2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
65 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
68 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
69 static int fgb(u32 bitmap);
70 static int ata_choose_xfer_mode(const struct ata_port *ap,
72 unsigned int *xfer_shift_out);
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
77 int atapi_enabled = 0;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81 MODULE_AUTHOR("Jeff Garzik");
82 MODULE_DESCRIPTION("Library module for ATA devices");
83 MODULE_LICENSE("GPL");
84 MODULE_VERSION(DRV_VERSION);
87 * ata_tf_load_pio - send taskfile registers to host controller
88 * @ap: Port to which output is sent
89 * @tf: ATA taskfile register set
91 * Outputs ATA taskfile to standard ATA host controller.
94 * Inherited from caller.
97 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
99 struct ata_ioports *ioaddr = &ap->ioaddr;
100 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
102 if (tf->ctl != ap->last_ctl) {
103 outb(tf->ctl, ioaddr->ctl_addr);
104 ap->last_ctl = tf->ctl;
108 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
109 outb(tf->hob_feature, ioaddr->feature_addr);
110 outb(tf->hob_nsect, ioaddr->nsect_addr);
111 outb(tf->hob_lbal, ioaddr->lbal_addr);
112 outb(tf->hob_lbam, ioaddr->lbam_addr);
113 outb(tf->hob_lbah, ioaddr->lbah_addr);
114 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
123 outb(tf->feature, ioaddr->feature_addr);
124 outb(tf->nsect, ioaddr->nsect_addr);
125 outb(tf->lbal, ioaddr->lbal_addr);
126 outb(tf->lbam, ioaddr->lbam_addr);
127 outb(tf->lbah, ioaddr->lbah_addr);
128 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
136 if (tf->flags & ATA_TFLAG_DEVICE) {
137 outb(tf->device, ioaddr->device_addr);
138 VPRINTK("device 0x%X\n", tf->device);
145 * ata_tf_load_mmio - send taskfile registers to host controller
146 * @ap: Port to which output is sent
147 * @tf: ATA taskfile register set
149 * Outputs ATA taskfile to standard ATA host controller using MMIO.
152 * Inherited from caller.
155 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
157 struct ata_ioports *ioaddr = &ap->ioaddr;
158 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
160 if (tf->ctl != ap->last_ctl) {
161 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
162 ap->last_ctl = tf->ctl;
166 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
167 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
168 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
169 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
170 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
171 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
172 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
181 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
182 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
183 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
184 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
185 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
186 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
194 if (tf->flags & ATA_TFLAG_DEVICE) {
195 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
196 VPRINTK("device 0x%X\n", tf->device);
204 * ata_tf_load - send taskfile registers to host controller
205 * @ap: Port to which output is sent
206 * @tf: ATA taskfile register set
208 * Outputs ATA taskfile to standard ATA host controller using MMIO
209 * or PIO as indicated by the ATA_FLAG_MMIO flag.
210 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
211 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
212 * hob_lbal, hob_lbam, and hob_lbah.
214 * This function waits for idle (!BUSY and !DRQ) after writing
215 * registers. If the control register has a new value, this
216 * function also waits for idle after writing control and before
217 * writing the remaining registers.
219 * May be used as the tf_load() entry in ata_port_operations.
222 * Inherited from caller.
224 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
226 if (ap->flags & ATA_FLAG_MMIO)
227 ata_tf_load_mmio(ap, tf);
229 ata_tf_load_pio(ap, tf);
233 * ata_exec_command_pio - issue ATA command to host controller
234 * @ap: port to which command is being issued
235 * @tf: ATA taskfile register set
237 * Issues PIO write to ATA command register, with proper
238 * synchronization with interrupt handler / other threads.
241 * spin_lock_irqsave(host_set lock)
244 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
246 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
248 outb(tf->command, ap->ioaddr.command_addr);
254 * ata_exec_command_mmio - issue ATA command to host controller
255 * @ap: port to which command is being issued
256 * @tf: ATA taskfile register set
258 * Issues MMIO write to ATA command register, with proper
259 * synchronization with interrupt handler / other threads.
262 * spin_lock_irqsave(host_set lock)
265 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
267 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
269 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
275 * ata_exec_command - issue ATA command to host controller
276 * @ap: port to which command is being issued
277 * @tf: ATA taskfile register set
279 * Issues PIO/MMIO write to ATA command register, with proper
280 * synchronization with interrupt handler / other threads.
283 * spin_lock_irqsave(host_set lock)
285 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
287 if (ap->flags & ATA_FLAG_MMIO)
288 ata_exec_command_mmio(ap, tf);
290 ata_exec_command_pio(ap, tf);
294 * ata_tf_to_host - issue ATA taskfile to host controller
295 * @ap: port to which command is being issued
296 * @tf: ATA taskfile register set
298 * Issues ATA taskfile register set to ATA host controller,
299 * with proper synchronization with interrupt handler and
303 * spin_lock_irqsave(host_set lock)
306 static inline void ata_tf_to_host(struct ata_port *ap,
307 const struct ata_taskfile *tf)
309 ap->ops->tf_load(ap, tf);
310 ap->ops->exec_command(ap, tf);
314 * ata_tf_read_pio - input device's ATA taskfile shadow registers
315 * @ap: Port from which input is read
316 * @tf: ATA taskfile register set for storing input
318 * Reads ATA taskfile registers for currently-selected device
322 * Inherited from caller.
325 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
327 struct ata_ioports *ioaddr = &ap->ioaddr;
329 tf->command = ata_check_status(ap);
330 tf->feature = inb(ioaddr->error_addr);
331 tf->nsect = inb(ioaddr->nsect_addr);
332 tf->lbal = inb(ioaddr->lbal_addr);
333 tf->lbam = inb(ioaddr->lbam_addr);
334 tf->lbah = inb(ioaddr->lbah_addr);
335 tf->device = inb(ioaddr->device_addr);
337 if (tf->flags & ATA_TFLAG_LBA48) {
338 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
339 tf->hob_feature = inb(ioaddr->error_addr);
340 tf->hob_nsect = inb(ioaddr->nsect_addr);
341 tf->hob_lbal = inb(ioaddr->lbal_addr);
342 tf->hob_lbam = inb(ioaddr->lbam_addr);
343 tf->hob_lbah = inb(ioaddr->lbah_addr);
348 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
349 * @ap: Port from which input is read
350 * @tf: ATA taskfile register set for storing input
352 * Reads ATA taskfile registers for currently-selected device
356 * Inherited from caller.
359 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
361 struct ata_ioports *ioaddr = &ap->ioaddr;
363 tf->command = ata_check_status(ap);
364 tf->feature = readb((void __iomem *)ioaddr->error_addr);
365 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
366 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
367 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
368 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
369 tf->device = readb((void __iomem *)ioaddr->device_addr);
371 if (tf->flags & ATA_TFLAG_LBA48) {
372 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
373 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
374 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
375 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
376 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
377 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
383 * ata_tf_read - input device's ATA taskfile shadow registers
384 * @ap: Port from which input is read
385 * @tf: ATA taskfile register set for storing input
387 * Reads ATA taskfile registers for currently-selected device
390 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
391 * is set, also reads the hob registers.
393 * May be used as the tf_read() entry in ata_port_operations.
396 * Inherited from caller.
398 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
400 if (ap->flags & ATA_FLAG_MMIO)
401 ata_tf_read_mmio(ap, tf);
403 ata_tf_read_pio(ap, tf);
407 * ata_check_status_pio - Read device status reg & clear interrupt
408 * @ap: port where the device is
410 * Reads ATA taskfile status register for currently-selected device
411 * and return its value. This also clears pending interrupts
415 * Inherited from caller.
417 static u8 ata_check_status_pio(struct ata_port *ap)
419 return inb(ap->ioaddr.status_addr);
423 * ata_check_status_mmio - Read device status reg & clear interrupt
424 * @ap: port where the device is
426 * Reads ATA taskfile status register for currently-selected device
427 * via MMIO and return its value. This also clears pending interrupts
431 * Inherited from caller.
433 static u8 ata_check_status_mmio(struct ata_port *ap)
435 return readb((void __iomem *) ap->ioaddr.status_addr);
440 * ata_check_status - Read device status reg & clear interrupt
441 * @ap: port where the device is
443 * Reads ATA taskfile status register for currently-selected device
444 * and return its value. This also clears pending interrupts
447 * May be used as the check_status() entry in ata_port_operations.
450 * Inherited from caller.
452 u8 ata_check_status(struct ata_port *ap)
454 if (ap->flags & ATA_FLAG_MMIO)
455 return ata_check_status_mmio(ap);
456 return ata_check_status_pio(ap);
461 * ata_altstatus - Read device alternate status reg
462 * @ap: port where the device is
464 * Reads ATA taskfile alternate status register for
465 * currently-selected device and return its value.
467 * Note: may NOT be used as the check_altstatus() entry in
468 * ata_port_operations.
471 * Inherited from caller.
473 u8 ata_altstatus(struct ata_port *ap)
475 if (ap->ops->check_altstatus)
476 return ap->ops->check_altstatus(ap);
478 if (ap->flags & ATA_FLAG_MMIO)
479 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
480 return inb(ap->ioaddr.altstatus_addr);
485 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
486 * @tf: Taskfile to convert
487 * @fis: Buffer into which data will output
488 * @pmp: Port multiplier port
490 * Converts a standard ATA taskfile to a Serial ATA
491 * FIS structure (Register - Host to Device).
494 * Inherited from caller.
497 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
499 fis[0] = 0x27; /* Register - Host to Device FIS */
500 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
501 bit 7 indicates Command FIS */
502 fis[2] = tf->command;
503 fis[3] = tf->feature;
510 fis[8] = tf->hob_lbal;
511 fis[9] = tf->hob_lbam;
512 fis[10] = tf->hob_lbah;
513 fis[11] = tf->hob_feature;
516 fis[13] = tf->hob_nsect;
527 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
528 * @fis: Buffer from which data will be input
529 * @tf: Taskfile to output
531 * Converts a serial ATA FIS structure to a standard ATA taskfile.
534 * Inherited from caller.
537 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
539 tf->command = fis[2]; /* status */
540 tf->feature = fis[3]; /* error */
547 tf->hob_lbal = fis[8];
548 tf->hob_lbam = fis[9];
549 tf->hob_lbah = fis[10];
552 tf->hob_nsect = fis[13];
555 static const u8 ata_rw_cmds[] = {
559 ATA_CMD_READ_MULTI_EXT,
560 ATA_CMD_WRITE_MULTI_EXT,
564 ATA_CMD_WRITE_MULTI_FUA_EXT,
568 ATA_CMD_PIO_READ_EXT,
569 ATA_CMD_PIO_WRITE_EXT,
582 ATA_CMD_WRITE_FUA_EXT
586 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
587 * @qc: command to examine and configure
589 * Examine the device configuration and tf->flags to calculate
590 * the proper read/write commands and protocol to use.
595 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
597 struct ata_taskfile *tf = &qc->tf;
598 struct ata_device *dev = qc->dev;
601 int index, fua, lba48, write;
603 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
604 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
605 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
607 if (dev->flags & ATA_DFLAG_PIO) {
608 tf->protocol = ATA_PROT_PIO;
609 index = dev->multi_count ? 0 : 8;
610 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
611 /* Unable to use DMA due to host limitation */
612 tf->protocol = ATA_PROT_PIO;
613 index = dev->multi_count ? 0 : 4;
615 tf->protocol = ATA_PROT_DMA;
619 cmd = ata_rw_cmds[index + fua + lba48 + write];
627 static const char * const xfer_mode_str[] = {
647 * ata_udma_string - convert UDMA bit offset to string
648 * @mask: mask of bits supported; only highest bit counts.
650 * Determine string which represents the highest speed
651 * (highest bit in @udma_mask).
657 * Constant C string representing highest speed listed in
658 * @udma_mask, or the constant C string "<n/a>".
661 static const char *ata_mode_string(unsigned int mask)
665 for (i = 7; i >= 0; i--)
668 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
671 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
678 return xfer_mode_str[i];
682 * ata_pio_devchk - PATA device presence detection
683 * @ap: ATA channel to examine
684 * @device: Device to examine (starting at zero)
686 * This technique was originally described in
687 * Hale Landis's ATADRVR (www.ata-atapi.com), and
688 * later found its way into the ATA/ATAPI spec.
690 * Write a pattern to the ATA shadow registers,
691 * and if a device is present, it will respond by
692 * correctly storing and echoing back the
693 * ATA shadow register contents.
699 static unsigned int ata_pio_devchk(struct ata_port *ap,
702 struct ata_ioports *ioaddr = &ap->ioaddr;
705 ap->ops->dev_select(ap, device);
707 outb(0x55, ioaddr->nsect_addr);
708 outb(0xaa, ioaddr->lbal_addr);
710 outb(0xaa, ioaddr->nsect_addr);
711 outb(0x55, ioaddr->lbal_addr);
713 outb(0x55, ioaddr->nsect_addr);
714 outb(0xaa, ioaddr->lbal_addr);
716 nsect = inb(ioaddr->nsect_addr);
717 lbal = inb(ioaddr->lbal_addr);
719 if ((nsect == 0x55) && (lbal == 0xaa))
720 return 1; /* we found a device */
722 return 0; /* nothing found */
726 * ata_mmio_devchk - PATA device presence detection
727 * @ap: ATA channel to examine
728 * @device: Device to examine (starting at zero)
730 * This technique was originally described in
731 * Hale Landis's ATADRVR (www.ata-atapi.com), and
732 * later found its way into the ATA/ATAPI spec.
734 * Write a pattern to the ATA shadow registers,
735 * and if a device is present, it will respond by
736 * correctly storing and echoing back the
737 * ATA shadow register contents.
743 static unsigned int ata_mmio_devchk(struct ata_port *ap,
746 struct ata_ioports *ioaddr = &ap->ioaddr;
749 ap->ops->dev_select(ap, device);
751 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
752 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
754 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
755 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
757 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
758 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
760 nsect = readb((void __iomem *) ioaddr->nsect_addr);
761 lbal = readb((void __iomem *) ioaddr->lbal_addr);
763 if ((nsect == 0x55) && (lbal == 0xaa))
764 return 1; /* we found a device */
766 return 0; /* nothing found */
770 * ata_devchk - PATA device presence detection
771 * @ap: ATA channel to examine
772 * @device: Device to examine (starting at zero)
774 * Dispatch ATA device presence detection, depending
775 * on whether we are using PIO or MMIO to talk to the
776 * ATA shadow registers.
782 static unsigned int ata_devchk(struct ata_port *ap,
785 if (ap->flags & ATA_FLAG_MMIO)
786 return ata_mmio_devchk(ap, device);
787 return ata_pio_devchk(ap, device);
791 * ata_dev_classify - determine device type based on ATA-spec signature
792 * @tf: ATA taskfile register set for device to be identified
794 * Determine from taskfile register contents whether a device is
795 * ATA or ATAPI, as per "Signature and persistence" section
796 * of ATA/PI spec (volume 1, sect 5.14).
802 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
803 * the event of failure.
806 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
808 /* Apple's open source Darwin code hints that some devices only
809 * put a proper signature into the LBA mid/high registers,
810 * So, we only check those. It's sufficient for uniqueness.
813 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
814 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
815 DPRINTK("found ATA device by sig\n");
819 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
820 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
821 DPRINTK("found ATAPI device by sig\n");
822 return ATA_DEV_ATAPI;
825 DPRINTK("unknown device\n");
826 return ATA_DEV_UNKNOWN;
830 * ata_dev_try_classify - Parse returned ATA device signature
831 * @ap: ATA channel to examine
832 * @device: Device to examine (starting at zero)
833 * @r_err: Value of error register on completion
835 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
836 * an ATA/ATAPI-defined set of values is placed in the ATA
837 * shadow registers, indicating the results of device detection
840 * Select the ATA device, and read the values from the ATA shadow
841 * registers. Then parse according to the Error register value,
842 * and the spec-defined values examined by ata_dev_classify().
848 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
852 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
854 struct ata_taskfile tf;
858 ap->ops->dev_select(ap, device);
860 memset(&tf, 0, sizeof(tf));
862 ap->ops->tf_read(ap, &tf);
867 /* see if device passed diags */
870 else if ((device == 0) && (err == 0x81))
875 /* determine if device is ATA or ATAPI */
876 class = ata_dev_classify(&tf);
878 if (class == ATA_DEV_UNKNOWN)
880 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
886 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
887 * @id: IDENTIFY DEVICE results we will examine
888 * @s: string into which data is output
889 * @ofs: offset into identify device page
890 * @len: length of string to return. must be an even number.
892 * The strings in the IDENTIFY DEVICE page are broken up into
893 * 16-bit chunks. Run through the string, and output each
894 * 8-bit chunk linearly, regardless of platform.
900 void ata_dev_id_string(const u16 *id, unsigned char *s,
901 unsigned int ofs, unsigned int len)
921 * ata_noop_dev_select - Select device 0/1 on ATA bus
922 * @ap: ATA channel to manipulate
923 * @device: ATA device (numbered from zero) to select
925 * This function performs no actual function.
927 * May be used as the dev_select() entry in ata_port_operations.
932 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
938 * ata_std_dev_select - Select device 0/1 on ATA bus
939 * @ap: ATA channel to manipulate
940 * @device: ATA device (numbered from zero) to select
942 * Use the method defined in the ATA specification to
943 * make either device 0, or device 1, active on the
944 * ATA channel. Works with both PIO and MMIO.
946 * May be used as the dev_select() entry in ata_port_operations.
952 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
957 tmp = ATA_DEVICE_OBS;
959 tmp = ATA_DEVICE_OBS | ATA_DEV1;
961 if (ap->flags & ATA_FLAG_MMIO) {
962 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
964 outb(tmp, ap->ioaddr.device_addr);
966 ata_pause(ap); /* needed; also flushes, for mmio */
970 * ata_dev_select - Select device 0/1 on ATA bus
971 * @ap: ATA channel to manipulate
972 * @device: ATA device (numbered from zero) to select
973 * @wait: non-zero to wait for Status register BSY bit to clear
974 * @can_sleep: non-zero if context allows sleeping
976 * Use the method defined in the ATA specification to
977 * make either device 0, or device 1, active on the
980 * This is a high-level version of ata_std_dev_select(),
981 * which additionally provides the services of inserting
982 * the proper pauses and status polling, where needed.
988 void ata_dev_select(struct ata_port *ap, unsigned int device,
989 unsigned int wait, unsigned int can_sleep)
991 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
992 ap->id, device, wait);
997 ap->ops->dev_select(ap, device);
1000 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1007 * ata_dump_id - IDENTIFY DEVICE info debugging output
1008 * @dev: Device whose IDENTIFY DEVICE page we will dump
1010 * Dump selected 16-bit words from a detected device's
1011 * IDENTIFY PAGE page.
1017 static inline void ata_dump_id(const struct ata_device *dev)
1019 DPRINTK("49==0x%04x "
1029 DPRINTK("80==0x%04x "
1039 DPRINTK("88==0x%04x "
1046 * Compute the PIO modes available for this device. This is not as
1047 * trivial as it seems if we must consider early devices correctly.
1049 * FIXME: pre IDE drive timing (do we care ?).
1052 static unsigned int ata_pio_modes(const struct ata_device *adev)
1056 /* Usual case. Word 53 indicates word 64 is valid */
1057 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1058 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1064 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
1065 number for the maximum. Turn it into a mask and return it */
1066 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
1068 /* But wait.. there's more. Design your standards by committee and
1069 you too can get a free iordy field to process. However its the
1070 speeds not the modes that are supported... Note drivers using the
1071 timing API will get this right anyway */
1075 ata_queue_packet_task(struct ata_port *ap)
1077 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
1078 queue_work(ata_wq, &ap->packet_task);
1082 ata_queue_pio_task(struct ata_port *ap)
1084 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
1085 queue_work(ata_wq, &ap->pio_task);
1089 ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
1091 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
1092 queue_delayed_work(ata_wq, &ap->pio_task, delay);
1096 * ata_flush_pio_tasks - Flush pio_task and packet_task
1097 * @ap: the target ata_port
1099 * After this function completes, pio_task and packet_task are
1100 * guranteed not to be running or scheduled.
1103 * Kernel thread context (may sleep)
1106 static void ata_flush_pio_tasks(struct ata_port *ap)
1109 unsigned long flags;
1113 spin_lock_irqsave(&ap->host_set->lock, flags);
1114 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
1115 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1117 DPRINTK("flush #1\n");
1118 flush_workqueue(ata_wq);
1121 * At this point, if a task is running, it's guaranteed to see
1122 * the FLUSH flag; thus, it will never queue pio tasks again.
1125 tmp |= cancel_delayed_work(&ap->pio_task);
1126 tmp |= cancel_delayed_work(&ap->packet_task);
1128 DPRINTK("flush #2\n");
1129 flush_workqueue(ata_wq);
1132 spin_lock_irqsave(&ap->host_set->lock, flags);
1133 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
1134 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1139 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1141 struct completion *waiting = qc->private_data;
1143 qc->ap->ops->tf_read(qc->ap, &qc->tf);
1148 * ata_exec_internal - execute libata internal command
1149 * @ap: Port to which the command is sent
1150 * @dev: Device to which the command is sent
1151 * @tf: Taskfile registers for the command and the result
1152 * @dma_dir: Data tranfer direction of the command
1153 * @buf: Data buffer of the command
1154 * @buflen: Length of data buffer
1156 * Executes libata internal command with timeout. @tf contains
1157 * command on entry and result on return. Timeout and error
1158 * conditions are reported via return value. No recovery action
1159 * is taken after a command times out. It's caller's duty to
1160 * clean up after timeout.
1163 * None. Should be called with kernel context, might sleep.
1167 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
1168 struct ata_taskfile *tf,
1169 int dma_dir, void *buf, unsigned int buflen)
1171 u8 command = tf->command;
1172 struct ata_queued_cmd *qc;
1173 DECLARE_COMPLETION(wait);
1174 unsigned long flags;
1175 unsigned int err_mask;
1177 spin_lock_irqsave(&ap->host_set->lock, flags);
1179 qc = ata_qc_new_init(ap, dev);
1183 qc->dma_dir = dma_dir;
1184 if (dma_dir != DMA_NONE) {
1185 ata_sg_init_one(qc, buf, buflen);
1186 qc->nsect = buflen / ATA_SECT_SIZE;
1189 qc->private_data = &wait;
1190 qc->complete_fn = ata_qc_complete_internal;
1192 qc->err_mask = ata_qc_issue(qc);
1194 ata_qc_complete(qc);
1196 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1198 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1199 spin_lock_irqsave(&ap->host_set->lock, flags);
1201 /* We're racing with irq here. If we lose, the
1202 * following test prevents us from completing the qc
1203 * again. If completion irq occurs after here but
1204 * before the caller cleans up, it will result in a
1205 * spurious interrupt. We can live with that.
1207 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1208 qc->err_mask = AC_ERR_TIMEOUT;
1209 ata_qc_complete(qc);
1210 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1214 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1218 err_mask = qc->err_mask;
1226 * ata_pio_need_iordy - check if iordy needed
1229 * Check if the current speed of the device requires IORDY. Used
1230 * by various controllers for chip configuration.
1233 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1236 int speed = adev->pio_mode - XFER_PIO_0;
1243 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1245 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1246 pio = adev->id[ATA_ID_EIDE_PIO];
1247 /* Is the speed faster than the drive allows non IORDY ? */
1249 /* This is cycle times not frequency - watch the logic! */
1250 if (pio > 240) /* PIO2 is 240nS per cycle */
1259 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1260 * @ap: port on which device we wish to probe resides
1261 * @device: device bus address, starting at zero
1263 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1264 * command, and read back the 512-byte device information page.
1265 * The device information page is fed to us via the standard
1266 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1267 * using standard PIO-IN paths)
1269 * After reading the device information page, we use several
1270 * bits of information from it to initialize data structures
1271 * that will be used during the lifetime of the ata_device.
1272 * Other data from the info page is used to disqualify certain
1273 * older ATA devices we do not wish to support.
1276 * Inherited from caller. Some functions called by this function
1277 * obtain the host_set lock.
1280 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1282 struct ata_device *dev = &ap->device[device];
1283 unsigned int major_version;
1285 unsigned long xfer_modes;
1286 unsigned int using_edd;
1287 struct ata_taskfile tf;
1288 unsigned int err_mask;
1291 if (!ata_dev_present(dev)) {
1292 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1297 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1302 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1304 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1305 dev->class == ATA_DEV_NONE);
1307 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1310 ata_tf_init(ap, &tf, device);
1312 if (dev->class == ATA_DEV_ATA) {
1313 tf.command = ATA_CMD_ID_ATA;
1314 DPRINTK("do ATA identify\n");
1316 tf.command = ATA_CMD_ID_ATAPI;
1317 DPRINTK("do ATAPI identify\n");
1320 tf.protocol = ATA_PROT_PIO;
1322 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1323 dev->id, sizeof(dev->id));
1326 if (err_mask & ~AC_ERR_DEV)
1330 * arg! EDD works for all test cases, but seems to return
1331 * the ATA signature for some ATAPI devices. Until the
1332 * reason for this is found and fixed, we fix up the mess
1333 * here. If IDENTIFY DEVICE returns command aborted
1334 * (as ATAPI devices do), then we issue an
1335 * IDENTIFY PACKET DEVICE.
1337 * ATA software reset (SRST, the default) does not appear
1338 * to have this problem.
1340 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
1341 u8 err = tf.feature;
1342 if (err & ATA_ABORTED) {
1343 dev->class = ATA_DEV_ATAPI;
1350 swap_buf_le16(dev->id, ATA_ID_WORDS);
1352 /* print device capabilities */
1353 printk(KERN_DEBUG "ata%u: dev %u cfg "
1354 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1355 ap->id, device, dev->id[49],
1356 dev->id[82], dev->id[83], dev->id[84],
1357 dev->id[85], dev->id[86], dev->id[87],
1361 * common ATA, ATAPI feature tests
1364 /* we require DMA support (bits 8 of word 49) */
1365 if (!ata_id_has_dma(dev->id)) {
1366 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1370 /* quick-n-dirty find max transfer mode; for printk only */
1371 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1373 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1375 xfer_modes = ata_pio_modes(dev);
1379 /* ATA-specific feature tests */
1380 if (dev->class == ATA_DEV_ATA) {
1381 if (!ata_id_is_ata(dev->id)) /* sanity check */
1384 /* get major version */
1385 tmp = dev->id[ATA_ID_MAJOR_VER];
1386 for (major_version = 14; major_version >= 1; major_version--)
1387 if (tmp & (1 << major_version))
1391 * The exact sequence expected by certain pre-ATA4 drives is:
1394 * INITIALIZE DEVICE PARAMETERS
1396 * Some drives were very specific about that exact sequence.
1398 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1399 ata_dev_init_params(ap, dev);
1401 /* current CHS translation info (id[53-58]) might be
1402 * changed. reread the identify device info.
1404 ata_dev_reread_id(ap, dev);
1407 if (ata_id_has_lba(dev->id)) {
1408 dev->flags |= ATA_DFLAG_LBA;
1410 if (ata_id_has_lba48(dev->id)) {
1411 dev->flags |= ATA_DFLAG_LBA48;
1412 dev->n_sectors = ata_id_u64(dev->id, 100);
1414 dev->n_sectors = ata_id_u32(dev->id, 60);
1417 /* print device info to dmesg */
1418 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1421 ata_mode_string(xfer_modes),
1422 (unsigned long long)dev->n_sectors,
1423 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1427 /* Default translation */
1428 dev->cylinders = dev->id[1];
1429 dev->heads = dev->id[3];
1430 dev->sectors = dev->id[6];
1431 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1433 if (ata_id_current_chs_valid(dev->id)) {
1434 /* Current CHS translation is valid. */
1435 dev->cylinders = dev->id[54];
1436 dev->heads = dev->id[55];
1437 dev->sectors = dev->id[56];
1439 dev->n_sectors = ata_id_u32(dev->id, 57);
1442 /* print device info to dmesg */
1443 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1446 ata_mode_string(xfer_modes),
1447 (unsigned long long)dev->n_sectors,
1448 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1452 ap->host->max_cmd_len = 16;
1455 /* ATAPI-specific feature tests */
1456 else if (dev->class == ATA_DEV_ATAPI) {
1457 if (ata_id_is_ata(dev->id)) /* sanity check */
1460 rc = atapi_cdb_len(dev->id);
1461 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1462 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1465 ap->cdb_len = (unsigned int) rc;
1466 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1468 /* print device info to dmesg */
1469 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1471 ata_mode_string(xfer_modes));
1474 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1478 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1481 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1482 DPRINTK("EXIT, err\n");
1486 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1488 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1492 * ata_dev_config - Run device specific handlers & check for SATA->PATA bridges
1499 void ata_dev_config(struct ata_port *ap, unsigned int i)
1501 /* limit bridge transfers to udma5, 200 sectors */
1502 if (ata_dev_knobble(ap)) {
1503 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1504 ap->id, ap->device->devno);
1505 ap->udma_mask &= ATA_UDMA5;
1506 ap->host->max_sectors = ATA_MAX_SECTORS;
1507 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1508 ap->device[i].flags |= ATA_DFLAG_LOCK_SECTORS;
1511 if (ap->ops->dev_config)
1512 ap->ops->dev_config(ap, &ap->device[i]);
1516 * ata_bus_probe - Reset and probe ATA bus
1519 * Master ATA bus probing function. Initiates a hardware-dependent
1520 * bus reset, then attempts to identify any devices found on
1524 * PCI/etc. bus probe sem.
1527 * Zero on success, non-zero on error.
1530 static int ata_bus_probe(struct ata_port *ap)
1532 unsigned int i, found = 0;
1534 if (ap->ops->probe_reset) {
1535 unsigned int classes[ATA_MAX_DEVICES];
1540 rc = ap->ops->probe_reset(ap, classes);
1542 for (i = 0; i < ATA_MAX_DEVICES; i++)
1543 ap->device[i].class = classes[i];
1545 printk(KERN_ERR "ata%u: probe reset failed, "
1546 "disabling port\n", ap->id);
1547 ata_port_disable(ap);
1550 ap->ops->phy_reset(ap);
1552 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1555 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1556 ata_dev_identify(ap, i);
1557 if (ata_dev_present(&ap->device[i])) {
1559 ata_dev_config(ap,i);
1563 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1564 goto err_out_disable;
1567 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1568 goto err_out_disable;
1573 ap->ops->port_disable(ap);
1579 * ata_port_probe - Mark port as enabled
1580 * @ap: Port for which we indicate enablement
1582 * Modify @ap data structure such that the system
1583 * thinks that the entire port is enabled.
1585 * LOCKING: host_set lock, or some other form of
1589 void ata_port_probe(struct ata_port *ap)
1591 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1595 * sata_print_link_status - Print SATA link status
1596 * @ap: SATA port to printk link status about
1598 * This function prints link speed and status of a SATA link.
1603 static void sata_print_link_status(struct ata_port *ap)
1608 if (!ap->ops->scr_read)
1611 sstatus = scr_read(ap, SCR_STATUS);
1613 if (sata_dev_present(ap)) {
1614 tmp = (sstatus >> 4) & 0xf;
1617 else if (tmp & (1 << 1))
1620 speed = "<unknown>";
1621 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1622 ap->id, speed, sstatus);
1624 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1630 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1631 * @ap: SATA port associated with target SATA PHY.
1633 * This function issues commands to standard SATA Sxxx
1634 * PHY registers, to wake up the phy (and device), and
1635 * clear any reset condition.
1638 * PCI/etc. bus probe sem.
1641 void __sata_phy_reset(struct ata_port *ap)
1644 unsigned long timeout = jiffies + (HZ * 5);
1646 if (ap->flags & ATA_FLAG_SATA_RESET) {
1647 /* issue phy wake/reset */
1648 scr_write_flush(ap, SCR_CONTROL, 0x301);
1649 /* Couldn't find anything in SATA I/II specs, but
1650 * AHCI-1.1 10.4.2 says at least 1 ms. */
1653 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1655 /* wait for phy to become ready, if necessary */
1658 sstatus = scr_read(ap, SCR_STATUS);
1659 if ((sstatus & 0xf) != 1)
1661 } while (time_before(jiffies, timeout));
1663 /* print link status */
1664 sata_print_link_status(ap);
1666 /* TODO: phy layer with polling, timeouts, etc. */
1667 if (sata_dev_present(ap))
1670 ata_port_disable(ap);
1672 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1675 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1676 ata_port_disable(ap);
1680 ap->cbl = ATA_CBL_SATA;
1684 * sata_phy_reset - Reset SATA bus.
1685 * @ap: SATA port associated with target SATA PHY.
1687 * This function resets the SATA bus, and then probes
1688 * the bus for devices.
1691 * PCI/etc. bus probe sem.
1694 void sata_phy_reset(struct ata_port *ap)
1696 __sata_phy_reset(ap);
1697 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1703 * ata_port_disable - Disable port.
1704 * @ap: Port to be disabled.
1706 * Modify @ap data structure such that the system
1707 * thinks that the entire port is disabled, and should
1708 * never attempt to probe or communicate with devices
1711 * LOCKING: host_set lock, or some other form of
1715 void ata_port_disable(struct ata_port *ap)
1717 ap->device[0].class = ATA_DEV_NONE;
1718 ap->device[1].class = ATA_DEV_NONE;
1719 ap->flags |= ATA_FLAG_PORT_DISABLED;
1723 * This mode timing computation functionality is ported over from
1724 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1727 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1728 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1729 * for PIO 5, which is a nonstandard extension and UDMA6, which
1730 * is currently supported only by Maxtor drives.
1733 static const struct ata_timing ata_timing[] = {
1735 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1736 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1737 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1738 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1740 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1741 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1742 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1744 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1746 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1747 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1748 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1750 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1751 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1752 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1754 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1755 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1756 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1758 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1759 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1760 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1762 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1767 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1768 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1770 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1772 q->setup = EZ(t->setup * 1000, T);
1773 q->act8b = EZ(t->act8b * 1000, T);
1774 q->rec8b = EZ(t->rec8b * 1000, T);
1775 q->cyc8b = EZ(t->cyc8b * 1000, T);
1776 q->active = EZ(t->active * 1000, T);
1777 q->recover = EZ(t->recover * 1000, T);
1778 q->cycle = EZ(t->cycle * 1000, T);
1779 q->udma = EZ(t->udma * 1000, UT);
1782 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1783 struct ata_timing *m, unsigned int what)
1785 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1786 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1787 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1788 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1789 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1790 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1791 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1792 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1795 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1797 const struct ata_timing *t;
1799 for (t = ata_timing; t->mode != speed; t++)
1800 if (t->mode == 0xFF)
1805 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1806 struct ata_timing *t, int T, int UT)
1808 const struct ata_timing *s;
1809 struct ata_timing p;
1815 if (!(s = ata_timing_find_mode(speed)))
1818 memcpy(t, s, sizeof(*s));
1821 * If the drive is an EIDE drive, it can tell us it needs extended
1822 * PIO/MW_DMA cycle timing.
1825 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1826 memset(&p, 0, sizeof(p));
1827 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1828 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1829 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1830 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1831 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1833 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1837 * Convert the timing to bus clock counts.
1840 ata_timing_quantize(t, t, T, UT);
1843 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1844 * S.M.A.R.T * and some other commands. We have to ensure that the
1845 * DMA cycle timing is slower/equal than the fastest PIO timing.
1848 if (speed > XFER_PIO_4) {
1849 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1850 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1854 * Lengthen active & recovery time so that cycle time is correct.
1857 if (t->act8b + t->rec8b < t->cyc8b) {
1858 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1859 t->rec8b = t->cyc8b - t->act8b;
1862 if (t->active + t->recover < t->cycle) {
1863 t->active += (t->cycle - (t->active + t->recover)) / 2;
1864 t->recover = t->cycle - t->active;
1870 static const struct {
1873 } xfer_mode_classes[] = {
1874 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1875 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1876 { ATA_SHIFT_PIO, XFER_PIO_0 },
1879 static u8 base_from_shift(unsigned int shift)
1883 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1884 if (xfer_mode_classes[i].shift == shift)
1885 return xfer_mode_classes[i].base;
1890 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1895 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1898 if (dev->xfer_shift == ATA_SHIFT_PIO)
1899 dev->flags |= ATA_DFLAG_PIO;
1901 ata_dev_set_xfermode(ap, dev);
1903 base = base_from_shift(dev->xfer_shift);
1904 ofs = dev->xfer_mode - base;
1905 idx = ofs + dev->xfer_shift;
1906 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1908 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1909 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1911 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1912 ap->id, dev->devno, xfer_mode_str[idx]);
1915 static int ata_host_set_pio(struct ata_port *ap)
1921 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1924 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1928 base = base_from_shift(ATA_SHIFT_PIO);
1929 xfer_mode = base + x;
1931 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1932 (int)base, (int)xfer_mode, mask, x);
1934 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1935 struct ata_device *dev = &ap->device[i];
1936 if (ata_dev_present(dev)) {
1937 dev->pio_mode = xfer_mode;
1938 dev->xfer_mode = xfer_mode;
1939 dev->xfer_shift = ATA_SHIFT_PIO;
1940 if (ap->ops->set_piomode)
1941 ap->ops->set_piomode(ap, dev);
1948 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1949 unsigned int xfer_shift)
1953 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1954 struct ata_device *dev = &ap->device[i];
1955 if (ata_dev_present(dev)) {
1956 dev->dma_mode = xfer_mode;
1957 dev->xfer_mode = xfer_mode;
1958 dev->xfer_shift = xfer_shift;
1959 if (ap->ops->set_dmamode)
1960 ap->ops->set_dmamode(ap, dev);
1966 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1967 * @ap: port on which timings will be programmed
1969 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1972 * PCI/etc. bus probe sem.
1974 static void ata_set_mode(struct ata_port *ap)
1976 unsigned int xfer_shift;
1980 /* step 1: always set host PIO timings */
1981 rc = ata_host_set_pio(ap);
1985 /* step 2: choose the best data xfer mode */
1986 xfer_mode = xfer_shift = 0;
1987 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1991 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1992 if (xfer_shift != ATA_SHIFT_PIO)
1993 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1995 /* step 4: update devices' xfer mode */
1996 ata_dev_set_mode(ap, &ap->device[0]);
1997 ata_dev_set_mode(ap, &ap->device[1]);
1999 if (ap->flags & ATA_FLAG_PORT_DISABLED)
2002 if (ap->ops->post_set_mode)
2003 ap->ops->post_set_mode(ap);
2008 ata_port_disable(ap);
2012 * ata_busy_sleep - sleep until BSY clears, or timeout
2013 * @ap: port containing status register to be polled
2014 * @tmout_pat: impatience timeout
2015 * @tmout: overall timeout
2017 * Sleep until ATA Status register bit BSY clears,
2018 * or a timeout occurs.
2023 unsigned int ata_busy_sleep (struct ata_port *ap,
2024 unsigned long tmout_pat, unsigned long tmout)
2026 unsigned long timer_start, timeout;
2029 status = ata_busy_wait(ap, ATA_BUSY, 300);
2030 timer_start = jiffies;
2031 timeout = timer_start + tmout_pat;
2032 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2034 status = ata_busy_wait(ap, ATA_BUSY, 3);
2037 if (status & ATA_BUSY)
2038 printk(KERN_WARNING "ata%u is slow to respond, "
2039 "please be patient\n", ap->id);
2041 timeout = timer_start + tmout;
2042 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2044 status = ata_chk_status(ap);
2047 if (status & ATA_BUSY) {
2048 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2049 ap->id, tmout / HZ);
2056 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2058 struct ata_ioports *ioaddr = &ap->ioaddr;
2059 unsigned int dev0 = devmask & (1 << 0);
2060 unsigned int dev1 = devmask & (1 << 1);
2061 unsigned long timeout;
2063 /* if device 0 was found in ata_devchk, wait for its
2067 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2069 /* if device 1 was found in ata_devchk, wait for
2070 * register access, then wait for BSY to clear
2072 timeout = jiffies + ATA_TMOUT_BOOT;
2076 ap->ops->dev_select(ap, 1);
2077 if (ap->flags & ATA_FLAG_MMIO) {
2078 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2079 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2081 nsect = inb(ioaddr->nsect_addr);
2082 lbal = inb(ioaddr->lbal_addr);
2084 if ((nsect == 1) && (lbal == 1))
2086 if (time_after(jiffies, timeout)) {
2090 msleep(50); /* give drive a breather */
2093 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2095 /* is all this really necessary? */
2096 ap->ops->dev_select(ap, 0);
2098 ap->ops->dev_select(ap, 1);
2100 ap->ops->dev_select(ap, 0);
2104 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
2105 * @ap: Port to reset and probe
2107 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
2108 * probe the bus. Not often used these days.
2111 * PCI/etc. bus probe sem.
2112 * Obtains host_set lock.
2116 static unsigned int ata_bus_edd(struct ata_port *ap)
2118 struct ata_taskfile tf;
2119 unsigned long flags;
2121 /* set up execute-device-diag (bus reset) taskfile */
2122 /* also, take interrupts to a known state (disabled) */
2123 DPRINTK("execute-device-diag\n");
2124 ata_tf_init(ap, &tf, 0);
2126 tf.command = ATA_CMD_EDD;
2127 tf.protocol = ATA_PROT_NODATA;
2130 spin_lock_irqsave(&ap->host_set->lock, flags);
2131 ata_tf_to_host(ap, &tf);
2132 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2134 /* spec says at least 2ms. but who knows with those
2135 * crazy ATAPI devices...
2139 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2142 static unsigned int ata_bus_softreset(struct ata_port *ap,
2143 unsigned int devmask)
2145 struct ata_ioports *ioaddr = &ap->ioaddr;
2147 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2149 /* software reset. causes dev0 to be selected */
2150 if (ap->flags & ATA_FLAG_MMIO) {
2151 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2152 udelay(20); /* FIXME: flush */
2153 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2154 udelay(20); /* FIXME: flush */
2155 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2157 outb(ap->ctl, ioaddr->ctl_addr);
2159 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2161 outb(ap->ctl, ioaddr->ctl_addr);
2164 /* spec mandates ">= 2ms" before checking status.
2165 * We wait 150ms, because that was the magic delay used for
2166 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2167 * between when the ATA command register is written, and then
2168 * status is checked. Because waiting for "a while" before
2169 * checking status is fine, post SRST, we perform this magic
2170 * delay here as well.
2174 ata_bus_post_reset(ap, devmask);
2180 * ata_bus_reset - reset host port and associated ATA channel
2181 * @ap: port to reset
2183 * This is typically the first time we actually start issuing
2184 * commands to the ATA channel. We wait for BSY to clear, then
2185 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2186 * result. Determine what devices, if any, are on the channel
2187 * by looking at the device 0/1 error register. Look at the signature
2188 * stored in each device's taskfile registers, to determine if
2189 * the device is ATA or ATAPI.
2192 * PCI/etc. bus probe sem.
2193 * Obtains host_set lock.
2196 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2199 void ata_bus_reset(struct ata_port *ap)
2201 struct ata_ioports *ioaddr = &ap->ioaddr;
2202 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2204 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2206 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2208 /* determine if device 0/1 are present */
2209 if (ap->flags & ATA_FLAG_SATA_RESET)
2212 dev0 = ata_devchk(ap, 0);
2214 dev1 = ata_devchk(ap, 1);
2218 devmask |= (1 << 0);
2220 devmask |= (1 << 1);
2222 /* select device 0 again */
2223 ap->ops->dev_select(ap, 0);
2225 /* issue bus reset */
2226 if (ap->flags & ATA_FLAG_SRST)
2227 rc = ata_bus_softreset(ap, devmask);
2228 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2229 /* set up device control */
2230 if (ap->flags & ATA_FLAG_MMIO)
2231 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2233 outb(ap->ctl, ioaddr->ctl_addr);
2234 rc = ata_bus_edd(ap);
2241 * determine by signature whether we have ATA or ATAPI devices
2243 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2244 if ((slave_possible) && (err != 0x81))
2245 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2247 /* re-enable interrupts */
2248 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2251 /* is double-select really necessary? */
2252 if (ap->device[1].class != ATA_DEV_NONE)
2253 ap->ops->dev_select(ap, 1);
2254 if (ap->device[0].class != ATA_DEV_NONE)
2255 ap->ops->dev_select(ap, 0);
2257 /* if no devices were detected, disable this port */
2258 if ((ap->device[0].class == ATA_DEV_NONE) &&
2259 (ap->device[1].class == ATA_DEV_NONE))
2262 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2263 /* set up device control for ATA_FLAG_SATA_RESET */
2264 if (ap->flags & ATA_FLAG_MMIO)
2265 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2267 outb(ap->ctl, ioaddr->ctl_addr);
2274 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2275 ap->ops->port_disable(ap);
2280 static int sata_phy_resume(struct ata_port *ap)
2282 unsigned long timeout = jiffies + (HZ * 5);
2285 scr_write_flush(ap, SCR_CONTROL, 0x300);
2287 /* Wait for phy to become ready, if necessary. */
2290 sstatus = scr_read(ap, SCR_STATUS);
2291 if ((sstatus & 0xf) != 1)
2293 } while (time_before(jiffies, timeout));
2299 * ata_std_probeinit - initialize probing
2300 * @ap: port to be probed
2302 * @ap is about to be probed. Initialize it. This function is
2303 * to be used as standard callback for ata_drive_probe_reset().
2305 extern void ata_std_probeinit(struct ata_port *ap)
2307 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2308 sata_phy_resume(ap);
2312 * ata_std_softreset - reset host port via ATA SRST
2313 * @ap: port to reset
2314 * @verbose: fail verbosely
2315 * @classes: resulting classes of attached devices
2317 * Reset host port using ATA SRST. This function is to be used
2318 * as standard callback for ata_drive_*_reset() functions.
2321 * Kernel thread context (may sleep)
2324 * 0 on success, -errno otherwise.
2326 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2328 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2329 unsigned int devmask = 0, err_mask;
2334 /* determine if device 0/1 are present */
2335 if (ata_devchk(ap, 0))
2336 devmask |= (1 << 0);
2337 if (slave_possible && ata_devchk(ap, 1))
2338 devmask |= (1 << 1);
2340 /* devchk reports device presence without actual device on
2341 * most SATA controllers. Check SStatus and turn devmask off
2342 * if link is offline. Note that we should continue resetting
2343 * even when it seems like there's no device.
2345 if (ap->ops->scr_read && !sata_dev_present(ap))
2348 /* select device 0 again */
2349 ap->ops->dev_select(ap, 0);
2351 /* issue bus reset */
2352 DPRINTK("about to softreset, devmask=%x\n", devmask);
2353 err_mask = ata_bus_softreset(ap, devmask);
2356 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2359 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2364 /* determine by signature whether we have ATA or ATAPI devices */
2365 classes[0] = ata_dev_try_classify(ap, 0, &err);
2366 if (slave_possible && err != 0x81)
2367 classes[1] = ata_dev_try_classify(ap, 1, &err);
2369 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2374 * sata_std_hardreset - reset host port via SATA phy reset
2375 * @ap: port to reset
2376 * @verbose: fail verbosely
2377 * @class: resulting class of attached device
2379 * SATA phy-reset host port using DET bits of SControl register.
2380 * This function is to be used as standard callback for
2381 * ata_drive_*_reset().
2384 * Kernel thread context (may sleep)
2387 * 0 on success, -errno otherwise.
2389 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2395 /* Issue phy wake/reset */
2396 scr_write_flush(ap, SCR_CONTROL, 0x301);
2399 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2400 * 10.4.2 says at least 1 ms.
2404 /* Bring phy back */
2405 sata_phy_resume(ap);
2408 serror = scr_read(ap, SCR_ERROR);
2409 scr_write(ap, SCR_ERROR, serror);
2411 /* TODO: phy layer with polling, timeouts, etc. */
2412 if (!sata_dev_present(ap)) {
2413 *class = ATA_DEV_NONE;
2414 DPRINTK("EXIT, link offline\n");
2418 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2420 printk(KERN_ERR "ata%u: COMRESET failed "
2421 "(device not ready)\n", ap->id);
2423 DPRINTK("EXIT, device not ready\n");
2427 *class = ata_dev_try_classify(ap, 0, NULL);
2429 DPRINTK("EXIT, class=%u\n", *class);
2434 * ata_std_postreset - standard postreset callback
2435 * @ap: the target ata_port
2436 * @classes: classes of attached devices
2438 * This function is invoked after a successful reset. Note that
2439 * the device might have been reset more than once using
2440 * different reset methods before postreset is invoked.
2441 * postreset is also reponsible for setting cable type.
2443 * This function is to be used as standard callback for
2444 * ata_drive_*_reset().
2447 * Kernel thread context (may sleep)
2449 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2453 /* set cable type */
2454 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2455 ap->cbl = ATA_CBL_SATA;
2457 /* print link status */
2458 if (ap->cbl == ATA_CBL_SATA)
2459 sata_print_link_status(ap);
2461 /* bail out if no device is present */
2462 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2463 DPRINTK("EXIT, no device\n");
2467 /* is double-select really necessary? */
2468 if (classes[0] != ATA_DEV_NONE)
2469 ap->ops->dev_select(ap, 1);
2470 if (classes[1] != ATA_DEV_NONE)
2471 ap->ops->dev_select(ap, 0);
2473 /* re-enable interrupts & set up device control */
2474 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2481 * ata_std_probe_reset - standard probe reset method
2482 * @ap: prot to perform probe-reset
2483 * @classes: resulting classes of attached devices
2485 * The stock off-the-shelf ->probe_reset method.
2488 * Kernel thread context (may sleep)
2491 * 0 on success, -errno otherwise.
2493 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2495 ata_reset_fn_t hardreset;
2498 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2499 hardreset = sata_std_hardreset;
2501 return ata_drive_probe_reset(ap, ata_std_probeinit,
2502 ata_std_softreset, hardreset,
2503 ata_std_postreset, classes);
2506 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2507 ata_postreset_fn_t postreset,
2508 unsigned int *classes)
2512 for (i = 0; i < ATA_MAX_DEVICES; i++)
2513 classes[i] = ATA_DEV_UNKNOWN;
2515 rc = reset(ap, 0, classes);
2519 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2520 * is complete and convert all ATA_DEV_UNKNOWN to
2523 for (i = 0; i < ATA_MAX_DEVICES; i++)
2524 if (classes[i] != ATA_DEV_UNKNOWN)
2527 if (i < ATA_MAX_DEVICES)
2528 for (i = 0; i < ATA_MAX_DEVICES; i++)
2529 if (classes[i] == ATA_DEV_UNKNOWN)
2530 classes[i] = ATA_DEV_NONE;
2533 postreset(ap, classes);
2535 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2539 * ata_drive_probe_reset - Perform probe reset with given methods
2540 * @ap: port to reset
2541 * @probeinit: probeinit method (can be NULL)
2542 * @softreset: softreset method (can be NULL)
2543 * @hardreset: hardreset method (can be NULL)
2544 * @postreset: postreset method (can be NULL)
2545 * @classes: resulting classes of attached devices
2547 * Reset the specified port and classify attached devices using
2548 * given methods. This function prefers softreset but tries all
2549 * possible reset sequences to reset and classify devices. This
2550 * function is intended to be used for constructing ->probe_reset
2551 * callback by low level drivers.
2553 * Reset methods should follow the following rules.
2555 * - Return 0 on sucess, -errno on failure.
2556 * - If classification is supported, fill classes[] with
2557 * recognized class codes.
2558 * - If classification is not supported, leave classes[] alone.
2559 * - If verbose is non-zero, print error message on failure;
2560 * otherwise, shut up.
2563 * Kernel thread context (may sleep)
2566 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2567 * if classification fails, and any error code from reset
2570 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2571 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2572 ata_postreset_fn_t postreset, unsigned int *classes)
2580 rc = do_probe_reset(ap, softreset, postreset, classes);
2588 rc = do_probe_reset(ap, hardreset, postreset, classes);
2589 if (rc == 0 || rc != -ENODEV)
2593 rc = do_probe_reset(ap, softreset, postreset, classes);
2598 static void ata_pr_blacklisted(const struct ata_port *ap,
2599 const struct ata_device *dev)
2601 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2602 ap->id, dev->devno);
2605 static const char * const ata_dma_blacklist [] = {
2624 "Toshiba CD-ROM XM-6202B",
2625 "TOSHIBA CD-ROM XM-1702BC",
2627 "E-IDE CD-ROM CR-840",
2630 "SAMSUNG CD-ROM SC-148C",
2631 "SAMSUNG CD-ROM SC",
2633 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2637 static int ata_dma_blacklisted(const struct ata_device *dev)
2639 unsigned char model_num[40];
2644 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2647 len = strnlen(s, sizeof(model_num));
2649 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2650 while ((len > 0) && (s[len - 1] == ' ')) {
2655 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2656 if (!strncmp(ata_dma_blacklist[i], s, len))
2662 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2664 const struct ata_device *master, *slave;
2667 master = &ap->device[0];
2668 slave = &ap->device[1];
2670 assert (ata_dev_present(master) || ata_dev_present(slave));
2672 if (shift == ATA_SHIFT_UDMA) {
2673 mask = ap->udma_mask;
2674 if (ata_dev_present(master)) {
2675 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2676 if (ata_dma_blacklisted(master)) {
2678 ata_pr_blacklisted(ap, master);
2681 if (ata_dev_present(slave)) {
2682 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2683 if (ata_dma_blacklisted(slave)) {
2685 ata_pr_blacklisted(ap, slave);
2689 else if (shift == ATA_SHIFT_MWDMA) {
2690 mask = ap->mwdma_mask;
2691 if (ata_dev_present(master)) {
2692 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2693 if (ata_dma_blacklisted(master)) {
2695 ata_pr_blacklisted(ap, master);
2698 if (ata_dev_present(slave)) {
2699 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2700 if (ata_dma_blacklisted(slave)) {
2702 ata_pr_blacklisted(ap, slave);
2706 else if (shift == ATA_SHIFT_PIO) {
2707 mask = ap->pio_mask;
2708 if (ata_dev_present(master)) {
2709 /* spec doesn't return explicit support for
2710 * PIO0-2, so we fake it
2712 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2717 if (ata_dev_present(slave)) {
2718 /* spec doesn't return explicit support for
2719 * PIO0-2, so we fake it
2721 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2728 mask = 0xffffffff; /* shut up compiler warning */
2735 /* find greatest bit */
2736 static int fgb(u32 bitmap)
2741 for (i = 0; i < 32; i++)
2742 if (bitmap & (1 << i))
2749 * ata_choose_xfer_mode - attempt to find best transfer mode
2750 * @ap: Port for which an xfer mode will be selected
2751 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2752 * @xfer_shift_out: (output) bit shift that selects this mode
2754 * Based on host and device capabilities, determine the
2755 * maximum transfer mode that is amenable to all.
2758 * PCI/etc. bus probe sem.
2761 * Zero on success, negative on error.
2764 static int ata_choose_xfer_mode(const struct ata_port *ap,
2766 unsigned int *xfer_shift_out)
2768 unsigned int mask, shift;
2771 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2772 shift = xfer_mode_classes[i].shift;
2773 mask = ata_get_mode_mask(ap, shift);
2777 *xfer_mode_out = xfer_mode_classes[i].base + x;
2778 *xfer_shift_out = shift;
2787 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2788 * @ap: Port associated with device @dev
2789 * @dev: Device to which command will be sent
2791 * Issue SET FEATURES - XFER MODE command to device @dev
2795 * PCI/etc. bus probe sem.
2798 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2800 struct ata_taskfile tf;
2802 /* set up set-features taskfile */
2803 DPRINTK("set features - xfer mode\n");
2805 ata_tf_init(ap, &tf, dev->devno);
2806 tf.command = ATA_CMD_SET_FEATURES;
2807 tf.feature = SETFEATURES_XFER;
2808 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2809 tf.protocol = ATA_PROT_NODATA;
2810 tf.nsect = dev->xfer_mode;
2812 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2813 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2815 ata_port_disable(ap);
2822 * ata_dev_reread_id - Reread the device identify device info
2823 * @ap: port where the device is
2824 * @dev: device to reread the identify device info
2829 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2831 struct ata_taskfile tf;
2833 ata_tf_init(ap, &tf, dev->devno);
2835 if (dev->class == ATA_DEV_ATA) {
2836 tf.command = ATA_CMD_ID_ATA;
2837 DPRINTK("do ATA identify\n");
2839 tf.command = ATA_CMD_ID_ATAPI;
2840 DPRINTK("do ATAPI identify\n");
2843 tf.flags |= ATA_TFLAG_DEVICE;
2844 tf.protocol = ATA_PROT_PIO;
2846 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2847 dev->id, sizeof(dev->id)))
2850 swap_buf_le16(dev->id, ATA_ID_WORDS);
2858 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
2859 ata_port_disable(ap);
2863 * ata_dev_init_params - Issue INIT DEV PARAMS command
2864 * @ap: Port associated with device @dev
2865 * @dev: Device to which command will be sent
2870 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2872 struct ata_taskfile tf;
2873 u16 sectors = dev->id[6];
2874 u16 heads = dev->id[3];
2876 /* Number of sectors per track 1-255. Number of heads 1-16 */
2877 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2880 /* set up init dev params taskfile */
2881 DPRINTK("init dev params \n");
2883 ata_tf_init(ap, &tf, dev->devno);
2884 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2885 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2886 tf.protocol = ATA_PROT_NODATA;
2888 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2890 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2891 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2893 ata_port_disable(ap);
2900 * ata_sg_clean - Unmap DMA memory associated with command
2901 * @qc: Command containing DMA memory to be released
2903 * Unmap all mapped DMA memory associated with this command.
2906 * spin_lock_irqsave(host_set lock)
2909 static void ata_sg_clean(struct ata_queued_cmd *qc)
2911 struct ata_port *ap = qc->ap;
2912 struct scatterlist *sg = qc->__sg;
2913 int dir = qc->dma_dir;
2914 void *pad_buf = NULL;
2916 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2919 if (qc->flags & ATA_QCFLAG_SINGLE)
2920 assert(qc->n_elem == 1);
2922 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2924 /* if we padded the buffer out to 32-bit bound, and data
2925 * xfer direction is from-device, we must copy from the
2926 * pad buffer back into the supplied buffer
2928 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2929 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2931 if (qc->flags & ATA_QCFLAG_SG) {
2933 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2934 /* restore last sg */
2935 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2937 struct scatterlist *psg = &qc->pad_sgent;
2938 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2939 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2940 kunmap_atomic(addr, KM_IRQ0);
2943 if (sg_dma_len(&sg[0]) > 0)
2944 dma_unmap_single(ap->host_set->dev,
2945 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2948 sg->length += qc->pad_len;
2950 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2951 pad_buf, qc->pad_len);
2954 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2959 * ata_fill_sg - Fill PCI IDE PRD table
2960 * @qc: Metadata associated with taskfile to be transferred
2962 * Fill PCI IDE PRD (scatter-gather) table with segments
2963 * associated with the current disk command.
2966 * spin_lock_irqsave(host_set lock)
2969 static void ata_fill_sg(struct ata_queued_cmd *qc)
2971 struct ata_port *ap = qc->ap;
2972 struct scatterlist *sg;
2975 assert(qc->__sg != NULL);
2976 assert(qc->n_elem > 0);
2979 ata_for_each_sg(sg, qc) {
2983 /* determine if physical DMA addr spans 64K boundary.
2984 * Note h/w doesn't support 64-bit, so we unconditionally
2985 * truncate dma_addr_t to u32.
2987 addr = (u32) sg_dma_address(sg);
2988 sg_len = sg_dma_len(sg);
2991 offset = addr & 0xffff;
2993 if ((offset + sg_len) > 0x10000)
2994 len = 0x10000 - offset;
2996 ap->prd[idx].addr = cpu_to_le32(addr);
2997 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2998 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3007 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3010 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3011 * @qc: Metadata associated with taskfile to check
3013 * Allow low-level driver to filter ATA PACKET commands, returning
3014 * a status indicating whether or not it is OK to use DMA for the
3015 * supplied PACKET command.
3018 * spin_lock_irqsave(host_set lock)
3020 * RETURNS: 0 when ATAPI DMA can be used
3023 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3025 struct ata_port *ap = qc->ap;
3026 int rc = 0; /* Assume ATAPI DMA is OK by default */
3028 if (ap->ops->check_atapi_dma)
3029 rc = ap->ops->check_atapi_dma(qc);
3034 * ata_qc_prep - Prepare taskfile for submission
3035 * @qc: Metadata associated with taskfile to be prepared
3037 * Prepare ATA taskfile for submission.
3040 * spin_lock_irqsave(host_set lock)
3042 void ata_qc_prep(struct ata_queued_cmd *qc)
3044 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3051 * ata_sg_init_one - Associate command with memory buffer
3052 * @qc: Command to be associated
3053 * @buf: Memory buffer
3054 * @buflen: Length of memory buffer, in bytes.
3056 * Initialize the data-related elements of queued_cmd @qc
3057 * to point to a single memory buffer, @buf of byte length @buflen.
3060 * spin_lock_irqsave(host_set lock)
3063 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3065 struct scatterlist *sg;
3067 qc->flags |= ATA_QCFLAG_SINGLE;
3069 memset(&qc->sgent, 0, sizeof(qc->sgent));
3070 qc->__sg = &qc->sgent;
3072 qc->orig_n_elem = 1;
3076 sg_init_one(sg, buf, buflen);
3080 * ata_sg_init - Associate command with scatter-gather table.
3081 * @qc: Command to be associated
3082 * @sg: Scatter-gather table.
3083 * @n_elem: Number of elements in s/g table.
3085 * Initialize the data-related elements of queued_cmd @qc
3086 * to point to a scatter-gather table @sg, containing @n_elem
3090 * spin_lock_irqsave(host_set lock)
3093 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3094 unsigned int n_elem)
3096 qc->flags |= ATA_QCFLAG_SG;
3098 qc->n_elem = n_elem;
3099 qc->orig_n_elem = n_elem;
3103 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3104 * @qc: Command with memory buffer to be mapped.
3106 * DMA-map the memory buffer associated with queued_cmd @qc.
3109 * spin_lock_irqsave(host_set lock)
3112 * Zero on success, negative on error.
3115 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3117 struct ata_port *ap = qc->ap;
3118 int dir = qc->dma_dir;
3119 struct scatterlist *sg = qc->__sg;
3120 dma_addr_t dma_address;
3122 /* we must lengthen transfers to end on a 32-bit boundary */
3123 qc->pad_len = sg->length & 3;
3125 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3126 struct scatterlist *psg = &qc->pad_sgent;
3128 assert(qc->dev->class == ATA_DEV_ATAPI);
3130 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3132 if (qc->tf.flags & ATA_TFLAG_WRITE)
3133 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3136 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3137 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3139 sg->length -= qc->pad_len;
3141 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3142 sg->length, qc->pad_len);
3146 sg_dma_address(sg) = 0;
3150 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
3152 if (dma_mapping_error(dma_address)) {
3154 sg->length += qc->pad_len;
3158 sg_dma_address(sg) = dma_address;
3160 sg_dma_len(sg) = sg->length;
3162 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3163 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3169 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3170 * @qc: Command with scatter-gather table to be mapped.
3172 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3175 * spin_lock_irqsave(host_set lock)
3178 * Zero on success, negative on error.
3182 static int ata_sg_setup(struct ata_queued_cmd *qc)
3184 struct ata_port *ap = qc->ap;
3185 struct scatterlist *sg = qc->__sg;
3186 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3187 int n_elem, pre_n_elem, dir, trim_sg = 0;
3189 VPRINTK("ENTER, ata%u\n", ap->id);
3190 assert(qc->flags & ATA_QCFLAG_SG);
3192 /* we must lengthen transfers to end on a 32-bit boundary */
3193 qc->pad_len = lsg->length & 3;
3195 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3196 struct scatterlist *psg = &qc->pad_sgent;
3197 unsigned int offset;
3199 assert(qc->dev->class == ATA_DEV_ATAPI);
3201 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3204 * psg->page/offset are used to copy to-be-written
3205 * data in this function or read data in ata_sg_clean.
3207 offset = lsg->offset + lsg->length - qc->pad_len;
3208 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3209 psg->offset = offset_in_page(offset);
3211 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3212 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3213 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3214 kunmap_atomic(addr, KM_IRQ0);
3217 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3218 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3220 lsg->length -= qc->pad_len;
3221 if (lsg->length == 0)
3224 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3225 qc->n_elem - 1, lsg->length, qc->pad_len);
3228 pre_n_elem = qc->n_elem;
3229 if (trim_sg && pre_n_elem)
3238 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
3240 /* restore last sg */
3241 lsg->length += qc->pad_len;
3245 DPRINTK("%d sg elements mapped\n", n_elem);
3248 qc->n_elem = n_elem;
3254 * ata_poll_qc_complete - turn irq back on and finish qc
3255 * @qc: Command to complete
3256 * @err_mask: ATA status register content
3259 * None. (grabs host lock)
3262 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3264 struct ata_port *ap = qc->ap;
3265 unsigned long flags;
3267 spin_lock_irqsave(&ap->host_set->lock, flags);
3268 ap->flags &= ~ATA_FLAG_NOINTR;
3270 ata_qc_complete(qc);
3271 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3275 * ata_pio_poll - poll using PIO, depending on current state
3276 * @ap: the target ata_port
3279 * None. (executing in kernel thread context)
3282 * timeout value to use
3285 static unsigned long ata_pio_poll(struct ata_port *ap)
3287 struct ata_queued_cmd *qc;
3289 unsigned int poll_state = HSM_ST_UNKNOWN;
3290 unsigned int reg_state = HSM_ST_UNKNOWN;
3292 qc = ata_qc_from_tag(ap, ap->active_tag);
3295 switch (ap->hsm_task_state) {
3298 poll_state = HSM_ST_POLL;
3302 case HSM_ST_LAST_POLL:
3303 poll_state = HSM_ST_LAST_POLL;
3304 reg_state = HSM_ST_LAST;
3311 status = ata_chk_status(ap);
3312 if (status & ATA_BUSY) {
3313 if (time_after(jiffies, ap->pio_task_timeout)) {
3314 qc->err_mask |= AC_ERR_TIMEOUT;
3315 ap->hsm_task_state = HSM_ST_TMOUT;
3318 ap->hsm_task_state = poll_state;
3319 return ATA_SHORT_PAUSE;
3322 ap->hsm_task_state = reg_state;
3327 * ata_pio_complete - check if drive is busy or idle
3328 * @ap: the target ata_port
3331 * None. (executing in kernel thread context)
3334 * Non-zero if qc completed, zero otherwise.
3337 static int ata_pio_complete (struct ata_port *ap)
3339 struct ata_queued_cmd *qc;
3343 * This is purely heuristic. This is a fast path. Sometimes when
3344 * we enter, BSY will be cleared in a chk-status or two. If not,
3345 * the drive is probably seeking or something. Snooze for a couple
3346 * msecs, then chk-status again. If still busy, fall back to
3347 * HSM_ST_POLL state.
3349 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3350 if (drv_stat & ATA_BUSY) {
3352 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3353 if (drv_stat & ATA_BUSY) {
3354 ap->hsm_task_state = HSM_ST_LAST_POLL;
3355 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3360 qc = ata_qc_from_tag(ap, ap->active_tag);
3363 drv_stat = ata_wait_idle(ap);
3364 if (!ata_ok(drv_stat)) {
3365 qc->err_mask |= __ac_err_mask(drv_stat);
3366 ap->hsm_task_state = HSM_ST_ERR;
3370 ap->hsm_task_state = HSM_ST_IDLE;
3372 assert(qc->err_mask == 0);
3373 ata_poll_qc_complete(qc);
3375 /* another command may start at this point */
3382 * swap_buf_le16 - swap halves of 16-bit words in place
3383 * @buf: Buffer to swap
3384 * @buf_words: Number of 16-bit words in buffer.
3386 * Swap halves of 16-bit words if needed to convert from
3387 * little-endian byte order to native cpu byte order, or
3391 * Inherited from caller.
3393 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3398 for (i = 0; i < buf_words; i++)
3399 buf[i] = le16_to_cpu(buf[i]);
3400 #endif /* __BIG_ENDIAN */
3404 * ata_mmio_data_xfer - Transfer data by MMIO
3405 * @ap: port to read/write
3407 * @buflen: buffer length
3408 * @write_data: read/write
3410 * Transfer data from/to the device data register by MMIO.
3413 * Inherited from caller.
3416 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3417 unsigned int buflen, int write_data)
3420 unsigned int words = buflen >> 1;
3421 u16 *buf16 = (u16 *) buf;
3422 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3424 /* Transfer multiple of 2 bytes */
3426 for (i = 0; i < words; i++)
3427 writew(le16_to_cpu(buf16[i]), mmio);
3429 for (i = 0; i < words; i++)
3430 buf16[i] = cpu_to_le16(readw(mmio));
3433 /* Transfer trailing 1 byte, if any. */
3434 if (unlikely(buflen & 0x01)) {
3435 u16 align_buf[1] = { 0 };
3436 unsigned char *trailing_buf = buf + buflen - 1;
3439 memcpy(align_buf, trailing_buf, 1);
3440 writew(le16_to_cpu(align_buf[0]), mmio);
3442 align_buf[0] = cpu_to_le16(readw(mmio));
3443 memcpy(trailing_buf, align_buf, 1);
3449 * ata_pio_data_xfer - Transfer data by PIO
3450 * @ap: port to read/write
3452 * @buflen: buffer length
3453 * @write_data: read/write
3455 * Transfer data from/to the device data register by PIO.
3458 * Inherited from caller.
3461 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3462 unsigned int buflen, int write_data)
3464 unsigned int words = buflen >> 1;
3466 /* Transfer multiple of 2 bytes */
3468 outsw(ap->ioaddr.data_addr, buf, words);
3470 insw(ap->ioaddr.data_addr, buf, words);
3472 /* Transfer trailing 1 byte, if any. */
3473 if (unlikely(buflen & 0x01)) {
3474 u16 align_buf[1] = { 0 };
3475 unsigned char *trailing_buf = buf + buflen - 1;
3478 memcpy(align_buf, trailing_buf, 1);
3479 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3481 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3482 memcpy(trailing_buf, align_buf, 1);
3488 * ata_data_xfer - Transfer data from/to the data register.
3489 * @ap: port to read/write
3491 * @buflen: buffer length
3492 * @do_write: read/write
3494 * Transfer data from/to the device data register.
3497 * Inherited from caller.
3500 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3501 unsigned int buflen, int do_write)
3503 /* Make the crap hardware pay the costs not the good stuff */
3504 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3505 unsigned long flags;
3506 local_irq_save(flags);
3507 if (ap->flags & ATA_FLAG_MMIO)
3508 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3510 ata_pio_data_xfer(ap, buf, buflen, do_write);
3511 local_irq_restore(flags);
3513 if (ap->flags & ATA_FLAG_MMIO)
3514 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3516 ata_pio_data_xfer(ap, buf, buflen, do_write);
3521 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3522 * @qc: Command on going
3524 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3527 * Inherited from caller.
3530 static void ata_pio_sector(struct ata_queued_cmd *qc)
3532 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3533 struct scatterlist *sg = qc->__sg;
3534 struct ata_port *ap = qc->ap;
3536 unsigned int offset;
3539 if (qc->cursect == (qc->nsect - 1))
3540 ap->hsm_task_state = HSM_ST_LAST;
3542 page = sg[qc->cursg].page;
3543 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3545 /* get the current page and offset */
3546 page = nth_page(page, (offset >> PAGE_SHIFT));
3547 offset %= PAGE_SIZE;
3549 buf = kmap(page) + offset;
3554 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3559 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3561 /* do the actual data transfer */
3562 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3563 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3569 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3570 * @qc: Command on going
3571 * @bytes: number of bytes
3573 * Transfer Transfer data from/to the ATAPI device.
3576 * Inherited from caller.
3580 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3582 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3583 struct scatterlist *sg = qc->__sg;
3584 struct ata_port *ap = qc->ap;
3587 unsigned int offset, count;
3589 if (qc->curbytes + bytes >= qc->nbytes)
3590 ap->hsm_task_state = HSM_ST_LAST;
3593 if (unlikely(qc->cursg >= qc->n_elem)) {
3595 * The end of qc->sg is reached and the device expects
3596 * more data to transfer. In order not to overrun qc->sg
3597 * and fulfill length specified in the byte count register,
3598 * - for read case, discard trailing data from the device
3599 * - for write case, padding zero data to the device
3601 u16 pad_buf[1] = { 0 };
3602 unsigned int words = bytes >> 1;
3605 if (words) /* warning if bytes > 1 */
3606 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3609 for (i = 0; i < words; i++)
3610 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3612 ap->hsm_task_state = HSM_ST_LAST;
3616 sg = &qc->__sg[qc->cursg];
3619 offset = sg->offset + qc->cursg_ofs;
3621 /* get the current page and offset */
3622 page = nth_page(page, (offset >> PAGE_SHIFT));
3623 offset %= PAGE_SIZE;
3625 /* don't overrun current sg */
3626 count = min(sg->length - qc->cursg_ofs, bytes);
3628 /* don't cross page boundaries */
3629 count = min(count, (unsigned int)PAGE_SIZE - offset);
3631 buf = kmap(page) + offset;
3634 qc->curbytes += count;
3635 qc->cursg_ofs += count;
3637 if (qc->cursg_ofs == sg->length) {
3642 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3644 /* do the actual data transfer */
3645 ata_data_xfer(ap, buf, count, do_write);
3654 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3655 * @qc: Command on going
3657 * Transfer Transfer data from/to the ATAPI device.
3660 * Inherited from caller.
3663 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3665 struct ata_port *ap = qc->ap;
3666 struct ata_device *dev = qc->dev;
3667 unsigned int ireason, bc_lo, bc_hi, bytes;
3668 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3670 ap->ops->tf_read(ap, &qc->tf);
3671 ireason = qc->tf.nsect;
3672 bc_lo = qc->tf.lbam;
3673 bc_hi = qc->tf.lbah;
3674 bytes = (bc_hi << 8) | bc_lo;
3676 /* shall be cleared to zero, indicating xfer of data */
3677 if (ireason & (1 << 0))
3680 /* make sure transfer direction matches expected */
3681 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3682 if (do_write != i_write)
3685 __atapi_pio_bytes(qc, bytes);
3690 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3691 ap->id, dev->devno);
3692 qc->err_mask |= AC_ERR_HSM;
3693 ap->hsm_task_state = HSM_ST_ERR;
3697 * ata_pio_block - start PIO on a block
3698 * @ap: the target ata_port
3701 * None. (executing in kernel thread context)
3704 static void ata_pio_block(struct ata_port *ap)
3706 struct ata_queued_cmd *qc;
3710 * This is purely heuristic. This is a fast path.
3711 * Sometimes when we enter, BSY will be cleared in
3712 * a chk-status or two. If not, the drive is probably seeking
3713 * or something. Snooze for a couple msecs, then
3714 * chk-status again. If still busy, fall back to
3715 * HSM_ST_POLL state.
3717 status = ata_busy_wait(ap, ATA_BUSY, 5);
3718 if (status & ATA_BUSY) {
3720 status = ata_busy_wait(ap, ATA_BUSY, 10);
3721 if (status & ATA_BUSY) {
3722 ap->hsm_task_state = HSM_ST_POLL;
3723 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3728 qc = ata_qc_from_tag(ap, ap->active_tag);
3732 if (status & (ATA_ERR | ATA_DF)) {
3733 qc->err_mask |= AC_ERR_DEV;
3734 ap->hsm_task_state = HSM_ST_ERR;
3738 /* transfer data if any */
3739 if (is_atapi_taskfile(&qc->tf)) {
3740 /* DRQ=0 means no more data to transfer */
3741 if ((status & ATA_DRQ) == 0) {
3742 ap->hsm_task_state = HSM_ST_LAST;
3746 atapi_pio_bytes(qc);
3748 /* handle BSY=0, DRQ=0 as error */
3749 if ((status & ATA_DRQ) == 0) {
3750 qc->err_mask |= AC_ERR_HSM;
3751 ap->hsm_task_state = HSM_ST_ERR;
3759 static void ata_pio_error(struct ata_port *ap)
3761 struct ata_queued_cmd *qc;
3763 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3765 qc = ata_qc_from_tag(ap, ap->active_tag);
3768 /* make sure qc->err_mask is available to
3769 * know what's wrong and recover
3771 assert(qc->err_mask);
3773 ap->hsm_task_state = HSM_ST_IDLE;
3775 ata_poll_qc_complete(qc);
3778 static void ata_pio_task(void *_data)
3780 struct ata_port *ap = _data;
3781 unsigned long timeout;
3788 switch (ap->hsm_task_state) {
3797 qc_completed = ata_pio_complete(ap);
3801 case HSM_ST_LAST_POLL:
3802 timeout = ata_pio_poll(ap);
3812 ata_queue_delayed_pio_task(ap, timeout);
3813 else if (!qc_completed)
3818 * ata_qc_timeout - Handle timeout of queued command
3819 * @qc: Command that timed out
3821 * Some part of the kernel (currently, only the SCSI layer)
3822 * has noticed that the active command on port @ap has not
3823 * completed after a specified length of time. Handle this
3824 * condition by disabling DMA (if necessary) and completing
3825 * transactions, with error if necessary.
3827 * This also handles the case of the "lost interrupt", where
3828 * for some reason (possibly hardware bug, possibly driver bug)
3829 * an interrupt was not delivered to the driver, even though the
3830 * transaction completed successfully.
3833 * Inherited from SCSI layer (none, can sleep)
3836 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3838 struct ata_port *ap = qc->ap;
3839 struct ata_host_set *host_set = ap->host_set;
3840 u8 host_stat = 0, drv_stat;
3841 unsigned long flags;
3845 ata_flush_pio_tasks(ap);
3846 ap->hsm_task_state = HSM_ST_IDLE;
3848 spin_lock_irqsave(&host_set->lock, flags);
3850 switch (qc->tf.protocol) {
3853 case ATA_PROT_ATAPI_DMA:
3854 host_stat = ap->ops->bmdma_status(ap);
3856 /* before we do anything else, clear DMA-Start bit */
3857 ap->ops->bmdma_stop(qc);
3863 drv_stat = ata_chk_status(ap);
3865 /* ack bmdma irq events */
3866 ap->ops->irq_clear(ap);
3868 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3869 ap->id, qc->tf.command, drv_stat, host_stat);
3871 /* complete taskfile transaction */
3872 qc->err_mask |= ac_err_mask(drv_stat);
3876 spin_unlock_irqrestore(&host_set->lock, flags);
3878 ata_eh_qc_complete(qc);
3884 * ata_eng_timeout - Handle timeout of queued command
3885 * @ap: Port on which timed-out command is active
3887 * Some part of the kernel (currently, only the SCSI layer)
3888 * has noticed that the active command on port @ap has not
3889 * completed after a specified length of time. Handle this
3890 * condition by disabling DMA (if necessary) and completing
3891 * transactions, with error if necessary.
3893 * This also handles the case of the "lost interrupt", where
3894 * for some reason (possibly hardware bug, possibly driver bug)
3895 * an interrupt was not delivered to the driver, even though the
3896 * transaction completed successfully.
3899 * Inherited from SCSI layer (none, can sleep)
3902 void ata_eng_timeout(struct ata_port *ap)
3904 struct ata_queued_cmd *qc;
3908 qc = ata_qc_from_tag(ap, ap->active_tag);
3912 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3922 * ata_qc_new - Request an available ATA command, for queueing
3923 * @ap: Port associated with device @dev
3924 * @dev: Device from whom we request an available command structure
3930 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3932 struct ata_queued_cmd *qc = NULL;
3935 for (i = 0; i < ATA_MAX_QUEUE; i++)
3936 if (!test_and_set_bit(i, &ap->qactive)) {
3937 qc = ata_qc_from_tag(ap, i);
3948 * ata_qc_new_init - Request an available ATA command, and initialize it
3949 * @ap: Port associated with device @dev
3950 * @dev: Device from whom we request an available command structure
3956 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3957 struct ata_device *dev)
3959 struct ata_queued_cmd *qc;
3961 qc = ata_qc_new(ap);
3974 * ata_qc_free - free unused ata_queued_cmd
3975 * @qc: Command to complete
3977 * Designed to free unused ata_queued_cmd object
3978 * in case something prevents using it.
3981 * spin_lock_irqsave(host_set lock)
3983 void ata_qc_free(struct ata_queued_cmd *qc)
3985 struct ata_port *ap = qc->ap;
3988 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3992 if (likely(ata_tag_valid(tag))) {
3993 if (tag == ap->active_tag)
3994 ap->active_tag = ATA_TAG_POISON;
3995 qc->tag = ATA_TAG_POISON;
3996 clear_bit(tag, &ap->qactive);
4001 * ata_qc_complete - Complete an active ATA command
4002 * @qc: Command to complete
4003 * @err_mask: ATA Status register contents
4005 * Indicate to the mid and upper layers that an ATA
4006 * command has completed, with either an ok or not-ok status.
4009 * spin_lock_irqsave(host_set lock)
4012 void ata_qc_complete(struct ata_queued_cmd *qc)
4014 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
4015 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4017 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4020 /* atapi: mark qc as inactive to prevent the interrupt handler
4021 * from completing the command twice later, before the error handler
4022 * is called. (when rc != 0 and atapi request sense is needed)
4024 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4026 /* call completion callback */
4027 qc->complete_fn(qc);
4030 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4032 struct ata_port *ap = qc->ap;
4034 switch (qc->tf.protocol) {
4036 case ATA_PROT_ATAPI_DMA:
4039 case ATA_PROT_ATAPI:
4041 case ATA_PROT_PIO_MULT:
4042 if (ap->flags & ATA_FLAG_PIO_DMA)
4055 * ata_qc_issue - issue taskfile to device
4056 * @qc: command to issue to device
4058 * Prepare an ATA command to submission to device.
4059 * This includes mapping the data into a DMA-able
4060 * area, filling in the S/G table, and finally
4061 * writing the taskfile to hardware, starting the command.
4064 * spin_lock_irqsave(host_set lock)
4067 * Zero on success, AC_ERR_* mask on failure
4070 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
4072 struct ata_port *ap = qc->ap;
4074 if (ata_should_dma_map(qc)) {
4075 if (qc->flags & ATA_QCFLAG_SG) {
4076 if (ata_sg_setup(qc))
4078 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4079 if (ata_sg_setup_one(qc))
4083 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4086 ap->ops->qc_prep(qc);
4088 qc->ap->active_tag = qc->tag;
4089 qc->flags |= ATA_QCFLAG_ACTIVE;
4091 return ap->ops->qc_issue(qc);
4094 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4095 return AC_ERR_SYSTEM;
4100 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4101 * @qc: command to issue to device
4103 * Using various libata functions and hooks, this function
4104 * starts an ATA command. ATA commands are grouped into
4105 * classes called "protocols", and issuing each type of protocol
4106 * is slightly different.
4108 * May be used as the qc_issue() entry in ata_port_operations.
4111 * spin_lock_irqsave(host_set lock)
4114 * Zero on success, AC_ERR_* mask on failure
4117 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4119 struct ata_port *ap = qc->ap;
4121 ata_dev_select(ap, qc->dev->devno, 1, 0);
4123 switch (qc->tf.protocol) {
4124 case ATA_PROT_NODATA:
4125 ata_tf_to_host(ap, &qc->tf);
4129 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4130 ap->ops->bmdma_setup(qc); /* set up bmdma */
4131 ap->ops->bmdma_start(qc); /* initiate bmdma */
4134 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4135 ata_qc_set_polling(qc);
4136 ata_tf_to_host(ap, &qc->tf);
4137 ap->hsm_task_state = HSM_ST;
4138 ata_queue_pio_task(ap);
4141 case ATA_PROT_ATAPI:
4142 ata_qc_set_polling(qc);
4143 ata_tf_to_host(ap, &qc->tf);
4144 ata_queue_packet_task(ap);
4147 case ATA_PROT_ATAPI_NODATA:
4148 ap->flags |= ATA_FLAG_NOINTR;
4149 ata_tf_to_host(ap, &qc->tf);
4150 ata_queue_packet_task(ap);
4153 case ATA_PROT_ATAPI_DMA:
4154 ap->flags |= ATA_FLAG_NOINTR;
4155 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4156 ap->ops->bmdma_setup(qc); /* set up bmdma */
4157 ata_queue_packet_task(ap);
4162 return AC_ERR_SYSTEM;
4169 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
4170 * @qc: Info associated with this ATA transaction.
4173 * spin_lock_irqsave(host_set lock)
4176 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
4178 struct ata_port *ap = qc->ap;
4179 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4181 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4183 /* load PRD table addr. */
4184 mb(); /* make sure PRD table writes are visible to controller */
4185 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
4187 /* specify data direction, triple-check start bit is clear */
4188 dmactl = readb(mmio + ATA_DMA_CMD);
4189 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4191 dmactl |= ATA_DMA_WR;
4192 writeb(dmactl, mmio + ATA_DMA_CMD);
4194 /* issue r/w command */
4195 ap->ops->exec_command(ap, &qc->tf);
4199 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
4200 * @qc: Info associated with this ATA transaction.
4203 * spin_lock_irqsave(host_set lock)
4206 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
4208 struct ata_port *ap = qc->ap;
4209 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4212 /* start host DMA transaction */
4213 dmactl = readb(mmio + ATA_DMA_CMD);
4214 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
4216 /* Strictly, one may wish to issue a readb() here, to
4217 * flush the mmio write. However, control also passes
4218 * to the hardware at this point, and it will interrupt
4219 * us when we are to resume control. So, in effect,
4220 * we don't care when the mmio write flushes.
4221 * Further, a read of the DMA status register _immediately_
4222 * following the write may not be what certain flaky hardware
4223 * is expected, so I think it is best to not add a readb()
4224 * without first all the MMIO ATA cards/mobos.
4225 * Or maybe I'm just being paranoid.
4230 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
4231 * @qc: Info associated with this ATA transaction.
4234 * spin_lock_irqsave(host_set lock)
4237 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
4239 struct ata_port *ap = qc->ap;
4240 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4243 /* load PRD table addr. */
4244 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
4246 /* specify data direction, triple-check start bit is clear */
4247 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4248 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4250 dmactl |= ATA_DMA_WR;
4251 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4253 /* issue r/w command */
4254 ap->ops->exec_command(ap, &qc->tf);
4258 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
4259 * @qc: Info associated with this ATA transaction.
4262 * spin_lock_irqsave(host_set lock)
4265 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
4267 struct ata_port *ap = qc->ap;
4270 /* start host DMA transaction */
4271 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4272 outb(dmactl | ATA_DMA_START,
4273 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4278 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
4279 * @qc: Info associated with this ATA transaction.
4281 * Writes the ATA_DMA_START flag to the DMA command register.
4283 * May be used as the bmdma_start() entry in ata_port_operations.
4286 * spin_lock_irqsave(host_set lock)
4288 void ata_bmdma_start(struct ata_queued_cmd *qc)
4290 if (qc->ap->flags & ATA_FLAG_MMIO)
4291 ata_bmdma_start_mmio(qc);
4293 ata_bmdma_start_pio(qc);
4298 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
4299 * @qc: Info associated with this ATA transaction.
4301 * Writes address of PRD table to device's PRD Table Address
4302 * register, sets the DMA control register, and calls
4303 * ops->exec_command() to start the transfer.
4305 * May be used as the bmdma_setup() entry in ata_port_operations.
4308 * spin_lock_irqsave(host_set lock)
4310 void ata_bmdma_setup(struct ata_queued_cmd *qc)
4312 if (qc->ap->flags & ATA_FLAG_MMIO)
4313 ata_bmdma_setup_mmio(qc);
4315 ata_bmdma_setup_pio(qc);
4320 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
4321 * @ap: Port associated with this ATA transaction.
4323 * Clear interrupt and error flags in DMA status register.
4325 * May be used as the irq_clear() entry in ata_port_operations.
4328 * spin_lock_irqsave(host_set lock)
4331 void ata_bmdma_irq_clear(struct ata_port *ap)
4333 if (ap->flags & ATA_FLAG_MMIO) {
4334 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
4335 writeb(readb(mmio), mmio);
4337 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
4338 outb(inb(addr), addr);
4345 * ata_bmdma_status - Read PCI IDE BMDMA status
4346 * @ap: Port associated with this ATA transaction.
4348 * Read and return BMDMA status register.
4350 * May be used as the bmdma_status() entry in ata_port_operations.
4353 * spin_lock_irqsave(host_set lock)
4356 u8 ata_bmdma_status(struct ata_port *ap)
4359 if (ap->flags & ATA_FLAG_MMIO) {
4360 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4361 host_stat = readb(mmio + ATA_DMA_STATUS);
4363 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
4369 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
4370 * @qc: Command we are ending DMA for
4372 * Clears the ATA_DMA_START flag in the dma control register
4374 * May be used as the bmdma_stop() entry in ata_port_operations.
4377 * spin_lock_irqsave(host_set lock)
4380 void ata_bmdma_stop(struct ata_queued_cmd *qc)
4382 struct ata_port *ap = qc->ap;
4383 if (ap->flags & ATA_FLAG_MMIO) {
4384 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4386 /* clear start/stop bit */
4387 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4388 mmio + ATA_DMA_CMD);
4390 /* clear start/stop bit */
4391 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4392 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4395 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4396 ata_altstatus(ap); /* dummy read */
4400 * ata_host_intr - Handle host interrupt for given (port, task)
4401 * @ap: Port on which interrupt arrived (possibly...)
4402 * @qc: Taskfile currently active in engine
4404 * Handle host interrupt for given queued command. Currently,
4405 * only DMA interrupts are handled. All other commands are
4406 * handled via polling with interrupts disabled (nIEN bit).
4409 * spin_lock_irqsave(host_set lock)
4412 * One if interrupt was handled, zero if not (shared irq).
4415 inline unsigned int ata_host_intr (struct ata_port *ap,
4416 struct ata_queued_cmd *qc)
4418 u8 status, host_stat;
4420 switch (qc->tf.protocol) {
4423 case ATA_PROT_ATAPI_DMA:
4424 case ATA_PROT_ATAPI:
4425 /* check status of DMA engine */
4426 host_stat = ap->ops->bmdma_status(ap);
4427 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4429 /* if it's not our irq... */
4430 if (!(host_stat & ATA_DMA_INTR))
4433 /* before we do anything else, clear DMA-Start bit */
4434 ap->ops->bmdma_stop(qc);
4438 case ATA_PROT_ATAPI_NODATA:
4439 case ATA_PROT_NODATA:
4440 /* check altstatus */
4441 status = ata_altstatus(ap);
4442 if (status & ATA_BUSY)
4445 /* check main status, clearing INTRQ */
4446 status = ata_chk_status(ap);
4447 if (unlikely(status & ATA_BUSY))
4449 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4450 ap->id, qc->tf.protocol, status);
4452 /* ack bmdma irq events */
4453 ap->ops->irq_clear(ap);
4455 /* complete taskfile transaction */
4456 qc->err_mask |= ac_err_mask(status);
4457 ata_qc_complete(qc);
4464 return 1; /* irq handled */
4467 ap->stats.idle_irq++;
4470 if ((ap->stats.idle_irq % 1000) == 0) {
4472 ata_irq_ack(ap, 0); /* debug trap */
4473 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4476 return 0; /* irq not handled */
4480 * ata_interrupt - Default ATA host interrupt handler
4481 * @irq: irq line (unused)
4482 * @dev_instance: pointer to our ata_host_set information structure
4485 * Default interrupt handler for PCI IDE devices. Calls
4486 * ata_host_intr() for each port that is not disabled.
4489 * Obtains host_set lock during operation.
4492 * IRQ_NONE or IRQ_HANDLED.
4495 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4497 struct ata_host_set *host_set = dev_instance;
4499 unsigned int handled = 0;
4500 unsigned long flags;
4502 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4503 spin_lock_irqsave(&host_set->lock, flags);
4505 for (i = 0; i < host_set->n_ports; i++) {
4506 struct ata_port *ap;
4508 ap = host_set->ports[i];
4510 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4511 struct ata_queued_cmd *qc;
4513 qc = ata_qc_from_tag(ap, ap->active_tag);
4514 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4515 (qc->flags & ATA_QCFLAG_ACTIVE))
4516 handled |= ata_host_intr(ap, qc);
4520 spin_unlock_irqrestore(&host_set->lock, flags);
4522 return IRQ_RETVAL(handled);
4526 * atapi_packet_task - Write CDB bytes to hardware
4527 * @_data: Port to which ATAPI device is attached.
4529 * When device has indicated its readiness to accept
4530 * a CDB, this function is called. Send the CDB.
4531 * If DMA is to be performed, exit immediately.
4532 * Otherwise, we are in polling mode, so poll
4533 * status under operation succeeds or fails.
4536 * Kernel thread context (may sleep)
4539 static void atapi_packet_task(void *_data)
4541 struct ata_port *ap = _data;
4542 struct ata_queued_cmd *qc;
4545 qc = ata_qc_from_tag(ap, ap->active_tag);
4547 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4549 /* sleep-wait for BSY to clear */
4550 DPRINTK("busy wait\n");
4551 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4552 qc->err_mask |= AC_ERR_TIMEOUT;
4556 /* make sure DRQ is set */
4557 status = ata_chk_status(ap);
4558 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4559 qc->err_mask |= AC_ERR_HSM;
4564 DPRINTK("send cdb\n");
4565 assert(ap->cdb_len >= 12);
4567 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4568 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4569 unsigned long flags;
4571 /* Once we're done issuing command and kicking bmdma,
4572 * irq handler takes over. To not lose irq, we need
4573 * to clear NOINTR flag before sending cdb, but
4574 * interrupt handler shouldn't be invoked before we're
4575 * finished. Hence, the following locking.
4577 spin_lock_irqsave(&ap->host_set->lock, flags);
4578 ap->flags &= ~ATA_FLAG_NOINTR;
4579 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4580 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4581 ap->ops->bmdma_start(qc); /* initiate bmdma */
4582 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4584 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4586 /* PIO commands are handled by polling */
4587 ap->hsm_task_state = HSM_ST;
4588 ata_queue_pio_task(ap);
4594 ata_poll_qc_complete(qc);
4599 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4600 * without filling any other registers
4602 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4605 struct ata_taskfile tf;
4608 ata_tf_init(ap, &tf, dev->devno);
4611 tf.flags |= ATA_TFLAG_DEVICE;
4612 tf.protocol = ATA_PROT_NODATA;
4614 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4616 printk(KERN_ERR "%s: ata command failed: %d\n",
4622 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4626 if (!ata_try_flush_cache(dev))
4629 if (ata_id_has_flush_ext(dev->id))
4630 cmd = ATA_CMD_FLUSH_EXT;
4632 cmd = ATA_CMD_FLUSH;
4634 return ata_do_simple_cmd(ap, dev, cmd);
4637 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4639 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4642 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4644 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4648 * ata_device_resume - wakeup a previously suspended devices
4649 * @ap: port the device is connected to
4650 * @dev: the device to resume
4652 * Kick the drive back into action, by sending it an idle immediate
4653 * command and making sure its transfer mode matches between drive
4657 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4659 if (ap->flags & ATA_FLAG_SUSPENDED) {
4660 ap->flags &= ~ATA_FLAG_SUSPENDED;
4663 if (!ata_dev_present(dev))
4665 if (dev->class == ATA_DEV_ATA)
4666 ata_start_drive(ap, dev);
4672 * ata_device_suspend - prepare a device for suspend
4673 * @ap: port the device is connected to
4674 * @dev: the device to suspend
4676 * Flush the cache on the drive, if appropriate, then issue a
4677 * standbynow command.
4679 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4681 if (!ata_dev_present(dev))
4683 if (dev->class == ATA_DEV_ATA)
4684 ata_flush_cache(ap, dev);
4686 ata_standby_drive(ap, dev);
4687 ap->flags |= ATA_FLAG_SUSPENDED;
4692 * ata_port_start - Set port up for dma.
4693 * @ap: Port to initialize
4695 * Called just after data structures for each port are
4696 * initialized. Allocates space for PRD table.
4698 * May be used as the port_start() entry in ata_port_operations.
4701 * Inherited from caller.
4704 int ata_port_start (struct ata_port *ap)
4706 struct device *dev = ap->host_set->dev;
4709 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4713 rc = ata_pad_alloc(ap, dev);
4715 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4719 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4726 * ata_port_stop - Undo ata_port_start()
4727 * @ap: Port to shut down
4729 * Frees the PRD table.
4731 * May be used as the port_stop() entry in ata_port_operations.
4734 * Inherited from caller.
4737 void ata_port_stop (struct ata_port *ap)
4739 struct device *dev = ap->host_set->dev;
4741 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4742 ata_pad_free(ap, dev);
4745 void ata_host_stop (struct ata_host_set *host_set)
4747 if (host_set->mmio_base)
4748 iounmap(host_set->mmio_base);
4753 * ata_host_remove - Unregister SCSI host structure with upper layers
4754 * @ap: Port to unregister
4755 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4758 * Inherited from caller.
4761 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4763 struct Scsi_Host *sh = ap->host;
4768 scsi_remove_host(sh);
4770 ap->ops->port_stop(ap);
4774 * ata_host_init - Initialize an ata_port structure
4775 * @ap: Structure to initialize
4776 * @host: associated SCSI mid-layer structure
4777 * @host_set: Collection of hosts to which @ap belongs
4778 * @ent: Probe information provided by low-level driver
4779 * @port_no: Port number associated with this ata_port
4781 * Initialize a new ata_port structure, and its associated
4785 * Inherited from caller.
4788 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4789 struct ata_host_set *host_set,
4790 const struct ata_probe_ent *ent, unsigned int port_no)
4796 host->max_channel = 1;
4797 host->unique_id = ata_unique_id++;
4798 host->max_cmd_len = 12;
4800 ap->flags = ATA_FLAG_PORT_DISABLED;
4801 ap->id = host->unique_id;
4803 ap->ctl = ATA_DEVCTL_OBS;
4804 ap->host_set = host_set;
4805 ap->port_no = port_no;
4807 ent->legacy_mode ? ent->hard_port_no : port_no;
4808 ap->pio_mask = ent->pio_mask;
4809 ap->mwdma_mask = ent->mwdma_mask;
4810 ap->udma_mask = ent->udma_mask;
4811 ap->flags |= ent->host_flags;
4812 ap->ops = ent->port_ops;
4813 ap->cbl = ATA_CBL_NONE;
4814 ap->active_tag = ATA_TAG_POISON;
4815 ap->last_ctl = 0xFF;
4817 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4818 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4819 INIT_LIST_HEAD(&ap->eh_done_q);
4821 for (i = 0; i < ATA_MAX_DEVICES; i++)
4822 ap->device[i].devno = i;
4825 ap->stats.unhandled_irq = 1;
4826 ap->stats.idle_irq = 1;
4829 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4833 * ata_host_add - Attach low-level ATA driver to system
4834 * @ent: Information provided by low-level driver
4835 * @host_set: Collections of ports to which we add
4836 * @port_no: Port number associated with this host
4838 * Attach low-level ATA driver to system.
4841 * PCI/etc. bus probe sem.
4844 * New ata_port on success, for NULL on error.
4847 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4848 struct ata_host_set *host_set,
4849 unsigned int port_no)
4851 struct Scsi_Host *host;
4852 struct ata_port *ap;
4856 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4860 ap = (struct ata_port *) &host->hostdata[0];
4862 ata_host_init(ap, host, host_set, ent, port_no);
4864 rc = ap->ops->port_start(ap);
4871 scsi_host_put(host);
4876 * ata_device_add - Register hardware device with ATA and SCSI layers
4877 * @ent: Probe information describing hardware device to be registered
4879 * This function processes the information provided in the probe
4880 * information struct @ent, allocates the necessary ATA and SCSI
4881 * host information structures, initializes them, and registers
4882 * everything with requisite kernel subsystems.
4884 * This function requests irqs, probes the ATA bus, and probes
4888 * PCI/etc. bus probe sem.
4891 * Number of ports registered. Zero on error (no ports registered).
4894 int ata_device_add(const struct ata_probe_ent *ent)
4896 unsigned int count = 0, i;
4897 struct device *dev = ent->dev;
4898 struct ata_host_set *host_set;
4901 /* alloc a container for our list of ATA ports (buses) */
4902 host_set = kzalloc(sizeof(struct ata_host_set) +
4903 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4906 spin_lock_init(&host_set->lock);
4908 host_set->dev = dev;
4909 host_set->n_ports = ent->n_ports;
4910 host_set->irq = ent->irq;
4911 host_set->mmio_base = ent->mmio_base;
4912 host_set->private_data = ent->private_data;
4913 host_set->ops = ent->port_ops;
4915 /* register each port bound to this device */
4916 for (i = 0; i < ent->n_ports; i++) {
4917 struct ata_port *ap;
4918 unsigned long xfer_mode_mask;
4920 ap = ata_host_add(ent, host_set, i);
4924 host_set->ports[i] = ap;
4925 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4926 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4927 (ap->pio_mask << ATA_SHIFT_PIO);
4929 /* print per-port info to dmesg */
4930 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4931 "bmdma 0x%lX irq %lu\n",
4933 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4934 ata_mode_string(xfer_mode_mask),
4935 ap->ioaddr.cmd_addr,
4936 ap->ioaddr.ctl_addr,
4937 ap->ioaddr.bmdma_addr,
4941 host_set->ops->irq_clear(ap);
4948 /* obtain irq, that is shared between channels */
4949 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4950 DRV_NAME, host_set))
4953 /* perform each probe synchronously */
4954 DPRINTK("probe begin\n");
4955 for (i = 0; i < count; i++) {
4956 struct ata_port *ap;
4959 ap = host_set->ports[i];
4961 DPRINTK("ata%u: bus probe begin\n", ap->id);
4962 rc = ata_bus_probe(ap);
4963 DPRINTK("ata%u: bus probe end\n", ap->id);
4966 /* FIXME: do something useful here?
4967 * Current libata behavior will
4968 * tear down everything when
4969 * the module is removed
4970 * or the h/w is unplugged.
4974 rc = scsi_add_host(ap->host, dev);
4976 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4978 /* FIXME: do something useful here */
4979 /* FIXME: handle unconditional calls to
4980 * scsi_scan_host and ata_host_remove, below,
4986 /* probes are done, now scan each port's disk(s) */
4987 DPRINTK("host probe begin\n");
4988 for (i = 0; i < count; i++) {
4989 struct ata_port *ap = host_set->ports[i];
4991 ata_scsi_scan_host(ap);
4994 dev_set_drvdata(dev, host_set);
4996 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4997 return ent->n_ports; /* success */
5000 for (i = 0; i < count; i++) {
5001 ata_host_remove(host_set->ports[i], 1);
5002 scsi_host_put(host_set->ports[i]->host);
5006 VPRINTK("EXIT, returning 0\n");
5011 * ata_host_set_remove - PCI layer callback for device removal
5012 * @host_set: ATA host set that was removed
5014 * Unregister all objects associated with this host set. Free those
5018 * Inherited from calling layer (may sleep).
5021 void ata_host_set_remove(struct ata_host_set *host_set)
5023 struct ata_port *ap;
5026 for (i = 0; i < host_set->n_ports; i++) {
5027 ap = host_set->ports[i];
5028 scsi_remove_host(ap->host);
5031 free_irq(host_set->irq, host_set);
5033 for (i = 0; i < host_set->n_ports; i++) {
5034 ap = host_set->ports[i];
5036 ata_scsi_release(ap->host);
5038 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5039 struct ata_ioports *ioaddr = &ap->ioaddr;
5041 if (ioaddr->cmd_addr == 0x1f0)
5042 release_region(0x1f0, 8);
5043 else if (ioaddr->cmd_addr == 0x170)
5044 release_region(0x170, 8);
5047 scsi_host_put(ap->host);
5050 if (host_set->ops->host_stop)
5051 host_set->ops->host_stop(host_set);
5057 * ata_scsi_release - SCSI layer callback hook for host unload
5058 * @host: libata host to be unloaded
5060 * Performs all duties necessary to shut down a libata port...
5061 * Kill port kthread, disable port, and release resources.
5064 * Inherited from SCSI layer.
5070 int ata_scsi_release(struct Scsi_Host *host)
5072 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
5076 ap->ops->port_disable(ap);
5077 ata_host_remove(ap, 0);
5084 * ata_std_ports - initialize ioaddr with standard port offsets.
5085 * @ioaddr: IO address structure to be initialized
5087 * Utility function which initializes data_addr, error_addr,
5088 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5089 * device_addr, status_addr, and command_addr to standard offsets
5090 * relative to cmd_addr.
5092 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5095 void ata_std_ports(struct ata_ioports *ioaddr)
5097 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5098 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5099 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5100 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5101 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5102 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5103 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5104 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5105 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5106 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5109 static struct ata_probe_ent *
5110 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5112 struct ata_probe_ent *probe_ent;
5114 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5116 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5117 kobject_name(&(dev->kobj)));
5121 INIT_LIST_HEAD(&probe_ent->node);
5122 probe_ent->dev = dev;
5124 probe_ent->sht = port->sht;
5125 probe_ent->host_flags = port->host_flags;
5126 probe_ent->pio_mask = port->pio_mask;
5127 probe_ent->mwdma_mask = port->mwdma_mask;
5128 probe_ent->udma_mask = port->udma_mask;
5129 probe_ent->port_ops = port->port_ops;
5138 void ata_pci_host_stop (struct ata_host_set *host_set)
5140 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5142 pci_iounmap(pdev, host_set->mmio_base);
5146 * ata_pci_init_native_mode - Initialize native-mode driver
5147 * @pdev: pci device to be initialized
5148 * @port: array[2] of pointers to port info structures.
5149 * @ports: bitmap of ports present
5151 * Utility function which allocates and initializes an
5152 * ata_probe_ent structure for a standard dual-port
5153 * PIO-based IDE controller. The returned ata_probe_ent
5154 * structure can be passed to ata_device_add(). The returned
5155 * ata_probe_ent structure should then be freed with kfree().
5157 * The caller need only pass the address of the primary port, the
5158 * secondary will be deduced automatically. If the device has non
5159 * standard secondary port mappings this function can be called twice,
5160 * once for each interface.
5163 struct ata_probe_ent *
5164 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
5166 struct ata_probe_ent *probe_ent =
5167 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
5173 probe_ent->irq = pdev->irq;
5174 probe_ent->irq_flags = SA_SHIRQ;
5175 probe_ent->private_data = port[0]->private_data;
5177 if (ports & ATA_PORT_PRIMARY) {
5178 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
5179 probe_ent->port[p].altstatus_addr =
5180 probe_ent->port[p].ctl_addr =
5181 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
5182 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
5183 ata_std_ports(&probe_ent->port[p]);
5187 if (ports & ATA_PORT_SECONDARY) {
5188 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
5189 probe_ent->port[p].altstatus_addr =
5190 probe_ent->port[p].ctl_addr =
5191 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
5192 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
5193 ata_std_ports(&probe_ent->port[p]);
5197 probe_ent->n_ports = p;
5201 static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
5203 struct ata_probe_ent *probe_ent;
5205 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
5209 probe_ent->legacy_mode = 1;
5210 probe_ent->n_ports = 1;
5211 probe_ent->hard_port_no = port_num;
5212 probe_ent->private_data = port->private_data;
5217 probe_ent->irq = 14;
5218 probe_ent->port[0].cmd_addr = 0x1f0;
5219 probe_ent->port[0].altstatus_addr =
5220 probe_ent->port[0].ctl_addr = 0x3f6;
5223 probe_ent->irq = 15;
5224 probe_ent->port[0].cmd_addr = 0x170;
5225 probe_ent->port[0].altstatus_addr =
5226 probe_ent->port[0].ctl_addr = 0x376;
5229 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
5230 ata_std_ports(&probe_ent->port[0]);
5235 * ata_pci_init_one - Initialize/register PCI IDE host controller
5236 * @pdev: Controller to be initialized
5237 * @port_info: Information from low-level host driver
5238 * @n_ports: Number of ports attached to host controller
5240 * This is a helper function which can be called from a driver's
5241 * xxx_init_one() probe function if the hardware uses traditional
5242 * IDE taskfile registers.
5244 * This function calls pci_enable_device(), reserves its register
5245 * regions, sets the dma mask, enables bus master mode, and calls
5249 * Inherited from PCI layer (may sleep).
5252 * Zero on success, negative on errno-based value on error.
5255 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
5256 unsigned int n_ports)
5258 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
5259 struct ata_port_info *port[2];
5261 unsigned int legacy_mode = 0;
5262 int disable_dev_on_err = 1;
5267 port[0] = port_info[0];
5269 port[1] = port_info[1];
5273 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
5274 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
5275 /* TODO: What if one channel is in native mode ... */
5276 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
5277 mask = (1 << 2) | (1 << 0);
5278 if ((tmp8 & mask) != mask)
5279 legacy_mode = (1 << 3);
5283 if ((!legacy_mode) && (n_ports > 2)) {
5284 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
5289 /* FIXME: Really for ATA it isn't safe because the device may be
5290 multi-purpose and we want to leave it alone if it was already
5291 enabled. Secondly for shared use as Arjan says we want refcounting
5293 Checking dev->is_enabled is insufficient as this is not set at
5294 boot for the primary video which is BIOS enabled
5297 rc = pci_enable_device(pdev);
5301 rc = pci_request_regions(pdev, DRV_NAME);
5303 disable_dev_on_err = 0;
5307 /* FIXME: Should use platform specific mappers for legacy port ranges */
5309 if (!request_region(0x1f0, 8, "libata")) {
5310 struct resource *conflict, res;
5312 res.end = 0x1f0 + 8 - 1;
5313 conflict = ____request_resource(&ioport_resource, &res);
5314 if (!strcmp(conflict->name, "libata"))
5315 legacy_mode |= (1 << 0);
5317 disable_dev_on_err = 0;
5318 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
5321 legacy_mode |= (1 << 0);
5323 if (!request_region(0x170, 8, "libata")) {
5324 struct resource *conflict, res;
5326 res.end = 0x170 + 8 - 1;
5327 conflict = ____request_resource(&ioport_resource, &res);
5328 if (!strcmp(conflict->name, "libata"))
5329 legacy_mode |= (1 << 1);
5331 disable_dev_on_err = 0;
5332 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
5335 legacy_mode |= (1 << 1);
5338 /* we have legacy mode, but all ports are unavailable */
5339 if (legacy_mode == (1 << 3)) {
5341 goto err_out_regions;
5344 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
5346 goto err_out_regions;
5347 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
5349 goto err_out_regions;
5352 if (legacy_mode & (1 << 0))
5353 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
5354 if (legacy_mode & (1 << 1))
5355 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
5358 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
5360 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
5362 if (!probe_ent && !probe_ent2) {
5364 goto err_out_regions;
5367 pci_set_master(pdev);
5369 /* FIXME: check ata_device_add return */
5371 if (legacy_mode & (1 << 0))
5372 ata_device_add(probe_ent);
5373 if (legacy_mode & (1 << 1))
5374 ata_device_add(probe_ent2);
5376 ata_device_add(probe_ent);
5384 if (legacy_mode & (1 << 0))
5385 release_region(0x1f0, 8);
5386 if (legacy_mode & (1 << 1))
5387 release_region(0x170, 8);
5388 pci_release_regions(pdev);
5390 if (disable_dev_on_err)
5391 pci_disable_device(pdev);
5396 * ata_pci_remove_one - PCI layer callback for device removal
5397 * @pdev: PCI device that was removed
5399 * PCI layer indicates to libata via this hook that
5400 * hot-unplug or module unload event has occurred.
5401 * Handle this by unregistering all objects associated
5402 * with this PCI device. Free those objects. Then finally
5403 * release PCI resources and disable device.
5406 * Inherited from PCI layer (may sleep).
5409 void ata_pci_remove_one (struct pci_dev *pdev)
5411 struct device *dev = pci_dev_to_dev(pdev);
5412 struct ata_host_set *host_set = dev_get_drvdata(dev);
5414 ata_host_set_remove(host_set);
5415 pci_release_regions(pdev);
5416 pci_disable_device(pdev);
5417 dev_set_drvdata(dev, NULL);
5420 /* move to PCI subsystem */
5421 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5423 unsigned long tmp = 0;
5425 switch (bits->width) {
5428 pci_read_config_byte(pdev, bits->reg, &tmp8);
5434 pci_read_config_word(pdev, bits->reg, &tmp16);
5440 pci_read_config_dword(pdev, bits->reg, &tmp32);
5451 return (tmp == bits->val) ? 1 : 0;
5454 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5456 pci_save_state(pdev);
5457 pci_disable_device(pdev);
5458 pci_set_power_state(pdev, PCI_D3hot);
5462 int ata_pci_device_resume(struct pci_dev *pdev)
5464 pci_set_power_state(pdev, PCI_D0);
5465 pci_restore_state(pdev);
5466 pci_enable_device(pdev);
5467 pci_set_master(pdev);
5470 #endif /* CONFIG_PCI */
5473 static int __init ata_init(void)
5475 ata_wq = create_workqueue("ata");
5479 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5483 static void __exit ata_exit(void)
5485 destroy_workqueue(ata_wq);
5488 module_init(ata_init);
5489 module_exit(ata_exit);
5491 static unsigned long ratelimit_time;
5492 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5494 int ata_ratelimit(void)
5497 unsigned long flags;
5499 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5501 if (time_after(jiffies, ratelimit_time)) {
5503 ratelimit_time = jiffies + (HZ/5);
5507 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5513 * libata is essentially a library of internal helper functions for
5514 * low-level ATA host controller drivers. As such, the API/ABI is
5515 * likely to change as new drivers are added and updated.
5516 * Do not depend on ABI/API stability.
5519 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5520 EXPORT_SYMBOL_GPL(ata_std_ports);
5521 EXPORT_SYMBOL_GPL(ata_device_add);
5522 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5523 EXPORT_SYMBOL_GPL(ata_sg_init);
5524 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5525 EXPORT_SYMBOL_GPL(ata_qc_complete);
5526 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5527 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5528 EXPORT_SYMBOL_GPL(ata_tf_load);
5529 EXPORT_SYMBOL_GPL(ata_tf_read);
5530 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5531 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5532 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5533 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5534 EXPORT_SYMBOL_GPL(ata_check_status);
5535 EXPORT_SYMBOL_GPL(ata_altstatus);
5536 EXPORT_SYMBOL_GPL(ata_exec_command);
5537 EXPORT_SYMBOL_GPL(ata_port_start);
5538 EXPORT_SYMBOL_GPL(ata_port_stop);
5539 EXPORT_SYMBOL_GPL(ata_host_stop);
5540 EXPORT_SYMBOL_GPL(ata_interrupt);
5541 EXPORT_SYMBOL_GPL(ata_qc_prep);
5542 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5543 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5544 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5545 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5546 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5547 EXPORT_SYMBOL_GPL(ata_port_probe);
5548 EXPORT_SYMBOL_GPL(sata_phy_reset);
5549 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5550 EXPORT_SYMBOL_GPL(ata_bus_reset);
5551 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5552 EXPORT_SYMBOL_GPL(ata_std_softreset);
5553 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5554 EXPORT_SYMBOL_GPL(ata_std_postreset);
5555 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5556 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5557 EXPORT_SYMBOL_GPL(ata_port_disable);
5558 EXPORT_SYMBOL_GPL(ata_ratelimit);
5559 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5560 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5561 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5562 EXPORT_SYMBOL_GPL(ata_scsi_error);
5563 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5564 EXPORT_SYMBOL_GPL(ata_scsi_release);
5565 EXPORT_SYMBOL_GPL(ata_host_intr);
5566 EXPORT_SYMBOL_GPL(ata_dev_classify);
5567 EXPORT_SYMBOL_GPL(ata_dev_id_string);
5568 EXPORT_SYMBOL_GPL(ata_dev_config);
5569 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5570 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5571 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5573 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5574 EXPORT_SYMBOL_GPL(ata_timing_compute);
5575 EXPORT_SYMBOL_GPL(ata_timing_merge);
5578 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5579 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5580 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5581 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5582 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5583 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5584 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5585 #endif /* CONFIG_PCI */
5587 EXPORT_SYMBOL_GPL(ata_device_suspend);
5588 EXPORT_SYMBOL_GPL(ata_device_resume);
5589 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5590 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);