2 ** -----------------------------------------------------------------------------
4 ** Perle Specialix driver for Linux
5 ** Ported from existing RIO Driver for SCO sources.
7 * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 ** Module : rioroute.c
25 ** Last Modified : 11/6/98 10:33:46
26 ** Retrieved : 11/6/98 10:33:50
28 ** ident @(#)rioroute.c 1.3
30 ** -----------------------------------------------------------------------------
33 static char *_rioroute_c_sccs_ = "@(#)rioroute.c 1.3";
36 #include <linux/module.h>
37 #include <linux/slab.h>
38 #include <linux/errno.h>
40 #include <asm/system.h>
41 #include <asm/string.h>
42 #include <asm/uaccess.h>
44 #include <linux/termios.h>
45 #include <linux/serial.h>
47 #include <linux/generic_serial.h>
50 #include "linux_compat.h"
51 #include "rio_linux.h"
78 static int RIOCheckIsolated(struct rio_info *, struct Host *, unsigned int);
79 static int RIOIsolate(struct rio_info *, struct Host *, unsigned int);
80 static int RIOCheck(struct Host *, unsigned int);
81 static void RIOConCon(struct rio_info *, struct Host *, unsigned int, unsigned int, unsigned int, unsigned int, int);
85 ** Incoming on the ROUTE_RUP
86 ** I wrote this while I was tired. Forgive me.
88 int RIORouteRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem * PacketP)
90 struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
91 struct PktCmd_M *PktReplyP;
92 struct CmdBlk *CmdBlkP;
96 int ThisLink, ThisLinkMin, ThisLinkMax;
99 unsigned short RtaType;
100 unsigned int RtaUniq;
101 unsigned int ThisUnit, ThisUnit2; /* 2 ids to accommodate 16 port RTA */
102 unsigned int OldUnit, NewUnit, OldLink, NewLink;
103 char *MyType, *MyName;
108 ** Is this unit telling us it's current link topology?
110 if (readb(&PktCmdP->Command) == ROUTE_TOPOLOGY) {
111 MapP = HostP->Mapping;
114 ** The packet can be sent either by the host or by an RTA.
115 ** If it comes from the host, then we need to fill in the
116 ** Topology array in the host structure. If it came in
117 ** from an RTA then we need to fill in the Mapping structure's
118 ** Topology array for the unit.
120 if (Rup >= (unsigned short) MAX_RUP) {
122 TopP = HostP->Topology;
124 MyName = HostP->Name;
125 ThisLinkMin = ThisLinkMax = Rup - MAX_RUP;
128 TopP = HostP->Mapping[Rup].Topology;
130 MyName = HostP->Mapping[Rup].Name;
132 ThisLinkMax = LINKS_PER_UNIT - 1;
136 ** Lies will not be tolerated.
137 ** If any pair of links claim to be connected to the same
138 ** place, then ignore this packet completely.
141 for (ThisLink = ThisLinkMin + 1; ThisLink <= ThisLinkMax; ThisLink++) {
143 ** it won't lie about network interconnect, total disconnects
144 ** and no-IDs. (or at least, it doesn't *matter* if it does)
146 if (readb(&PktCmdP->RouteTopology[ThisLink].Unit) > (unsigned short) MAX_RUP)
149 for (NewLink = ThisLinkMin; NewLink < ThisLink; NewLink++) {
150 if ((readb(&PktCmdP->RouteTopology[ThisLink].Unit) == readb(&PktCmdP->RouteTopology[NewLink].Unit)) && (readb(&PktCmdP->RouteTopology[ThisLink].Link) == readb(&PktCmdP->RouteTopology[NewLink].Link))) {
157 rio_dprintk(RIO_DEBUG_ROUTE, "LIES! DAMN LIES! %d LIES!\n", Lies);
158 rio_dprintk(RIO_DEBUG_ROUTE, "%d:%c %d:%c %d:%c %d:%c\n",
159 readb(&PktCmdP->RouteTopology[0].Unit),
160 'A' + readb(&PktCmdP->RouteTopology[0].Link),
161 readb(&PktCmdP->RouteTopology[1].Unit),
162 'A' + readb(&PktCmdP->RouteTopology[1].Link), readb(&PktCmdP->RouteTopology[2].Unit), 'A' + readb(&PktCmdP->RouteTopology[2].Link), readb(&PktCmdP->RouteTopology[3].Unit), 'A' + readb(&PktCmdP->RouteTopology[3].Link));
167 ** now, process each link.
169 for (ThisLink = ThisLinkMin; ThisLink <= ThisLinkMax; ThisLink++) {
171 ** this is what it was connected to
173 OldUnit = TopP[ThisLink].Unit;
174 OldLink = TopP[ThisLink].Link;
177 ** this is what it is now connected to
179 NewUnit = readb(&PktCmdP->RouteTopology[ThisLink].Unit);
180 NewLink = readb(&PktCmdP->RouteTopology[ThisLink].Link);
182 if (OldUnit != NewUnit || OldLink != NewLink) {
184 ** something has changed!
187 if (NewUnit > MAX_RUP && NewUnit != ROUTE_DISCONNECT && NewUnit != ROUTE_NO_ID && NewUnit != ROUTE_INTERCONNECT) {
188 rio_dprintk(RIO_DEBUG_ROUTE, "I have a link from %s %s to unit %d:%d - I don't like it.\n", MyType, MyName, NewUnit, NewLink);
191 ** put the new values in
193 TopP[ThisLink].Unit = NewUnit;
194 TopP[ThisLink].Link = NewLink;
198 if (OldUnit <= MAX_RUP) {
200 ** If something has become bust, then re-enable them messages
202 if (!p->RIONoMessage)
203 RIOConCon(p, HostP, ThisUnit, ThisLink, OldUnit, OldLink, DISCONNECT);
206 if ((NewUnit <= MAX_RUP) && !p->RIONoMessage)
207 RIOConCon(p, HostP, ThisUnit, ThisLink, NewUnit, NewLink, CONNECT);
209 if (NewUnit == ROUTE_NO_ID)
210 rio_dprintk(RIO_DEBUG_ROUTE, "%s %s (%c) is connected to an unconfigured unit.\n", MyType, MyName, 'A' + ThisLink);
212 if (NewUnit == ROUTE_INTERCONNECT) {
213 if (!p->RIONoMessage)
214 printk(KERN_DEBUG "rio: %s '%s' (%c) is connected to another network.\n", MyType, MyName, 'A' + ThisLink);
218 ** perform an update for 'the other end', so that these messages
219 ** only appears once. Only disconnect the other end if it is pointing
222 if (OldUnit == HOST_ID) {
223 if (HostP->Topology[OldLink].Unit == ThisUnit && HostP->Topology[OldLink].Link == ThisLink) {
224 rio_dprintk(RIO_DEBUG_ROUTE, "SETTING HOST (%c) TO DISCONNECTED!\n", OldLink + 'A');
225 HostP->Topology[OldLink].Unit = ROUTE_DISCONNECT;
226 HostP->Topology[OldLink].Link = NO_LINK;
228 rio_dprintk(RIO_DEBUG_ROUTE, "HOST(%c) WAS NOT CONNECTED TO %s (%c)!\n", OldLink + 'A', HostP->Mapping[ThisUnit - 1].Name, ThisLink + 'A');
230 } else if (OldUnit <= MAX_RUP) {
231 if (HostP->Mapping[OldUnit - 1].Topology[OldLink].Unit == ThisUnit && HostP->Mapping[OldUnit - 1].Topology[OldLink].Link == ThisLink) {
232 rio_dprintk(RIO_DEBUG_ROUTE, "SETTING RTA %s (%c) TO DISCONNECTED!\n", HostP->Mapping[OldUnit - 1].Name, OldLink + 'A');
233 HostP->Mapping[OldUnit - 1].Topology[OldLink].Unit = ROUTE_DISCONNECT;
234 HostP->Mapping[OldUnit - 1].Topology[OldLink].Link = NO_LINK;
236 rio_dprintk(RIO_DEBUG_ROUTE, "RTA %s (%c) WAS NOT CONNECTED TO %s (%c)\n", HostP->Mapping[OldUnit - 1].Name, OldLink + 'A', HostP->Mapping[ThisUnit - 1].Name, ThisLink + 'A');
239 if (NewUnit == HOST_ID) {
240 rio_dprintk(RIO_DEBUG_ROUTE, "MARKING HOST (%c) CONNECTED TO %s (%c)\n", NewLink + 'A', MyName, ThisLink + 'A');
241 HostP->Topology[NewLink].Unit = ThisUnit;
242 HostP->Topology[NewLink].Link = ThisLink;
243 } else if (NewUnit <= MAX_RUP) {
244 rio_dprintk(RIO_DEBUG_ROUTE, "MARKING RTA %s (%c) CONNECTED TO %s (%c)\n", HostP->Mapping[NewUnit - 1].Name, NewLink + 'A', MyName, ThisLink + 'A');
245 HostP->Mapping[NewUnit - 1].Topology[NewLink].Unit = ThisUnit;
246 HostP->Mapping[NewUnit - 1].Topology[NewLink].Link = ThisLink;
250 RIOCheckIsolated(p, HostP, OldUnit);
257 ** The only other command we recognise is a route_request command
259 if (readb(&PktCmdP->Command) != ROUTE_REQUEST) {
260 rio_dprintk(RIO_DEBUG_ROUTE, "Unknown command %d received on rup %d host %p ROUTE_RUP\n", readb(&PktCmdP->Command), Rup, HostP);
264 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);
267 ** Determine if 8 or 16 port RTA
269 RtaType = GetUnitType(RtaUniq);
271 rio_dprintk(RIO_DEBUG_ROUTE, "Received a request for an ID for serial number %x\n", RtaUniq);
273 Mod = readb(&PktCmdP->ModuleTypes);
275 if (RtaType == TYPE_RTA16) {
277 ** Only one ident is set for a 16 port RTA. To make compatible
278 ** with 8 port, set 2nd ident in Mod2 to the same as Mod1.
281 rio_dprintk(RIO_DEBUG_ROUTE, "Backplane type is %s (all ports)\n", p->RIOModuleTypes[Mod1].Name);
284 rio_dprintk(RIO_DEBUG_ROUTE, "Module types are %s (ports 0-3) and %s (ports 4-7)\n", p->RIOModuleTypes[Mod1].Name, p->RIOModuleTypes[Mod2].Name);
288 ** try to unhook a command block from the command free list.
290 if (!(CmdBlkP = RIOGetCmdBlk())) {
291 rio_dprintk(RIO_DEBUG_ROUTE, "No command blocks to route RTA! come back later.\n");
296 ** Fill in the default info on the command block
298 CmdBlkP->Packet.dest_unit = Rup;
299 CmdBlkP->Packet.dest_port = ROUTE_RUP;
300 CmdBlkP->Packet.src_unit = HOST_ID;
301 CmdBlkP->Packet.src_port = ROUTE_RUP;
302 CmdBlkP->Packet.len = PKT_CMD_BIT | 1;
303 CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
304 PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;
306 if (!RIOBootOk(p, HostP, RtaUniq)) {
307 rio_dprintk(RIO_DEBUG_ROUTE, "RTA %x tried to get an ID, but does not belong - FOAD it!\n", RtaUniq);
308 PktReplyP->Command = ROUTE_FOAD;
309 memcpy(PktReplyP->CommandText, "RT_FOAD", 7);
310 RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
315 ** Check to see if the RTA is configured for this host
317 for (ThisUnit = 0; ThisUnit < MAX_RUP; ThisUnit++) {
318 rio_dprintk(RIO_DEBUG_ROUTE, "Entry %d Flags=%s %s UniqueNum=0x%x\n",
319 ThisUnit, HostP->Mapping[ThisUnit].Flags & SLOT_IN_USE ? "Slot-In-Use" : "Not In Use", HostP->Mapping[ThisUnit].Flags & SLOT_TENTATIVE ? "Slot-Tentative" : "Not Tentative", HostP->Mapping[ThisUnit].RtaUniqueNum);
322 ** We have an entry for it.
324 if ((HostP->Mapping[ThisUnit].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (HostP->Mapping[ThisUnit].RtaUniqueNum == RtaUniq)) {
325 if (RtaType == TYPE_RTA16) {
326 ThisUnit2 = HostP->Mapping[ThisUnit].ID2 - 1;
327 rio_dprintk(RIO_DEBUG_ROUTE, "Found unit 0x%x at slots %d+%d\n", RtaUniq, ThisUnit, ThisUnit2);
329 rio_dprintk(RIO_DEBUG_ROUTE, "Found unit 0x%x at slot %d\n", RtaUniq, ThisUnit);
331 ** If we have no knowledge of booting it, then the host has
332 ** been re-booted, and so we must kill the RTA, so that it
333 ** will be booted again (potentially with new bins)
334 ** and it will then re-ask for an ID, which we will service.
336 if ((HostP->Mapping[ThisUnit].Flags & SLOT_IN_USE) && !(HostP->Mapping[ThisUnit].Flags & RTA_BOOTED)) {
337 if (!(HostP->Mapping[ThisUnit].Flags & MSG_DONE)) {
338 if (!p->RIONoMessage)
339 printk(KERN_DEBUG "rio: RTA '%s' is being updated.\n", HostP->Mapping[ThisUnit].Name);
340 HostP->Mapping[ThisUnit].Flags |= MSG_DONE;
342 PktReplyP->Command = ROUTE_FOAD;
343 memcpy(PktReplyP->CommandText, "RT_FOAD", 7);
344 RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
349 ** Send the ID (entry) to this RTA. The ID number is implicit as
350 ** the offset into the table. It is worth noting at this stage
351 ** that offset zero in the table contains the entries for the
354 PktReplyP->Command = ROUTE_ALLOCATE;
355 PktReplyP->IDNum = ThisUnit + 1;
356 if (RtaType == TYPE_RTA16) {
357 if (HostP->Mapping[ThisUnit].Flags & SLOT_IN_USE)
359 ** Adjust the phb and tx pkt dest_units for 2nd block of 8
360 ** only if the RTA has ports associated (SLOT_IN_USE)
362 RIOFixPhbs(p, HostP, ThisUnit2);
363 PktReplyP->IDNum2 = ThisUnit2 + 1;
364 rio_dprintk(RIO_DEBUG_ROUTE, "RTA '%s' has been allocated IDs %d+%d\n", HostP->Mapping[ThisUnit].Name, PktReplyP->IDNum, PktReplyP->IDNum2);
366 PktReplyP->IDNum2 = ROUTE_NO_ID;
367 rio_dprintk(RIO_DEBUG_ROUTE, "RTA '%s' has been allocated ID %d\n", HostP->Mapping[ThisUnit].Name, PktReplyP->IDNum);
369 memcpy(PktReplyP->CommandText, "RT_ALLOCAT", 10);
371 RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
374 ** If this is a freshly booted RTA, then we need to re-open
375 ** the ports, if any where open, so that data may once more
376 ** flow around the system!
378 if ((HostP->Mapping[ThisUnit].Flags & RTA_NEWBOOT) && (HostP->Mapping[ThisUnit].SysPort != NO_PORT)) {
380 ** look at the ports associated with this beast and
381 ** see if any where open. If they was, then re-open
382 ** them, using the info from the tty flags.
384 for (port = 0; port < PORTS_PER_RTA; port++) {
385 PortP = p->RIOPortp[port + HostP->Mapping[ThisUnit].SysPort];
386 if (PortP->State & (RIO_MOPEN | RIO_LOPEN)) {
387 rio_dprintk(RIO_DEBUG_ROUTE, "Re-opened this port\n");
388 rio_spin_lock_irqsave(&PortP->portSem, flags);
389 PortP->MagicFlags |= MAGIC_REBOOT;
390 rio_spin_unlock_irqrestore(&PortP->portSem, flags);
393 if (RtaType == TYPE_RTA16) {
394 for (port = 0; port < PORTS_PER_RTA; port++) {
395 PortP = p->RIOPortp[port + HostP->Mapping[ThisUnit2].SysPort];
396 if (PortP->State & (RIO_MOPEN | RIO_LOPEN)) {
397 rio_dprintk(RIO_DEBUG_ROUTE, "Re-opened this port\n");
398 rio_spin_lock_irqsave(&PortP->portSem, flags);
399 PortP->MagicFlags |= MAGIC_REBOOT;
400 rio_spin_unlock_irqrestore(&PortP->portSem, flags);
407 ** keep a copy of the module types!
409 HostP->UnixRups[ThisUnit].ModTypes = Mod;
410 if (RtaType == TYPE_RTA16)
411 HostP->UnixRups[ThisUnit2].ModTypes = Mod;
414 ** If either of the modules on this unit is read-only or write-only
415 ** or none-xprint, then we need to transfer that info over to the
418 if (HostP->Mapping[ThisUnit].SysPort != NO_PORT) {
419 for (port = 0; port < PORTS_PER_MODULE; port++) {
420 p->RIOPortp[port + HostP->Mapping[ThisUnit].SysPort]->Config &= ~RIO_NOMASK;
421 p->RIOPortp[port + HostP->Mapping[ThisUnit].SysPort]->Config |= p->RIOModuleTypes[Mod1].Flags[port];
422 p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit].SysPort]->Config &= ~RIO_NOMASK;
423 p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit].SysPort]->Config |= p->RIOModuleTypes[Mod2].Flags[port];
425 if (RtaType == TYPE_RTA16) {
426 for (port = 0; port < PORTS_PER_MODULE; port++) {
427 p->RIOPortp[port + HostP->Mapping[ThisUnit2].SysPort]->Config &= ~RIO_NOMASK;
428 p->RIOPortp[port + HostP->Mapping[ThisUnit2].SysPort]->Config |= p->RIOModuleTypes[Mod1].Flags[port];
429 p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit2].SysPort]->Config &= ~RIO_NOMASK;
430 p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit2].SysPort]->Config |= p->RIOModuleTypes[Mod2].Flags[port];
436 ** Job done, get on with the interrupts!
442 ** There is no table entry for this RTA at all.
444 ** Lets check to see if we actually booted this unit - if not,
445 ** then we reset it and it will go round the loop of being booted
446 ** we can then worry about trying to fit it into the table.
448 for (ThisUnit = 0; ThisUnit < HostP->NumExtraBooted; ThisUnit++)
449 if (HostP->ExtraUnits[ThisUnit] == RtaUniq)
451 if (ThisUnit == HostP->NumExtraBooted && ThisUnit != MAX_EXTRA_UNITS) {
453 ** if the unit wasn't in the table, and the table wasn't full, then
454 ** we reset the unit, because we didn't boot it.
455 ** However, if the table is full, it could be that we did boot
456 ** this unit, and so we won't reboot it, because it isn't really
457 ** all that disasterous to keep the old bins in most cases. This
458 ** is a rather tacky feature, but we are on the edge of reallity
459 ** here, because the implication is that someone has connected
460 ** 16+MAX_EXTRA_UNITS onto one host.
462 static int UnknownMesgDone = 0;
464 if (!UnknownMesgDone) {
465 if (!p->RIONoMessage)
466 printk(KERN_DEBUG "rio: One or more unknown RTAs are being updated.\n");
470 PktReplyP->Command = ROUTE_FOAD;
471 memcpy(PktReplyP->CommandText, "RT_FOAD", 7);
474 ** we did boot it (as an extra), and there may now be a table
475 ** slot free (because of a delete), so we will try to make
476 ** a tentative entry for it, so that the configurator can see it
477 ** and fill in the details for us.
479 if (RtaType == TYPE_RTA16) {
480 if (RIOFindFreeID(p, HostP, &ThisUnit, &ThisUnit2) == 0) {
481 RIODefaultName(p, HostP, ThisUnit);
482 rio_fill_host_slot(ThisUnit, ThisUnit2, RtaUniq, HostP);
485 if (RIOFindFreeID(p, HostP, &ThisUnit, NULL) == 0) {
486 RIODefaultName(p, HostP, ThisUnit);
487 rio_fill_host_slot(ThisUnit, 0, RtaUniq, HostP);
490 PktReplyP->Command = ROUTE_USED;
491 memcpy(PktReplyP->CommandText, "RT_USED", 7);
493 RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
498 void RIOFixPhbs(struct rio_info *p, struct Host *HostP, unsigned int unit)
500 unsigned short link, port;
503 int PortN = HostP->Mapping[unit].SysPort;
505 rio_dprintk(RIO_DEBUG_ROUTE, "RIOFixPhbs unit %d sysport %d\n", unit, PortN);
508 unsigned short dest_unit = HostP->Mapping[unit].ID2;
511 ** Get the link number used for the 1st 8 phbs on this unit.
513 PortP = p->RIOPortp[HostP->Mapping[dest_unit - 1].SysPort];
515 link = readw(&PortP->PhbP->link);
517 for (port = 0; port < PORTS_PER_RTA; port++, PortN++) {
518 unsigned short dest_port = port + 8;
520 struct PKT __iomem *Pkt;
522 PortP = p->RIOPortp[PortN];
524 rio_spin_lock_irqsave(&PortP->portSem, flags);
526 ** If RTA is not powered on, the tx packets will be
527 ** unset, so go no further.
529 if (PortP->TxStart == 0) {
530 rio_dprintk(RIO_DEBUG_ROUTE, "Tx pkts not set up yet\n");
531 rio_spin_unlock_irqrestore(&PortP->portSem, flags);
536 ** For the second slot of a 16 port RTA, the driver needs to
537 ** sort out the phb to port mappings. The dest_unit for this
538 ** group of 8 phbs is set to the dest_unit of the accompanying
539 ** 8 port block. The dest_port of the second unit is set to
540 ** be in the range 8-15 (i.e. 8 is added). Thus, for a 16 port
541 ** RTA with IDs 5 and 6, traffic bound for port 6 of unit 6
542 ** (being the second map ID) will be sent to dest_unit 5, port
543 ** 14. When this RTA is deleted, dest_unit for ID 6 will be
544 ** restored, and the dest_port will be reduced by 8.
545 ** Transmit packets also have a destination field which needs
546 ** adjusting in the same manner.
547 ** Note that the unit/port bytes in 'dest' are swapped.
548 ** We also need to adjust the phb and rup link numbers for the
549 ** second block of 8 ttys.
551 for (TxPktP = PortP->TxStart; TxPktP <= PortP->TxEnd; TxPktP++) {
553 ** *TxPktP is the pointer to the transmit packet on the host
554 ** card. This needs to be translated into a 32 bit pointer
555 ** so it can be accessed from the driver.
557 Pkt = (struct PKT __iomem *) RIO_PTR(HostP->Caddr, readw(TxPktP));
560 ** If the packet is used, reset it.
562 Pkt = (struct PKT __iomem *) ((unsigned long) Pkt & ~PKT_IN_USE);
563 writeb(dest_unit, &Pkt->dest_unit);
564 writeb(dest_port, &Pkt->dest_port);
566 rio_dprintk(RIO_DEBUG_ROUTE, "phb dest: Old %x:%x New %x:%x\n", readw(&PortP->PhbP->destination) & 0xff, (readw(&PortP->PhbP->destination) >> 8) & 0xff, dest_unit, dest_port);
567 writew(dest_unit + (dest_port << 8), &PortP->PhbP->destination);
568 writew(link, &PortP->PhbP->link);
570 rio_spin_unlock_irqrestore(&PortP->portSem, flags);
573 ** Now make sure the range of ports to be serviced includes
574 ** the 2nd 8 on this 16 port RTA.
578 if (((unit * 8) + 7) > readw(&HostP->LinkStrP[link].last_port)) {
579 rio_dprintk(RIO_DEBUG_ROUTE, "last port on host link %d: %d\n", link, (unit * 8) + 7);
580 writew((unit * 8) + 7, &HostP->LinkStrP[link].last_port);
586 ** Check to see if the new disconnection has isolated this unit.
587 ** If it has, then invalidate all its link information, and tell
588 ** the world about it. This is done to ensure that the configurator
589 ** only gets up-to-date information about what is going on.
591 static int RIOCheckIsolated(struct rio_info *p, struct Host *HostP, unsigned int UnitId)
594 rio_spin_lock_irqsave(&HostP->HostLock, flags);
596 if (RIOCheck(HostP, UnitId)) {
597 rio_dprintk(RIO_DEBUG_ROUTE, "Unit %d is NOT isolated\n", UnitId);
598 rio_spin_unlock_irqrestore(&HostP->HostLock, flags);
602 RIOIsolate(p, HostP, UnitId);
604 rio_spin_unlock_irqrestore(&HostP->HostLock, flags);
609 ** Invalidate all the link interconnectivity of this unit, and of
610 ** all the units attached to it. This will mean that the entire
611 ** subnet will re-introduce itself.
613 static int RIOIsolate(struct rio_info *p, struct Host *HostP, unsigned int UnitId)
615 unsigned int link, unit;
617 UnitId--; /* this trick relies on the Unit Id being UNSIGNED! */
619 if (UnitId >= MAX_RUP) /* dontcha just lurv unsigned maths! */
622 if (HostP->Mapping[UnitId].Flags & BEEN_HERE)
625 HostP->Mapping[UnitId].Flags |= BEEN_HERE;
627 if (p->RIOPrintDisabled == DO_PRINT)
628 rio_dprintk(RIO_DEBUG_ROUTE, "RIOMesgIsolated %s", HostP->Mapping[UnitId].Name);
630 for (link = 0; link < LINKS_PER_UNIT; link++) {
631 unit = HostP->Mapping[UnitId].Topology[link].Unit;
632 HostP->Mapping[UnitId].Topology[link].Unit = ROUTE_DISCONNECT;
633 HostP->Mapping[UnitId].Topology[link].Link = NO_LINK;
634 RIOIsolate(p, HostP, unit);
636 HostP->Mapping[UnitId].Flags &= ~BEEN_HERE;
640 static int RIOCheck(struct Host *HostP, unsigned int UnitId)
644 /* rio_dprint(RIO_DEBUG_ROUTE, ("Check to see if unit %d has a route to the host\n",UnitId)); */
645 rio_dprintk(RIO_DEBUG_ROUTE, "RIOCheck : UnitID = %d\n", UnitId);
647 if (UnitId == HOST_ID) {
648 /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d is NOT isolated - it IS the host!\n", UnitId)); */
654 if (UnitId >= MAX_RUP) {
655 /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d - ignored.\n", UnitId)); */
659 for (link = 0; link < LINKS_PER_UNIT; link++) {
660 if (HostP->Mapping[UnitId].Topology[link].Unit == HOST_ID) {
661 /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d is connected directly to host via link (%c).\n",
662 UnitId, 'A'+link)); */
667 if (HostP->Mapping[UnitId].Flags & BEEN_HERE) {
668 /* rio_dprint(RIO_DEBUG_ROUTE, ("Been to Unit %d before - ignoring\n", UnitId)); */
672 HostP->Mapping[UnitId].Flags |= BEEN_HERE;
674 for (link = 0; link < LINKS_PER_UNIT; link++) {
675 /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d check link (%c)\n", UnitId,'A'+link)); */
676 if (RIOCheck(HostP, HostP->Mapping[UnitId].Topology[link].Unit)) {
677 /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d is connected to something that knows the host via link (%c)\n", UnitId,link+'A')); */
678 HostP->Mapping[UnitId].Flags &= ~BEEN_HERE;
683 HostP->Mapping[UnitId].Flags &= ~BEEN_HERE;
685 /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d DOESNT KNOW THE HOST!\n", UnitId)); */
691 ** Returns the type of unit (host, 16/8 port RTA)
694 unsigned int GetUnitType(unsigned int Uniq)
696 switch ((Uniq >> 28) & 0xf) {
701 rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: Host\n");
704 rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: 16 port RTA\n");
707 rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: 8 port RTA\n");
710 rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: Unrecognised\n");
715 int RIOSetChange(struct rio_info *p)
717 if (p->RIOQuickCheck != NOT_CHANGED)
719 p->RIOQuickCheck = CHANGED;
720 if (p->RIOSignalProcess) {
721 rio_dprintk(RIO_DEBUG_ROUTE, "Send SIG-HUP");
723 psignal( RIOSignalProcess, SIGHUP );
729 static void RIOConCon(struct rio_info *p,
732 unsigned int FromLink,
744 ** 15.10.1998 ARG - ESIL 0759
745 ** (Part) fix for port being trashed when opened whilst RTA "disconnected"
747 ** What's this doing in here anyway ?
748 ** It was causing the port to be 'unmapped' if opened whilst RTA "disconnected"
750 ** 09.12.1998 ARG - ESIL 0776 - part fix
751 ** Okay, We've found out what this was all about now !
752 ** Someone had botched this to use RIOHalted to indicated the number of RTAs
753 ** 'disconnected'. The value in RIOHalted was then being used in the
754 ** 'RIO_QUICK_CHECK' ioctl. A none zero value indicating that a least one RTA
755 ** is 'disconnected'. The change was put in to satisfy a customer's needs.
756 ** Having taken this bit of code out 'RIO_QUICK_CHECK' now no longer works for
759 if (Change == CONNECT) {
760 if (p->RIOHalted) p->RIOHalted --;
766 ** So - we need to implement it slightly differently - a new member of the
767 ** rio_info struct - RIORtaDisCons (RIO RTA connections) keeps track of RTA
768 ** connections and disconnections.
770 if (Change == CONNECT) {
771 if (p->RIORtaDisCons)
777 if (p->RIOPrintDisabled == DONT_PRINT)
789 FromName = FromId ? HostP->Mapping[FromId - 1].Name : HostP->Name;
790 FromType = FromId ? "RTA" : "HOST";
791 ToName = ToId ? HostP->Mapping[ToId - 1].Name : HostP->Name;
792 ToType = ToId ? "RTA" : "HOST";
794 rio_dprintk(RIO_DEBUG_ROUTE, "Link between %s '%s' (%c) and %s '%s' (%c) %s.\n", FromType, FromName, 'A' + FromLink, ToType, ToName, 'A' + ToLink, (Change == CONNECT) ? "established" : "disconnected");
795 printk(KERN_DEBUG "rio: Link between %s '%s' (%c) and %s '%s' (%c) %s.\n", FromType, FromName, 'A' + FromLink, ToType, ToName, 'A' + ToLink, (Change == CONNECT) ? "established" : "disconnected");
799 ** RIORemoveFromSavedTable :
801 ** Delete and RTA entry from the saved table given to us
802 ** by the configuration program.
804 static int RIORemoveFromSavedTable(struct rio_info *p, struct Map *pMap)
809 ** We loop for all entries even after finding an entry and
810 ** zeroing it because we may have two entries to delete if
811 ** it's a 16 port RTA.
813 for (entry = 0; entry < TOTAL_MAP_ENTRIES; entry++) {
814 if (p->RIOSavedTable[entry].RtaUniqueNum == pMap->RtaUniqueNum) {
815 memset(&p->RIOSavedTable[entry], 0, sizeof(struct Map));
823 ** RIOCheckDisconnected :
825 ** Scan the unit links to and return zero if the unit is completely
828 static int RIOFreeDisconnected(struct rio_info *p, struct Host *HostP, int unit)
833 rio_dprintk(RIO_DEBUG_ROUTE, "RIOFreeDisconnect unit %d\n", unit);
835 ** If the slot is tentative and does not belong to the
836 ** second half of a 16 port RTA then scan to see if
839 for (link = 0; link < LINKS_PER_UNIT; link++) {
840 if (HostP->Mapping[unit].Topology[link].Unit != ROUTE_DISCONNECT)
845 ** If not all links are disconnected then we can forget about it.
847 if (link < LINKS_PER_UNIT)
850 #ifdef NEED_TO_FIX_THIS
851 /* Ok so all the links are disconnected. But we may have only just
852 ** made this slot tentative and not yet received a topology update.
853 ** Lets check how long ago we made it tentative.
855 rio_dprintk(RIO_DEBUG_ROUTE, "Just about to check LBOLT on entry %d\n", unit);
856 if (drv_getparm(LBOLT, (ulong_t *) & current_time))
857 rio_dprintk(RIO_DEBUG_ROUTE, "drv_getparm(LBOLT,....) Failed.\n");
859 elapse_time = current_time - TentTime[unit];
860 rio_dprintk(RIO_DEBUG_ROUTE, "elapse %d = current %d - tent %d (%d usec)\n", elapse_time, current_time, TentTime[unit], drv_hztousec(elapse_time));
861 if (drv_hztousec(elapse_time) < WAIT_TO_FINISH) {
862 rio_dprintk(RIO_DEBUG_ROUTE, "Skipping slot %d, not timed out yet %d\n", unit, drv_hztousec(elapse_time));
868 ** We have found an usable slot.
869 ** If it is half of a 16 port RTA then delete the other half.
871 if (HostP->Mapping[unit].ID2 != 0) {
872 int nOther = (HostP->Mapping[unit].ID2) - 1;
874 rio_dprintk(RIO_DEBUG_ROUTE, "RioFreedis second slot %d.\n", nOther);
875 memset(&HostP->Mapping[nOther], 0, sizeof(struct Map));
877 RIORemoveFromSavedTable(p, &HostP->Mapping[unit]);
886 ** This function scans the given host table for either one
887 ** or two free unit ID's.
890 int RIOFindFreeID(struct rio_info *p, struct Host *HostP, unsigned int * pID1, unsigned int * pID2)
895 ** Initialise the ID's to MAX_RUP.
896 ** We do this to make the loop for setting the ID's as simple as
904 ** Scan all entries of the host mapping table for free slots.
905 ** We scan for free slots first and then if that is not successful
906 ** we start all over again looking for tentative slots we can re-use.
908 for (unit = 0; unit < MAX_RUP; unit++) {
909 rio_dprintk(RIO_DEBUG_ROUTE, "Scanning unit %d\n", unit);
911 ** If the flags are zero then the slot is empty.
913 if (HostP->Mapping[unit].Flags == 0) {
914 rio_dprintk(RIO_DEBUG_ROUTE, " This slot is empty.\n");
916 ** If we haven't allocated the first ID then do it now.
918 if (*pID1 == MAX_RUP) {
919 rio_dprintk(RIO_DEBUG_ROUTE, "Make tentative entry for first unit %d\n", unit);
923 ** If the second ID is not needed then we can return
930 ** Allocate the second slot and return.
932 rio_dprintk(RIO_DEBUG_ROUTE, "Make tentative entry for second unit %d\n", unit);
940 ** If we manage to come out of the free slot loop then we
941 ** need to start all over again looking for tentative slots
942 ** that we can re-use.
944 rio_dprintk(RIO_DEBUG_ROUTE, "Starting to scan for tentative slots\n");
945 for (unit = 0; unit < MAX_RUP; unit++) {
946 if (((HostP->Mapping[unit].Flags & SLOT_TENTATIVE) || (HostP->Mapping[unit].Flags == 0)) && !(HostP->Mapping[unit].Flags & RTA16_SECOND_SLOT)) {
947 rio_dprintk(RIO_DEBUG_ROUTE, " Slot %d looks promising.\n", unit);
950 rio_dprintk(RIO_DEBUG_ROUTE, " No it isn't, its the 1st half\n");
955 ** Slot is Tentative or Empty, but not a tentative second
956 ** slot of a 16 porter.
957 ** Attempt to free up this slot (and its parnter if
958 ** it is a 16 port slot. The second slot will become
959 ** empty after a call to RIOFreeDisconnected so thats why
960 ** we look for empty slots above as well).
962 if (HostP->Mapping[unit].Flags != 0)
963 if (RIOFreeDisconnected(p, HostP, unit) != 0)
966 ** If we haven't allocated the first ID then do it now.
968 if (*pID1 == MAX_RUP) {
969 rio_dprintk(RIO_DEBUG_ROUTE, "Grab tentative entry for first unit %d\n", unit);
973 ** Clear out this slot now that we intend to use it.
975 memset(&HostP->Mapping[unit], 0, sizeof(struct Map));
978 ** If the second ID is not needed then we can return
985 ** Allocate the second slot and return.
987 rio_dprintk(RIO_DEBUG_ROUTE, "Grab tentative/empty entry for second unit %d\n", unit);
991 ** Clear out this slot now that we intend to use it.
993 memset(&HostP->Mapping[unit], 0, sizeof(struct Map));
995 /* At this point under the right(wrong?) conditions
996 ** we may have a first unit ID being higher than the
997 ** second unit ID. This is a bad idea if we are about
998 ** to fill the slots with a 16 port RTA.
999 ** Better check and swap them over.
1002 if (*pID1 > *pID2) {
1003 rio_dprintk(RIO_DEBUG_ROUTE, "Swapping IDS %d %d\n", *pID1, *pID2);
1014 ** If we manage to get to the end of the second loop then we
1015 ** can give up and return a failure.
1022 ** The link switch scenario.
1024 ** Rta Wun (A) is connected to Tuw (A).
1025 ** The tables are all up to date, and the system is OK.
1027 ** If Wun (A) is now moved to Wun (B) before Wun (A) can
1028 ** become disconnected, then the follow happens:
1030 ** Tuw (A) spots the change of unit:link at the other end
1031 ** of its link and Tuw sends a topology packet reflecting
1032 ** the change: Tuw (A) now disconnected from Wun (A), and
1033 ** this is closely followed by a packet indicating that
1034 ** Tuw (A) is now connected to Wun (B).
1036 ** Wun (B) will spot that it has now become connected, and
1037 ** Wun will send a topology packet, which indicates that
1038 ** both Wun (A) and Wun (B) is connected to Tuw (A).
1040 ** Eventually Wun (A) realises that it is now disconnected
1041 ** and Wun will send out a topology packet indicating that
1042 ** Wun (A) is now disconnected.