent_buffer(eb, start, min_len, token, map,
3454 map_start, map_len, km);
3456 eb->map_token = *token;
3458 eb->map_start = *map_start;
3459 eb->map_len = *map_len;
3463 EXPORT_SYMBOL(map_extent_buffer);
3465 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3467 kunmap_atomic(token, km);
3469 EXPORT_SYMBOL(unmap_extent_buffer);
3471 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3472 unsigned long start,
3479 char *ptr = (char *)ptrv;
3480 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3481 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3484 WARN_ON(start > eb->len);
3485 WARN_ON(start + len > eb->start + eb->len);
3487 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3490 page = extent_buffer_page(eb, i);
3492 cur = min(len, (PAGE_CACHE_SIZE - offset));
3494 kaddr = kmap_atomic(page, KM_USER0);
3495 ret = memcmp(ptr, kaddr + offset, cur);
3496 kunmap_atomic(kaddr, KM_USER0);
3507 EXPORT_SYMBOL(memcmp_extent_buffer);
3509 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3510 unsigned long start, unsigned long len)
3516 char *src = (char *)srcv;
3517 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3518 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3520 WARN_ON(start > eb->len);
3521 WARN_ON(start + len > eb->start + eb->len);
3523 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3526 page = extent_buffer_page(eb, i);
3527 WARN_ON(!PageUptodate(page));
3529 cur = min(len, PAGE_CACHE_SIZE - offset);
3530 kaddr = kmap_atomic(page, KM_USER1);
3531 memcpy(kaddr + offset, src, cur);
3532 kunmap_atomic(kaddr, KM_USER1);
3540 EXPORT_SYMBOL(write_extent_buffer);
3542 void memset_extent_buffer(struct extent_buffer *eb, char c,
3543 unsigned long start, unsigned long len)
3549 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3550 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3552 WARN_ON(start > eb->len);
3553 WARN_ON(start + len > eb->start + eb->len);
3555 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3558 page = extent_buffer_page(eb, i);
3559 WARN_ON(!PageUptodate(page));
3561 cur = min(len, PAGE_CACHE_SIZE - offset);
3562 kaddr = kmap_atomic(page, KM_USER0);
3563 memset(kaddr + offset, c, cur);
3564 kunmap_atomic(kaddr, KM_USER0);
3571 EXPORT_SYMBOL(memset_extent_buffer);
3573 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3574 unsigned long dst_offset, unsigned long src_offset,
3577 u64 dst_len = dst->len;
3582 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3583 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3585 WARN_ON(src->len != dst_len);
3587 offset = (start_offset + dst_offset) &
3588 ((unsigned long)PAGE_CACHE_SIZE - 1);
3591 page = extent_buffer_page(dst, i);
3592 WARN_ON(!PageUptodate(page));
3594 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3596 kaddr = kmap_atomic(page, KM_USER0);
3597 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3598 kunmap_atomic(kaddr, KM_USER0);
3606 EXPORT_SYMBOL(copy_extent_buffer);
3608 static void move_pages(struct page *dst_page, struct page *src_page,
3609 unsigned long dst_off, unsigned long src_off,
3612 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3613 if (dst_page == src_page) {
3614 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3616 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3617 char *p = dst_kaddr + dst_off + len;
3618 char *s = src_kaddr + src_off + len;
3623 kunmap_atomic(src_kaddr, KM_USER1);
3625 kunmap_atomic(dst_kaddr, KM_USER0);
3628 static void copy_pages(struct page *dst_page, struct page *src_page,
3629 unsigned long dst_off, unsigned long src_off,
3632 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3635 if (dst_page != src_page)
3636 src_kaddr = kmap_atomic(src_page, KM_USER1);
3638 src_kaddr = dst_kaddr;
3640 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3641 kunmap_atomic(dst_kaddr, KM_USER0);
3642 if (dst_page != src_page)
3643 kunmap_atomic(src_kaddr, KM_USER1);
3646 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3647 unsigned long src_offset, unsigned long len)
3650 size_t dst_off_in_page;
3651 size_t src_off_in_page;
3652 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3653 unsigned long dst_i;
3654 unsigned long src_i;
3656 if (src_offset + len > dst->len) {
3657 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3658 src_offset, len, dst->len);
3661 if (dst_offset + len > dst->len) {
3662 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3663 dst_offset, len, dst->len);
3668 dst_off_in_page = (start_offset + dst_offset) &
3669 ((unsigned long)PAGE_CACHE_SIZE - 1);
3670 src_off_in_page = (start_offset + src_offset) &
3671 ((unsigned long)PAGE_CACHE_SIZE - 1);
3673 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3674 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3676 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3678 cur = min_t(unsigned long, cur,
3679 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3681 copy_pages(extent_buffer_page(dst, dst_i),
3682 extent_buffer_page(dst, src_i),
3683 dst_off_in_page, src_off_in_page, cur);
3690 EXPORT_SYMBOL(memcpy_extent_buffer);
3692 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3693 unsigned long src_offset, unsigned long len)
3696 size_t dst_off_in_page;
3697 size_t src_off_in_page;
3698 unsigned long dst_end = dst_offset + len - 1;
3699 unsigned long src_end = src_offset + len - 1;
3700 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3701 unsigned long dst_i;
3702 unsigned long src_i;
3704 if (src_offset + len > dst->len) {
3705 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3706 src_offset, len, dst->len);
3709 if (dst_offset + len > dst->len) {
3710 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3711 dst_offset, len, dst->len);
3714 if (dst_offset < src_offset) {
3715 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3719 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3720 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3722 dst_off_in_page = (start_offset + dst_end) &
3723 ((unsigned long)PAGE_CACHE_SIZE - 1);
3724 src_off_in_page = (start_offset + src_end) &
3725 ((unsigned long)PAGE_CACHE_SIZE - 1);
3727 cur = min_t(unsigned long, len, src_off_in_page + 1);
3728 cur = min(cur, dst_off_in_page + 1);
3729 move_pages(extent_buffer_page(dst, dst_i),
3730 extent_buffer_page(dst, src_i),
3731 dst_off_in_page - cur + 1,
3732 src_off_in_page - cur + 1, cur);
3739 EXPORT_SYMBOL(memmove_extent_buffer);
3741 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3743 u64 start = page_offset(page);
3744 struct extent_buffer *eb;
3747 unsigned long num_pages;
3749 spin_lock(&tree->buffer_lock);
3750 eb = buffer_search(tree, start);
3754 if (atomic_read(&eb->refs) > 1) {
3758 /* at this point we can safely release the extent buffer */
3759 num_pages = num_extent_pages(eb->start, eb->len);
3760 for (i = 0; i < num_pages; i++)
3761 page_cache_release(extent_buffer_page(eb, i));
3762 rb_erase(&eb->rb_node, &tree->buffer);
3763 __free_extent_buffer(eb);
3765 spin_unlock(&tree->buffer_lock);
3768 EXPORT_SYMBOL(try_release_extent_buffer);