ISDN:Fix DMA alloc for hfcpci
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  * multiq: This parameter used to enable/disable MULTIQUEUE support.
54  *      Possible values '1' for enable and '0' for disable. Default is '0'
55  ************************************************************************/
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <net/tcp.h>
79
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/io.h>
83 #include <asm/div64.h>
84 #include <asm/irq.h>
85
86 /* local include */
87 #include "s2io.h"
88 #include "s2io-regs.h"
89
90 #define DRV_VERSION "2.0.26.25"
91
92 /* S2io Driver name & version. */
93 static char s2io_driver_name[] = "Neterion";
94 static char s2io_driver_version[] = DRV_VERSION;
95
96 static int rxd_size[2] = {32,48};
97 static int rxd_count[2] = {127,85};
98
99 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
100 {
101         int ret;
102
103         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
104                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
105
106         return ret;
107 }
108
109 /*
110  * Cards with following subsystem_id have a link state indication
111  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
112  * macro below identifies these cards given the subsystem_id.
113  */
114 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
115         (dev_type == XFRAME_I_DEVICE) ?                 \
116                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
117                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118
119 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
120                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121
122 static inline int is_s2io_card_up(const struct s2io_nic * sp)
123 {
124         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
125 }
126
127 /* Ethtool related variables and Macros. */
128 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
129         "Register test\t(offline)",
130         "Eeprom test\t(offline)",
131         "Link test\t(online)",
132         "RLDRAM test\t(offline)",
133         "BIST Test\t(offline)"
134 };
135
136 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
137         {"tmac_frms"},
138         {"tmac_data_octets"},
139         {"tmac_drop_frms"},
140         {"tmac_mcst_frms"},
141         {"tmac_bcst_frms"},
142         {"tmac_pause_ctrl_frms"},
143         {"tmac_ttl_octets"},
144         {"tmac_ucst_frms"},
145         {"tmac_nucst_frms"},
146         {"tmac_any_err_frms"},
147         {"tmac_ttl_less_fb_octets"},
148         {"tmac_vld_ip_octets"},
149         {"tmac_vld_ip"},
150         {"tmac_drop_ip"},
151         {"tmac_icmp"},
152         {"tmac_rst_tcp"},
153         {"tmac_tcp"},
154         {"tmac_udp"},
155         {"rmac_vld_frms"},
156         {"rmac_data_octets"},
157         {"rmac_fcs_err_frms"},
158         {"rmac_drop_frms"},
159         {"rmac_vld_mcst_frms"},
160         {"rmac_vld_bcst_frms"},
161         {"rmac_in_rng_len_err_frms"},
162         {"rmac_out_rng_len_err_frms"},
163         {"rmac_long_frms"},
164         {"rmac_pause_ctrl_frms"},
165         {"rmac_unsup_ctrl_frms"},
166         {"rmac_ttl_octets"},
167         {"rmac_accepted_ucst_frms"},
168         {"rmac_accepted_nucst_frms"},
169         {"rmac_discarded_frms"},
170         {"rmac_drop_events"},
171         {"rmac_ttl_less_fb_octets"},
172         {"rmac_ttl_frms"},
173         {"rmac_usized_frms"},
174         {"rmac_osized_frms"},
175         {"rmac_frag_frms"},
176         {"rmac_jabber_frms"},
177         {"rmac_ttl_64_frms"},
178         {"rmac_ttl_65_127_frms"},
179         {"rmac_ttl_128_255_frms"},
180         {"rmac_ttl_256_511_frms"},
181         {"rmac_ttl_512_1023_frms"},
182         {"rmac_ttl_1024_1518_frms"},
183         {"rmac_ip"},
184         {"rmac_ip_octets"},
185         {"rmac_hdr_err_ip"},
186         {"rmac_drop_ip"},
187         {"rmac_icmp"},
188         {"rmac_tcp"},
189         {"rmac_udp"},
190         {"rmac_err_drp_udp"},
191         {"rmac_xgmii_err_sym"},
192         {"rmac_frms_q0"},
193         {"rmac_frms_q1"},
194         {"rmac_frms_q2"},
195         {"rmac_frms_q3"},
196         {"rmac_frms_q4"},
197         {"rmac_frms_q5"},
198         {"rmac_frms_q6"},
199         {"rmac_frms_q7"},
200         {"rmac_full_q0"},
201         {"rmac_full_q1"},
202         {"rmac_full_q2"},
203         {"rmac_full_q3"},
204         {"rmac_full_q4"},
205         {"rmac_full_q5"},
206         {"rmac_full_q6"},
207         {"rmac_full_q7"},
208         {"rmac_pause_cnt"},
209         {"rmac_xgmii_data_err_cnt"},
210         {"rmac_xgmii_ctrl_err_cnt"},
211         {"rmac_accepted_ip"},
212         {"rmac_err_tcp"},
213         {"rd_req_cnt"},
214         {"new_rd_req_cnt"},
215         {"new_rd_req_rtry_cnt"},
216         {"rd_rtry_cnt"},
217         {"wr_rtry_rd_ack_cnt"},
218         {"wr_req_cnt"},
219         {"new_wr_req_cnt"},
220         {"new_wr_req_rtry_cnt"},
221         {"wr_rtry_cnt"},
222         {"wr_disc_cnt"},
223         {"rd_rtry_wr_ack_cnt"},
224         {"txp_wr_cnt"},
225         {"txd_rd_cnt"},
226         {"txd_wr_cnt"},
227         {"rxd_rd_cnt"},
228         {"rxd_wr_cnt"},
229         {"txf_rd_cnt"},
230         {"rxf_wr_cnt"}
231 };
232
233 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
234         {"rmac_ttl_1519_4095_frms"},
235         {"rmac_ttl_4096_8191_frms"},
236         {"rmac_ttl_8192_max_frms"},
237         {"rmac_ttl_gt_max_frms"},
238         {"rmac_osized_alt_frms"},
239         {"rmac_jabber_alt_frms"},
240         {"rmac_gt_max_alt_frms"},
241         {"rmac_vlan_frms"},
242         {"rmac_len_discard"},
243         {"rmac_fcs_discard"},
244         {"rmac_pf_discard"},
245         {"rmac_da_discard"},
246         {"rmac_red_discard"},
247         {"rmac_rts_discard"},
248         {"rmac_ingm_full_discard"},
249         {"link_fault_cnt"}
250 };
251
252 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
253         {"\n DRIVER STATISTICS"},
254         {"single_bit_ecc_errs"},
255         {"double_bit_ecc_errs"},
256         {"parity_err_cnt"},
257         {"serious_err_cnt"},
258         {"soft_reset_cnt"},
259         {"fifo_full_cnt"},
260         {"ring_0_full_cnt"},
261         {"ring_1_full_cnt"},
262         {"ring_2_full_cnt"},
263         {"ring_3_full_cnt"},
264         {"ring_4_full_cnt"},
265         {"ring_5_full_cnt"},
266         {"ring_6_full_cnt"},
267         {"ring_7_full_cnt"},
268         {"alarm_transceiver_temp_high"},
269         {"alarm_transceiver_temp_low"},
270         {"alarm_laser_bias_current_high"},
271         {"alarm_laser_bias_current_low"},
272         {"alarm_laser_output_power_high"},
273         {"alarm_laser_output_power_low"},
274         {"warn_transceiver_temp_high"},
275         {"warn_transceiver_temp_low"},
276         {"warn_laser_bias_current_high"},
277         {"warn_laser_bias_current_low"},
278         {"warn_laser_output_power_high"},
279         {"warn_laser_output_power_low"},
280         {"lro_aggregated_pkts"},
281         {"lro_flush_both_count"},
282         {"lro_out_of_sequence_pkts"},
283         {"lro_flush_due_to_max_pkts"},
284         {"lro_avg_aggr_pkts"},
285         {"mem_alloc_fail_cnt"},
286         {"pci_map_fail_cnt"},
287         {"watchdog_timer_cnt"},
288         {"mem_allocated"},
289         {"mem_freed"},
290         {"link_up_cnt"},
291         {"link_down_cnt"},
292         {"link_up_time"},
293         {"link_down_time"},
294         {"tx_tcode_buf_abort_cnt"},
295         {"tx_tcode_desc_abort_cnt"},
296         {"tx_tcode_parity_err_cnt"},
297         {"tx_tcode_link_loss_cnt"},
298         {"tx_tcode_list_proc_err_cnt"},
299         {"rx_tcode_parity_err_cnt"},
300         {"rx_tcode_abort_cnt"},
301         {"rx_tcode_parity_abort_cnt"},
302         {"rx_tcode_rda_fail_cnt"},
303         {"rx_tcode_unkn_prot_cnt"},
304         {"rx_tcode_fcs_err_cnt"},
305         {"rx_tcode_buf_size_err_cnt"},
306         {"rx_tcode_rxd_corrupt_cnt"},
307         {"rx_tcode_unkn_err_cnt"},
308         {"tda_err_cnt"},
309         {"pfc_err_cnt"},
310         {"pcc_err_cnt"},
311         {"tti_err_cnt"},
312         {"tpa_err_cnt"},
313         {"sm_err_cnt"},
314         {"lso_err_cnt"},
315         {"mac_tmac_err_cnt"},
316         {"mac_rmac_err_cnt"},
317         {"xgxs_txgxs_err_cnt"},
318         {"xgxs_rxgxs_err_cnt"},
319         {"rc_err_cnt"},
320         {"prc_pcix_err_cnt"},
321         {"rpa_err_cnt"},
322         {"rda_err_cnt"},
323         {"rti_err_cnt"},
324         {"mc_err_cnt"}
325 };
326
327 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
328 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
329 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
330
331 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
332 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333
334 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
335 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336
337 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
338 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
339
340 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
341                         init_timer(&timer);                     \
342                         timer.function = handle;                \
343                         timer.data = (unsigned long) arg;       \
344                         mod_timer(&timer, (jiffies + exp))      \
345
346 /* copy mac addr to def_mac_addr array */
347 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
348 {
349         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
350         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
351         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
352         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
353         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
354         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
355 }
356
357 /* Add the vlan */
358 static void s2io_vlan_rx_register(struct net_device *dev,
359                                   struct vlan_group *grp)
360 {
361         int i;
362         struct s2io_nic *nic = netdev_priv(dev);
363         unsigned long flags[MAX_TX_FIFOS];
364         struct mac_info *mac_control = &nic->mac_control;
365         struct config_param *config = &nic->config;
366
367         for (i = 0; i < config->tx_fifo_num; i++)
368                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
369
370         nic->vlgrp = grp;
371         for (i = config->tx_fifo_num - 1; i >= 0; i--)
372                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
373                                 flags[i]);
374 }
375
376 /* Unregister the vlan */
377 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
378 {
379         int i;
380         struct s2io_nic *nic = netdev_priv(dev);
381         unsigned long flags[MAX_TX_FIFOS];
382         struct mac_info *mac_control = &nic->mac_control;
383         struct config_param *config = &nic->config;
384
385         for (i = 0; i < config->tx_fifo_num; i++)
386                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
387
388         if (nic->vlgrp)
389                 vlan_group_set_device(nic->vlgrp, vid, NULL);
390
391         for (i = config->tx_fifo_num - 1; i >= 0; i--)
392                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
393                         flags[i]);
394 }
395
396 /*
397  * Constants to be programmed into the Xena's registers, to configure
398  * the XAUI.
399  */
400
401 #define END_SIGN        0x0
402 static const u64 herc_act_dtx_cfg[] = {
403         /* Set address */
404         0x8000051536750000ULL, 0x80000515367500E0ULL,
405         /* Write data */
406         0x8000051536750004ULL, 0x80000515367500E4ULL,
407         /* Set address */
408         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
409         /* Write data */
410         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
411         /* Set address */
412         0x801205150D440000ULL, 0x801205150D4400E0ULL,
413         /* Write data */
414         0x801205150D440004ULL, 0x801205150D4400E4ULL,
415         /* Set address */
416         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
417         /* Write data */
418         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
419         /* Done */
420         END_SIGN
421 };
422
423 static const u64 xena_dtx_cfg[] = {
424         /* Set address */
425         0x8000051500000000ULL, 0x80000515000000E0ULL,
426         /* Write data */
427         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
428         /* Set address */
429         0x8001051500000000ULL, 0x80010515000000E0ULL,
430         /* Write data */
431         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
432         /* Set address */
433         0x8002051500000000ULL, 0x80020515000000E0ULL,
434         /* Write data */
435         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
436         END_SIGN
437 };
438
439 /*
440  * Constants for Fixing the MacAddress problem seen mostly on
441  * Alpha machines.
442  */
443 static const u64 fix_mac[] = {
444         0x0060000000000000ULL, 0x0060600000000000ULL,
445         0x0040600000000000ULL, 0x0000600000000000ULL,
446         0x0020600000000000ULL, 0x0060600000000000ULL,
447         0x0020600000000000ULL, 0x0060600000000000ULL,
448         0x0020600000000000ULL, 0x0060600000000000ULL,
449         0x0020600000000000ULL, 0x0060600000000000ULL,
450         0x0020600000000000ULL, 0x0060600000000000ULL,
451         0x0020600000000000ULL, 0x0060600000000000ULL,
452         0x0020600000000000ULL, 0x0060600000000000ULL,
453         0x0020600000000000ULL, 0x0060600000000000ULL,
454         0x0020600000000000ULL, 0x0060600000000000ULL,
455         0x0020600000000000ULL, 0x0060600000000000ULL,
456         0x0020600000000000ULL, 0x0000600000000000ULL,
457         0x0040600000000000ULL, 0x0060600000000000ULL,
458         END_SIGN
459 };
460
461 MODULE_LICENSE("GPL");
462 MODULE_VERSION(DRV_VERSION);
463
464
465 /* Module Loadable parameters. */
466 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
467 S2IO_PARM_INT(rx_ring_num, 1);
468 S2IO_PARM_INT(multiq, 0);
469 S2IO_PARM_INT(rx_ring_mode, 1);
470 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
471 S2IO_PARM_INT(rmac_pause_time, 0x100);
472 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
473 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
474 S2IO_PARM_INT(shared_splits, 0);
475 S2IO_PARM_INT(tmac_util_period, 5);
476 S2IO_PARM_INT(rmac_util_period, 5);
477 S2IO_PARM_INT(l3l4hdr_size, 128);
478 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
479 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
480 /* Frequency of Rx desc syncs expressed as power of 2 */
481 S2IO_PARM_INT(rxsync_frequency, 3);
482 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
483 S2IO_PARM_INT(intr_type, 2);
484 /* Large receive offload feature */
485 static unsigned int lro_enable;
486 module_param_named(lro, lro_enable, uint, 0);
487
488 /* Max pkts to be aggregated by LRO at one time. If not specified,
489  * aggregation happens until we hit max IP pkt size(64K)
490  */
491 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
492 S2IO_PARM_INT(indicate_max_pkts, 0);
493
494 S2IO_PARM_INT(napi, 1);
495 S2IO_PARM_INT(ufo, 0);
496 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
497
498 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
499     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
500 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
501     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
502 static unsigned int rts_frm_len[MAX_RX_RINGS] =
503     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
504
505 module_param_array(tx_fifo_len, uint, NULL, 0);
506 module_param_array(rx_ring_sz, uint, NULL, 0);
507 module_param_array(rts_frm_len, uint, NULL, 0);
508
509 /*
510  * S2IO device table.
511  * This table lists all the devices that this driver supports.
512  */
513 static struct pci_device_id s2io_tbl[] __devinitdata = {
514         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
515          PCI_ANY_ID, PCI_ANY_ID},
516         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
517          PCI_ANY_ID, PCI_ANY_ID},
518         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
519          PCI_ANY_ID, PCI_ANY_ID},
520         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
521          PCI_ANY_ID, PCI_ANY_ID},
522         {0,}
523 };
524
525 MODULE_DEVICE_TABLE(pci, s2io_tbl);
526
527 static struct pci_error_handlers s2io_err_handler = {
528         .error_detected = s2io_io_error_detected,
529         .slot_reset = s2io_io_slot_reset,
530         .resume = s2io_io_resume,
531 };
532
533 static struct pci_driver s2io_driver = {
534       .name = "S2IO",
535       .id_table = s2io_tbl,
536       .probe = s2io_init_nic,
537       .remove = __devexit_p(s2io_rem_nic),
538       .err_handler = &s2io_err_handler,
539 };
540
541 /* A simplifier macro used both by init and free shared_mem Fns(). */
542 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
543
544 /* netqueue manipulation helper functions */
545 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
546 {
547         if (!sp->config.multiq) {
548                 int i;
549
550                 for (i = 0; i < sp->config.tx_fifo_num; i++)
551                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
552         }
553         netif_tx_stop_all_queues(sp->dev);
554 }
555
556 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
557 {
558         if (!sp->config.multiq)
559                 sp->mac_control.fifos[fifo_no].queue_state =
560                         FIFO_QUEUE_STOP;
561
562         netif_tx_stop_all_queues(sp->dev);
563 }
564
565 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
566 {
567         if (!sp->config.multiq) {
568                 int i;
569
570                 for (i = 0; i < sp->config.tx_fifo_num; i++)
571                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
572         }
573         netif_tx_start_all_queues(sp->dev);
574 }
575
576 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
577 {
578         if (!sp->config.multiq)
579                 sp->mac_control.fifos[fifo_no].queue_state =
580                         FIFO_QUEUE_START;
581
582         netif_tx_start_all_queues(sp->dev);
583 }
584
585 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
586 {
587         if (!sp->config.multiq) {
588                 int i;
589
590                 for (i = 0; i < sp->config.tx_fifo_num; i++)
591                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
592         }
593         netif_tx_wake_all_queues(sp->dev);
594 }
595
596 static inline void s2io_wake_tx_queue(
597         struct fifo_info *fifo, int cnt, u8 multiq)
598 {
599
600         if (multiq) {
601                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
602                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
603         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
604                 if (netif_queue_stopped(fifo->dev)) {
605                         fifo->queue_state = FIFO_QUEUE_START;
606                         netif_wake_queue(fifo->dev);
607                 }
608         }
609 }
610
611 /**
612  * init_shared_mem - Allocation and Initialization of Memory
613  * @nic: Device private variable.
614  * Description: The function allocates all the memory areas shared
615  * between the NIC and the driver. This includes Tx descriptors,
616  * Rx descriptors and the statistics block.
617  */
618
619 static int init_shared_mem(struct s2io_nic *nic)
620 {
621         u32 size;
622         void *tmp_v_addr, *tmp_v_addr_next;
623         dma_addr_t tmp_p_addr, tmp_p_addr_next;
624         struct RxD_block *pre_rxd_blk = NULL;
625         int i, j, blk_cnt;
626         int lst_size, lst_per_page;
627         struct net_device *dev = nic->dev;
628         unsigned long tmp;
629         struct buffAdd *ba;
630
631         struct mac_info *mac_control;
632         struct config_param *config;
633         unsigned long long mem_allocated = 0;
634
635         mac_control = &nic->mac_control;
636         config = &nic->config;
637
638
639         /* Allocation and initialization of TXDLs in FIOFs */
640         size = 0;
641         for (i = 0; i < config->tx_fifo_num; i++) {
642                 size += config->tx_cfg[i].fifo_len;
643         }
644         if (size > MAX_AVAILABLE_TXDS) {
645                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
646                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
647                 return -EINVAL;
648         }
649
650         size = 0;
651         for (i = 0; i < config->tx_fifo_num; i++) {
652                 size = config->tx_cfg[i].fifo_len;
653                 /*
654                  * Legal values are from 2 to 8192
655                  */
656                 if (size < 2) {
657                         DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
658                         DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
659                         DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
660                                 "are 2 to 8192\n");
661                         return -EINVAL;
662                 }
663         }
664
665         lst_size = (sizeof(struct TxD) * config->max_txds);
666         lst_per_page = PAGE_SIZE / lst_size;
667
668         for (i = 0; i < config->tx_fifo_num; i++) {
669                 int fifo_len = config->tx_cfg[i].fifo_len;
670                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
671                 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
672                                                           GFP_KERNEL);
673                 if (!mac_control->fifos[i].list_info) {
674                         DBG_PRINT(INFO_DBG,
675                                   "Malloc failed for list_info\n");
676                         return -ENOMEM;
677                 }
678                 mem_allocated += list_holder_size;
679         }
680         for (i = 0; i < config->tx_fifo_num; i++) {
681                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
682                                                 lst_per_page);
683                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
684                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
685                     config->tx_cfg[i].fifo_len - 1;
686                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
687                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
688                     config->tx_cfg[i].fifo_len - 1;
689                 mac_control->fifos[i].fifo_no = i;
690                 mac_control->fifos[i].nic = nic;
691                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
692                 mac_control->fifos[i].dev = dev;
693
694                 for (j = 0; j < page_num; j++) {
695                         int k = 0;
696                         dma_addr_t tmp_p;
697                         void *tmp_v;
698                         tmp_v = pci_alloc_consistent(nic->pdev,
699                                                      PAGE_SIZE, &tmp_p);
700                         if (!tmp_v) {
701                                 DBG_PRINT(INFO_DBG,
702                                           "pci_alloc_consistent ");
703                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
704                                 return -ENOMEM;
705                         }
706                         /* If we got a zero DMA address(can happen on
707                          * certain platforms like PPC), reallocate.
708                          * Store virtual address of page we don't want,
709                          * to be freed later.
710                          */
711                         if (!tmp_p) {
712                                 mac_control->zerodma_virt_addr = tmp_v;
713                                 DBG_PRINT(INIT_DBG,
714                                 "%s: Zero DMA address for TxDL. ", dev->name);
715                                 DBG_PRINT(INIT_DBG,
716                                 "Virtual address %p\n", tmp_v);
717                                 tmp_v = pci_alloc_consistent(nic->pdev,
718                                                      PAGE_SIZE, &tmp_p);
719                                 if (!tmp_v) {
720                                         DBG_PRINT(INFO_DBG,
721                                           "pci_alloc_consistent ");
722                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
723                                         return -ENOMEM;
724                                 }
725                                 mem_allocated += PAGE_SIZE;
726                         }
727                         while (k < lst_per_page) {
728                                 int l = (j * lst_per_page) + k;
729                                 if (l == config->tx_cfg[i].fifo_len)
730                                         break;
731                                 mac_control->fifos[i].list_info[l].list_virt_addr =
732                                     tmp_v + (k * lst_size);
733                                 mac_control->fifos[i].list_info[l].list_phy_addr =
734                                     tmp_p + (k * lst_size);
735                                 k++;
736                         }
737                 }
738         }
739
740         for (i = 0; i < config->tx_fifo_num; i++) {
741                 size = config->tx_cfg[i].fifo_len;
742                 mac_control->fifos[i].ufo_in_band_v
743                         = kcalloc(size, sizeof(u64), GFP_KERNEL);
744                 if (!mac_control->fifos[i].ufo_in_band_v)
745                         return -ENOMEM;
746                 mem_allocated += (size * sizeof(u64));
747         }
748
749         /* Allocation and initialization of RXDs in Rings */
750         size = 0;
751         for (i = 0; i < config->rx_ring_num; i++) {
752                 if (config->rx_cfg[i].num_rxd %
753                     (rxd_count[nic->rxd_mode] + 1)) {
754                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
755                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
756                                   i);
757                         DBG_PRINT(ERR_DBG, "RxDs per Block");
758                         return FAILURE;
759                 }
760                 size += config->rx_cfg[i].num_rxd;
761                 mac_control->rings[i].block_count =
762                         config->rx_cfg[i].num_rxd /
763                         (rxd_count[nic->rxd_mode] + 1 );
764                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
765                         mac_control->rings[i].block_count;
766         }
767         if (nic->rxd_mode == RXD_MODE_1)
768                 size = (size * (sizeof(struct RxD1)));
769         else
770                 size = (size * (sizeof(struct RxD3)));
771
772         for (i = 0; i < config->rx_ring_num; i++) {
773                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
774                 mac_control->rings[i].rx_curr_get_info.offset = 0;
775                 mac_control->rings[i].rx_curr_get_info.ring_len =
776                     config->rx_cfg[i].num_rxd - 1;
777                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
778                 mac_control->rings[i].rx_curr_put_info.offset = 0;
779                 mac_control->rings[i].rx_curr_put_info.ring_len =
780                     config->rx_cfg[i].num_rxd - 1;
781                 mac_control->rings[i].nic = nic;
782                 mac_control->rings[i].ring_no = i;
783                 mac_control->rings[i].lro = lro_enable;
784
785                 blk_cnt = config->rx_cfg[i].num_rxd /
786                                 (rxd_count[nic->rxd_mode] + 1);
787                 /*  Allocating all the Rx blocks */
788                 for (j = 0; j < blk_cnt; j++) {
789                         struct rx_block_info *rx_blocks;
790                         int l;
791
792                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
793                         size = SIZE_OF_BLOCK; //size is always page size
794                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
795                                                           &tmp_p_addr);
796                         if (tmp_v_addr == NULL) {
797                                 /*
798                                  * In case of failure, free_shared_mem()
799                                  * is called, which should free any
800                                  * memory that was alloced till the
801                                  * failure happened.
802                                  */
803                                 rx_blocks->block_virt_addr = tmp_v_addr;
804                                 return -ENOMEM;
805                         }
806                         mem_allocated += size;
807                         memset(tmp_v_addr, 0, size);
808                         rx_blocks->block_virt_addr = tmp_v_addr;
809                         rx_blocks->block_dma_addr = tmp_p_addr;
810                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
811                                                   rxd_count[nic->rxd_mode],
812                                                   GFP_KERNEL);
813                         if (!rx_blocks->rxds)
814                                 return -ENOMEM;
815                         mem_allocated +=
816                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
817                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
818                                 rx_blocks->rxds[l].virt_addr =
819                                         rx_blocks->block_virt_addr +
820                                         (rxd_size[nic->rxd_mode] * l);
821                                 rx_blocks->rxds[l].dma_addr =
822                                         rx_blocks->block_dma_addr +
823                                         (rxd_size[nic->rxd_mode] * l);
824                         }
825                 }
826                 /* Interlinking all Rx Blocks */
827                 for (j = 0; j < blk_cnt; j++) {
828                         tmp_v_addr =
829                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
830                         tmp_v_addr_next =
831                                 mac_control->rings[i].rx_blocks[(j + 1) %
832                                               blk_cnt].block_virt_addr;
833                         tmp_p_addr =
834                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
835                         tmp_p_addr_next =
836                                 mac_control->rings[i].rx_blocks[(j + 1) %
837                                               blk_cnt].block_dma_addr;
838
839                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
840                         pre_rxd_blk->reserved_2_pNext_RxD_block =
841                             (unsigned long) tmp_v_addr_next;
842                         pre_rxd_blk->pNext_RxD_Blk_physical =
843                             (u64) tmp_p_addr_next;
844                 }
845         }
846         if (nic->rxd_mode == RXD_MODE_3B) {
847                 /*
848                  * Allocation of Storages for buffer addresses in 2BUFF mode
849                  * and the buffers as well.
850                  */
851                 for (i = 0; i < config->rx_ring_num; i++) {
852                         blk_cnt = config->rx_cfg[i].num_rxd /
853                            (rxd_count[nic->rxd_mode]+ 1);
854                         mac_control->rings[i].ba =
855                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
856                                      GFP_KERNEL);
857                         if (!mac_control->rings[i].ba)
858                                 return -ENOMEM;
859                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
860                         for (j = 0; j < blk_cnt; j++) {
861                                 int k = 0;
862                                 mac_control->rings[i].ba[j] =
863                                         kmalloc((sizeof(struct buffAdd) *
864                                                 (rxd_count[nic->rxd_mode] + 1)),
865                                                 GFP_KERNEL);
866                                 if (!mac_control->rings[i].ba[j])
867                                         return -ENOMEM;
868                                 mem_allocated += (sizeof(struct buffAdd) *  \
869                                         (rxd_count[nic->rxd_mode] + 1));
870                                 while (k != rxd_count[nic->rxd_mode]) {
871                                         ba = &mac_control->rings[i].ba[j][k];
872
873                                         ba->ba_0_org = (void *) kmalloc
874                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
875                                         if (!ba->ba_0_org)
876                                                 return -ENOMEM;
877                                         mem_allocated +=
878                                                 (BUF0_LEN + ALIGN_SIZE);
879                                         tmp = (unsigned long)ba->ba_0_org;
880                                         tmp += ALIGN_SIZE;
881                                         tmp &= ~((unsigned long) ALIGN_SIZE);
882                                         ba->ba_0 = (void *) tmp;
883
884                                         ba->ba_1_org = (void *) kmalloc
885                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
886                                         if (!ba->ba_1_org)
887                                                 return -ENOMEM;
888                                         mem_allocated
889                                                 += (BUF1_LEN + ALIGN_SIZE);
890                                         tmp = (unsigned long) ba->ba_1_org;
891                                         tmp += ALIGN_SIZE;
892                                         tmp &= ~((unsigned long) ALIGN_SIZE);
893                                         ba->ba_1 = (void *) tmp;
894                                         k++;
895                                 }
896                         }
897                 }
898         }
899
900         /* Allocation and initialization of Statistics block */
901         size = sizeof(struct stat_block);
902         mac_control->stats_mem = pci_alloc_consistent
903             (nic->pdev, size, &mac_control->stats_mem_phy);
904
905         if (!mac_control->stats_mem) {
906                 /*
907                  * In case of failure, free_shared_mem() is called, which
908                  * should free any memory that was alloced till the
909                  * failure happened.
910                  */
911                 return -ENOMEM;
912         }
913         mem_allocated += size;
914         mac_control->stats_mem_sz = size;
915
916         tmp_v_addr = mac_control->stats_mem;
917         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
918         memset(tmp_v_addr, 0, size);
919         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
920                   (unsigned long long) tmp_p_addr);
921         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
922         return SUCCESS;
923 }
924
925 /**
926  * free_shared_mem - Free the allocated Memory
927  * @nic:  Device private variable.
928  * Description: This function is to free all memory locations allocated by
929  * the init_shared_mem() function and return it to the kernel.
930  */
931
932 static void free_shared_mem(struct s2io_nic *nic)
933 {
934         int i, j, blk_cnt, size;
935         void *tmp_v_addr;
936         dma_addr_t tmp_p_addr;
937         struct mac_info *mac_control;
938         struct config_param *config;
939         int lst_size, lst_per_page;
940         struct net_device *dev;
941         int page_num = 0;
942
943         if (!nic)
944                 return;
945
946         dev = nic->dev;
947
948         mac_control = &nic->mac_control;
949         config = &nic->config;
950
951         lst_size = (sizeof(struct TxD) * config->max_txds);
952         lst_per_page = PAGE_SIZE / lst_size;
953
954         for (i = 0; i < config->tx_fifo_num; i++) {
955                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
956                                                         lst_per_page);
957                 for (j = 0; j < page_num; j++) {
958                         int mem_blks = (j * lst_per_page);
959                         if (!mac_control->fifos[i].list_info)
960                                 return;
961                         if (!mac_control->fifos[i].list_info[mem_blks].
962                                  list_virt_addr)
963                                 break;
964                         pci_free_consistent(nic->pdev, PAGE_SIZE,
965                                             mac_control->fifos[i].
966                                             list_info[mem_blks].
967                                             list_virt_addr,
968                                             mac_control->fifos[i].
969                                             list_info[mem_blks].
970                                             list_phy_addr);
971                         nic->mac_control.stats_info->sw_stat.mem_freed
972                                                 += PAGE_SIZE;
973                 }
974                 /* If we got a zero DMA address during allocation,
975                  * free the page now
976                  */
977                 if (mac_control->zerodma_virt_addr) {
978                         pci_free_consistent(nic->pdev, PAGE_SIZE,
979                                             mac_control->zerodma_virt_addr,
980                                             (dma_addr_t)0);
981                         DBG_PRINT(INIT_DBG,
982                                 "%s: Freeing TxDL with zero DMA addr. ",
983                                 dev->name);
984                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
985                                 mac_control->zerodma_virt_addr);
986                         nic->mac_control.stats_info->sw_stat.mem_freed
987                                                 += PAGE_SIZE;
988                 }
989                 kfree(mac_control->fifos[i].list_info);
990                 nic->mac_control.stats_info->sw_stat.mem_freed +=
991                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
992         }
993
994         size = SIZE_OF_BLOCK;
995         for (i = 0; i < config->rx_ring_num; i++) {
996                 blk_cnt = mac_control->rings[i].block_count;
997                 for (j = 0; j < blk_cnt; j++) {
998                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
999                                 block_virt_addr;
1000                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1001                                 block_dma_addr;
1002                         if (tmp_v_addr == NULL)
1003                                 break;
1004                         pci_free_consistent(nic->pdev, size,
1005                                             tmp_v_addr, tmp_p_addr);
1006                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
1007                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
1008                         nic->mac_control.stats_info->sw_stat.mem_freed +=
1009                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1010                 }
1011         }
1012
1013         if (nic->rxd_mode == RXD_MODE_3B) {
1014                 /* Freeing buffer storage addresses in 2BUFF mode. */
1015                 for (i = 0; i < config->rx_ring_num; i++) {
1016                         blk_cnt = config->rx_cfg[i].num_rxd /
1017                             (rxd_count[nic->rxd_mode] + 1);
1018                         for (j = 0; j < blk_cnt; j++) {
1019                                 int k = 0;
1020                                 if (!mac_control->rings[i].ba[j])
1021                                         continue;
1022                                 while (k != rxd_count[nic->rxd_mode]) {
1023                                         struct buffAdd *ba =
1024                                                 &mac_control->rings[i].ba[j][k];
1025                                         kfree(ba->ba_0_org);
1026                                         nic->mac_control.stats_info->sw_stat.\
1027                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
1028                                         kfree(ba->ba_1_org);
1029                                         nic->mac_control.stats_info->sw_stat.\
1030                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
1031                                         k++;
1032                                 }
1033                                 kfree(mac_control->rings[i].ba[j]);
1034                                 nic->mac_control.stats_info->sw_stat.mem_freed +=
1035                                         (sizeof(struct buffAdd) *
1036                                         (rxd_count[nic->rxd_mode] + 1));
1037                         }
1038                         kfree(mac_control->rings[i].ba);
1039                         nic->mac_control.stats_info->sw_stat.mem_freed +=
1040                         (sizeof(struct buffAdd *) * blk_cnt);
1041                 }
1042         }
1043
1044         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1045                 if (mac_control->fifos[i].ufo_in_band_v) {
1046                         nic->mac_control.stats_info->sw_stat.mem_freed
1047                                 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1048                         kfree(mac_control->fifos[i].ufo_in_band_v);
1049                 }
1050         }
1051
1052         if (mac_control->stats_mem) {
1053                 nic->mac_control.stats_info->sw_stat.mem_freed +=
1054                         mac_control->stats_mem_sz;
1055                 pci_free_consistent(nic->pdev,
1056                                     mac_control->stats_mem_sz,
1057                                     mac_control->stats_mem,
1058                                     mac_control->stats_mem_phy);
1059         }
1060 }
1061
1062 /**
1063  * s2io_verify_pci_mode -
1064  */
1065
1066 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1067 {
1068         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1069         register u64 val64 = 0;
1070         int     mode;
1071
1072         val64 = readq(&bar0->pci_mode);
1073         mode = (u8)GET_PCI_MODE(val64);
1074
1075         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1076                 return -1;      /* Unknown PCI mode */
1077         return mode;
1078 }
1079
1080 #define NEC_VENID   0x1033
1081 #define NEC_DEVID   0x0125
1082 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1083 {
1084         struct pci_dev *tdev = NULL;
1085         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1086                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1087                         if (tdev->bus == s2io_pdev->bus->parent) {
1088                                 pci_dev_put(tdev);
1089                                 return 1;
1090                         }
1091                 }
1092         }
1093         return 0;
1094 }
1095
1096 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1097 /**
1098  * s2io_print_pci_mode -
1099  */
1100 static int s2io_print_pci_mode(struct s2io_nic *nic)
1101 {
1102         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1103         register u64 val64 = 0;
1104         int     mode;
1105         struct config_param *config = &nic->config;
1106
1107         val64 = readq(&bar0->pci_mode);
1108         mode = (u8)GET_PCI_MODE(val64);
1109
1110         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1111                 return -1;      /* Unknown PCI mode */
1112
1113         config->bus_speed = bus_speed[mode];
1114
1115         if (s2io_on_nec_bridge(nic->pdev)) {
1116                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1117                                                         nic->dev->name);
1118                 return mode;
1119         }
1120
1121         if (val64 & PCI_MODE_32_BITS) {
1122                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1123         } else {
1124                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1125         }
1126
1127         switch(mode) {
1128                 case PCI_MODE_PCI_33:
1129                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1130                         break;
1131                 case PCI_MODE_PCI_66:
1132                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1133                         break;
1134                 case PCI_MODE_PCIX_M1_66:
1135                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1136                         break;
1137                 case PCI_MODE_PCIX_M1_100:
1138                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1139                         break;
1140                 case PCI_MODE_PCIX_M1_133:
1141                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1142                         break;
1143                 case PCI_MODE_PCIX_M2_66:
1144                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1145                         break;
1146                 case PCI_MODE_PCIX_M2_100:
1147                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1148                         break;
1149                 case PCI_MODE_PCIX_M2_133:
1150                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1151                         break;
1152                 default:
1153                         return -1;      /* Unsupported bus speed */
1154         }
1155
1156         return mode;
1157 }
1158
1159 /**
1160  *  init_tti - Initialization transmit traffic interrupt scheme
1161  *  @nic: device private variable
1162  *  @link: link status (UP/DOWN) used to enable/disable continuous
1163  *  transmit interrupts
1164  *  Description: The function configures transmit traffic interrupts
1165  *  Return Value:  SUCCESS on success and
1166  *  '-1' on failure
1167  */
1168
1169 static int init_tti(struct s2io_nic *nic, int link)
1170 {
1171         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1172         register u64 val64 = 0;
1173         int i;
1174         struct config_param *config;
1175
1176         config = &nic->config;
1177
1178         for (i = 0; i < config->tx_fifo_num; i++) {
1179                 /*
1180                  * TTI Initialization. Default Tx timer gets us about
1181                  * 250 interrupts per sec. Continuous interrupts are enabled
1182                  * by default.
1183                  */
1184                 if (nic->device_type == XFRAME_II_DEVICE) {
1185                         int count = (nic->config.bus_speed * 125)/2;
1186                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1187                 } else
1188                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1189
1190                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1191                                 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1192                                 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1193                                 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1194                 if (i == 0)
1195                         if (use_continuous_tx_intrs && (link == LINK_UP))
1196                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1197                 writeq(val64, &bar0->tti_data1_mem);
1198
1199                 if (nic->config.intr_type == MSI_X) {
1200                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1201                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1202                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1203                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1204                 } else {
1205                         if ((nic->config.tx_steering_type ==
1206                                 TX_DEFAULT_STEERING) &&
1207                                 (config->tx_fifo_num > 1) &&
1208                                 (i >= nic->udp_fifo_idx) &&
1209                                 (i < (nic->udp_fifo_idx +
1210                                 nic->total_udp_fifos)))
1211                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1212                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1213                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1214                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1215                         else
1216                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1217                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1218                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1219                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1220                 }
1221
1222                 writeq(val64, &bar0->tti_data2_mem);
1223
1224                 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1225                                 TTI_CMD_MEM_OFFSET(i);
1226                 writeq(val64, &bar0->tti_command_mem);
1227
1228                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1229                         TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1230                         return FAILURE;
1231         }
1232
1233         return SUCCESS;
1234 }
1235
1236 /**
1237  *  init_nic - Initialization of hardware
1238  *  @nic: device private variable
1239  *  Description: The function sequentially configures every block
1240  *  of the H/W from their reset values.
1241  *  Return Value:  SUCCESS on success and
1242  *  '-1' on failure (endian settings incorrect).
1243  */
1244
1245 static int init_nic(struct s2io_nic *nic)
1246 {
1247         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1248         struct net_device *dev = nic->dev;
1249         register u64 val64 = 0;
1250         void __iomem *add;
1251         u32 time;
1252         int i, j;
1253         struct mac_info *mac_control;
1254         struct config_param *config;
1255         int dtx_cnt = 0;
1256         unsigned long long mem_share;
1257         int mem_size;
1258
1259         mac_control = &nic->mac_control;
1260         config = &nic->config;
1261
1262         /* to set the swapper controle on the card */
1263         if(s2io_set_swapper(nic)) {
1264                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1265                 return -EIO;
1266         }
1267
1268         /*
1269          * Herc requires EOI to be removed from reset before XGXS, so..
1270          */
1271         if (nic->device_type & XFRAME_II_DEVICE) {
1272                 val64 = 0xA500000000ULL;
1273                 writeq(val64, &bar0->sw_reset);
1274                 msleep(500);
1275                 val64 = readq(&bar0->sw_reset);
1276         }
1277
1278         /* Remove XGXS from reset state */
1279         val64 = 0;
1280         writeq(val64, &bar0->sw_reset);
1281         msleep(500);
1282         val64 = readq(&bar0->sw_reset);
1283
1284         /* Ensure that it's safe to access registers by checking
1285          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1286          */
1287         if (nic->device_type == XFRAME_II_DEVICE) {
1288                 for (i = 0; i < 50; i++) {
1289                         val64 = readq(&bar0->adapter_status);
1290                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1291                                 break;
1292                         msleep(10);
1293                 }
1294                 if (i == 50)
1295                         return -ENODEV;
1296         }
1297
1298         /*  Enable Receiving broadcasts */
1299         add = &bar0->mac_cfg;
1300         val64 = readq(&bar0->mac_cfg);
1301         val64 |= MAC_RMAC_BCAST_ENABLE;
1302         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1303         writel((u32) val64, add);
1304         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1305         writel((u32) (val64 >> 32), (add + 4));
1306
1307         /* Read registers in all blocks */
1308         val64 = readq(&bar0->mac_int_mask);
1309         val64 = readq(&bar0->mc_int_mask);
1310         val64 = readq(&bar0->xgxs_int_mask);
1311
1312         /*  Set MTU */
1313         val64 = dev->mtu;
1314         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1315
1316         if (nic->device_type & XFRAME_II_DEVICE) {
1317                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1318                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1319                                           &bar0->dtx_control, UF);
1320                         if (dtx_cnt & 0x1)
1321                                 msleep(1); /* Necessary!! */
1322                         dtx_cnt++;
1323                 }
1324         } else {
1325                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1326                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1327                                           &bar0->dtx_control, UF);
1328                         val64 = readq(&bar0->dtx_control);
1329                         dtx_cnt++;
1330                 }
1331         }
1332
1333         /*  Tx DMA Initialization */
1334         val64 = 0;
1335         writeq(val64, &bar0->tx_fifo_partition_0);
1336         writeq(val64, &bar0->tx_fifo_partition_1);
1337         writeq(val64, &bar0->tx_fifo_partition_2);
1338         writeq(val64, &bar0->tx_fifo_partition_3);
1339
1340
1341         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1342                 val64 |=
1343                     vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1344                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1345                                     ((j * 32) + 5), 3);
1346
1347                 if (i == (config->tx_fifo_num - 1)) {
1348                         if (i % 2 == 0)
1349                                 i++;
1350                 }
1351
1352                 switch (i) {
1353                 case 1:
1354                         writeq(val64, &bar0->tx_fifo_partition_0);
1355                         val64 = 0;
1356                         j = 0;
1357                         break;
1358                 case 3:
1359                         writeq(val64, &bar0->tx_fifo_partition_1);
1360                         val64 = 0;
1361                         j = 0;
1362                         break;
1363                 case 5:
1364                         writeq(val64, &bar0->tx_fifo_partition_2);
1365                         val64 = 0;
1366                         j = 0;
1367                         break;
1368                 case 7:
1369                         writeq(val64, &bar0->tx_fifo_partition_3);
1370                         val64 = 0;
1371                         j = 0;
1372                         break;
1373                 default:
1374                         j++;
1375                         break;
1376                 }
1377         }
1378
1379         /*
1380          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1381          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1382          */
1383         if ((nic->device_type == XFRAME_I_DEVICE) &&
1384                 (nic->pdev->revision < 4))
1385                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1386
1387         val64 = readq(&bar0->tx_fifo_partition_0);
1388         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1389                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1390
1391         /*
1392          * Initialization of Tx_PA_CONFIG register to ignore packet
1393          * integrity checking.
1394          */
1395         val64 = readq(&bar0->tx_pa_cfg);
1396         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1397             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1398         writeq(val64, &bar0->tx_pa_cfg);
1399
1400         /* Rx DMA intialization. */
1401         val64 = 0;
1402         for (i = 0; i < config->rx_ring_num; i++) {
1403                 val64 |=
1404                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1405                          3);
1406         }
1407         writeq(val64, &bar0->rx_queue_priority);
1408
1409         /*
1410          * Allocating equal share of memory to all the
1411          * configured Rings.
1412          */
1413         val64 = 0;
1414         if (nic->device_type & XFRAME_II_DEVICE)
1415                 mem_size = 32;
1416         else
1417                 mem_size = 64;
1418
1419         for (i = 0; i < config->rx_ring_num; i++) {
1420                 switch (i) {
1421                 case 0:
1422                         mem_share = (mem_size / config->rx_ring_num +
1423                                      mem_size % config->rx_ring_num);
1424                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1425                         continue;
1426                 case 1:
1427                         mem_share = (mem_size / config->rx_ring_num);
1428                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1429                         continue;
1430                 case 2:
1431                         mem_share = (mem_size / config->rx_ring_num);
1432                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1433                         continue;
1434                 case 3:
1435                         mem_share = (mem_size / config->rx_ring_num);
1436                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1437                         continue;
1438                 case 4:
1439                         mem_share = (mem_size / config->rx_ring_num);
1440                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1441                         continue;
1442                 case 5:
1443                         mem_share = (mem_size / config->rx_ring_num);
1444                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1445                         continue;
1446                 case 6:
1447                         mem_share = (mem_size / config->rx_ring_num);
1448                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1449                         continue;
1450                 case 7:
1451                         mem_share = (mem_size / config->rx_ring_num);
1452                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1453                         continue;
1454                 }
1455         }
1456         writeq(val64, &bar0->rx_queue_cfg);
1457
1458         /*
1459          * Filling Tx round robin registers
1460          * as per the number of FIFOs for equal scheduling priority
1461          */
1462         switch (config->tx_fifo_num) {
1463         case 1:
1464                 val64 = 0x0;
1465                 writeq(val64, &bar0->tx_w_round_robin_0);
1466                 writeq(val64, &bar0->tx_w_round_robin_1);
1467                 writeq(val64, &bar0->tx_w_round_robin_2);
1468                 writeq(val64, &bar0->tx_w_round_robin_3);
1469                 writeq(val64, &bar0->tx_w_round_robin_4);
1470                 break;
1471         case 2:
1472                 val64 = 0x0001000100010001ULL;
1473                 writeq(val64, &bar0->tx_w_round_robin_0);
1474                 writeq(val64, &bar0->tx_w_round_robin_1);
1475                 writeq(val64, &bar0->tx_w_round_robin_2);
1476                 writeq(val64, &bar0->tx_w_round_robin_3);
1477                 val64 = 0x0001000100000000ULL;
1478                 writeq(val64, &bar0->tx_w_round_robin_4);
1479                 break;
1480         case 3:
1481                 val64 = 0x0001020001020001ULL;
1482                 writeq(val64, &bar0->tx_w_round_robin_0);
1483                 val64 = 0x0200010200010200ULL;
1484                 writeq(val64, &bar0->tx_w_round_robin_1);
1485                 val64 = 0x0102000102000102ULL;
1486                 writeq(val64, &bar0->tx_w_round_robin_2);
1487                 val64 = 0x0001020001020001ULL;
1488                 writeq(val64, &bar0->tx_w_round_robin_3);
1489                 val64 = 0x0200010200000000ULL;
1490                 writeq(val64, &bar0->tx_w_round_robin_4);
1491                 break;
1492         case 4:
1493                 val64 = 0x0001020300010203ULL;
1494                 writeq(val64, &bar0->tx_w_round_robin_0);
1495                 writeq(val64, &bar0->tx_w_round_robin_1);
1496                 writeq(val64, &bar0->tx_w_round_robin_2);
1497                 writeq(val64, &bar0->tx_w_round_robin_3);
1498                 val64 = 0x0001020300000000ULL;
1499                 writeq(val64, &bar0->tx_w_round_robin_4);
1500                 break;
1501         case 5:
1502                 val64 = 0x0001020304000102ULL;
1503                 writeq(val64, &bar0->tx_w_round_robin_0);
1504                 val64 = 0x0304000102030400ULL;
1505                 writeq(val64, &bar0->tx_w_round_robin_1);
1506                 val64 = 0x0102030400010203ULL;
1507                 writeq(val64, &bar0->tx_w_round_robin_2);
1508                 val64 = 0x0400010203040001ULL;
1509                 writeq(val64, &bar0->tx_w_round_robin_3);
1510                 val64 = 0x0203040000000000ULL;
1511                 writeq(val64, &bar0->tx_w_round_robin_4);
1512                 break;
1513         case 6:
1514                 val64 = 0x0001020304050001ULL;
1515                 writeq(val64, &bar0->tx_w_round_robin_0);
1516                 val64 = 0x0203040500010203ULL;
1517                 writeq(val64, &bar0->tx_w_round_robin_1);
1518                 val64 = 0x0405000102030405ULL;
1519                 writeq(val64, &bar0->tx_w_round_robin_2);
1520                 val64 = 0x0001020304050001ULL;
1521                 writeq(val64, &bar0->tx_w_round_robin_3);
1522                 val64 = 0x0203040500000000ULL;
1523                 writeq(val64, &bar0->tx_w_round_robin_4);
1524                 break;
1525         case 7:
1526                 val64 = 0x0001020304050600ULL;
1527                 writeq(val64, &bar0->tx_w_round_robin_0);
1528                 val64 = 0x0102030405060001ULL;
1529                 writeq(val64, &bar0->tx_w_round_robin_1);
1530                 val64 = 0x0203040506000102ULL;
1531                 writeq(val64, &bar0->tx_w_round_robin_2);
1532                 val64 = 0x0304050600010203ULL;
1533                 writeq(val64, &bar0->tx_w_round_robin_3);
1534                 val64 = 0x0405060000000000ULL;
1535                 writeq(val64, &bar0->tx_w_round_robin_4);
1536                 break;
1537         case 8:
1538                 val64 = 0x0001020304050607ULL;
1539                 writeq(val64, &bar0->tx_w_round_robin_0);
1540                 writeq(val64, &bar0->tx_w_round_robin_1);
1541                 writeq(val64, &bar0->tx_w_round_robin_2);
1542                 writeq(val64, &bar0->tx_w_round_robin_3);
1543                 val64 = 0x0001020300000000ULL;
1544                 writeq(val64, &bar0->tx_w_round_robin_4);
1545                 break;
1546         }
1547
1548         /* Enable all configured Tx FIFO partitions */
1549         val64 = readq(&bar0->tx_fifo_partition_0);
1550         val64 |= (TX_FIFO_PARTITION_EN);
1551         writeq(val64, &bar0->tx_fifo_partition_0);
1552
1553         /* Filling the Rx round robin registers as per the
1554          * number of Rings and steering based on QoS with
1555          * equal priority.
1556          */
1557         switch (config->rx_ring_num) {
1558         case 1:
1559                 val64 = 0x0;
1560                 writeq(val64, &bar0->rx_w_round_robin_0);
1561                 writeq(val64, &bar0->rx_w_round_robin_1);
1562                 writeq(val64, &bar0->rx_w_round_robin_2);
1563                 writeq(val64, &bar0->rx_w_round_robin_3);
1564                 writeq(val64, &bar0->rx_w_round_robin_4);
1565
1566                 val64 = 0x8080808080808080ULL;
1567                 writeq(val64, &bar0->rts_qos_steering);
1568                 break;
1569         case 2:
1570                 val64 = 0x0001000100010001ULL;
1571                 writeq(val64, &bar0->rx_w_round_robin_0);
1572                 writeq(val64, &bar0->rx_w_round_robin_1);
1573                 writeq(val64, &bar0->rx_w_round_robin_2);
1574                 writeq(val64, &bar0->rx_w_round_robin_3);
1575                 val64 = 0x0001000100000000ULL;
1576                 writeq(val64, &bar0->rx_w_round_robin_4);
1577
1578                 val64 = 0x8080808040404040ULL;
1579                 writeq(val64, &bar0->rts_qos_steering);
1580                 break;
1581         case 3:
1582                 val64 = 0x0001020001020001ULL;
1583                 writeq(val64, &bar0->rx_w_round_robin_0);
1584                 val64 = 0x0200010200010200ULL;
1585                 writeq(val64, &bar0->rx_w_round_robin_1);
1586                 val64 = 0x0102000102000102ULL;
1587                 writeq(val64, &bar0->rx_w_round_robin_2);
1588                 val64 = 0x0001020001020001ULL;
1589                 writeq(val64, &bar0->rx_w_round_robin_3);
1590                 val64 = 0x0200010200000000ULL;
1591                 writeq(val64, &bar0->rx_w_round_robin_4);
1592
1593                 val64 = 0x8080804040402020ULL;
1594                 writeq(val64, &bar0->rts_qos_steering);
1595                 break;
1596         case 4:
1597                 val64 = 0x0001020300010203ULL;
1598                 writeq(val64, &bar0->rx_w_round_robin_0);
1599                 writeq(val64, &bar0->rx_w_round_robin_1);
1600                 writeq(val64, &bar0->rx_w_round_robin_2);
1601                 writeq(val64, &bar0->rx_w_round_robin_3);
1602                 val64 = 0x0001020300000000ULL;
1603                 writeq(val64, &bar0->rx_w_round_robin_4);
1604
1605                 val64 = 0x8080404020201010ULL;
1606                 writeq(val64, &bar0->rts_qos_steering);
1607                 break;
1608         case 5:
1609                 val64 = 0x0001020304000102ULL;
1610                 writeq(val64, &bar0->rx_w_round_robin_0);
1611                 val64 = 0x0304000102030400ULL;
1612                 writeq(val64, &bar0->rx_w_round_robin_1);
1613                 val64 = 0x0102030400010203ULL;
1614                 writeq(val64, &bar0->rx_w_round_robin_2);
1615                 val64 = 0x0400010203040001ULL;
1616                 writeq(val64, &bar0->rx_w_round_robin_3);
1617                 val64 = 0x0203040000000000ULL;
1618                 writeq(val64, &bar0->rx_w_round_robin_4);
1619
1620                 val64 = 0x8080404020201008ULL;
1621                 writeq(val64, &bar0->rts_qos_steering);
1622                 break;
1623         case 6:
1624                 val64 = 0x0001020304050001ULL;
1625                 writeq(val64, &bar0->rx_w_round_robin_0);
1626                 val64 = 0x0203040500010203ULL;
1627                 writeq(val64, &bar0->rx_w_round_robin_1);
1628                 val64 = 0x0405000102030405ULL;
1629                 writeq(val64, &bar0->rx_w_round_robin_2);
1630                 val64 = 0x0001020304050001ULL;
1631                 writeq(val64, &bar0->rx_w_round_robin_3);
1632                 val64 = 0x0203040500000000ULL;
1633                 writeq(val64, &bar0->rx_w_round_robin_4);
1634
1635                 val64 = 0x8080404020100804ULL;
1636                 writeq(val64, &bar0->rts_qos_steering);
1637                 break;
1638         case 7:
1639                 val64 = 0x0001020304050600ULL;
1640                 writeq(val64, &bar0->rx_w_round_robin_0);
1641                 val64 = 0x0102030405060001ULL;
1642                 writeq(val64, &bar0->rx_w_round_robin_1);
1643                 val64 = 0x0203040506000102ULL;
1644                 writeq(val64, &bar0->rx_w_round_robin_2);
1645                 val64 = 0x0304050600010203ULL;
1646                 writeq(val64, &bar0->rx_w_round_robin_3);
1647                 val64 = 0x0405060000000000ULL;
1648                 writeq(val64, &bar0->rx_w_round_robin_4);
1649
1650                 val64 = 0x8080402010080402ULL;
1651                 writeq(val64, &bar0->rts_qos_steering);
1652                 break;
1653         case 8:
1654                 val64 = 0x0001020304050607ULL;
1655                 writeq(val64, &bar0->rx_w_round_robin_0);
1656                 writeq(val64, &bar0->rx_w_round_robin_1);
1657                 writeq(val64, &bar0->rx_w_round_robin_2);
1658                 writeq(val64, &bar0->rx_w_round_robin_3);
1659                 val64 = 0x0001020300000000ULL;
1660                 writeq(val64, &bar0->rx_w_round_robin_4);
1661
1662                 val64 = 0x8040201008040201ULL;
1663                 writeq(val64, &bar0->rts_qos_steering);
1664                 break;
1665         }
1666
1667         /* UDP Fix */
1668         val64 = 0;
1669         for (i = 0; i < 8; i++)
1670                 writeq(val64, &bar0->rts_frm_len_n[i]);
1671
1672         /* Set the default rts frame length for the rings configured */
1673         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1674         for (i = 0 ; i < config->rx_ring_num ; i++)
1675                 writeq(val64, &bar0->rts_frm_len_n[i]);
1676
1677         /* Set the frame length for the configured rings
1678          * desired by the user
1679          */
1680         for (i = 0; i < config->rx_ring_num; i++) {
1681                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1682                  * specified frame length steering.
1683                  * If the user provides the frame length then program
1684                  * the rts_frm_len register for those values or else
1685                  * leave it as it is.
1686                  */
1687                 if (rts_frm_len[i] != 0) {
1688                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1689                                 &bar0->rts_frm_len_n[i]);
1690                 }
1691         }
1692
1693         /* Disable differentiated services steering logic */
1694         for (i = 0; i < 64; i++) {
1695                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1696                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1697                                 dev->name);
1698                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1699                         return -ENODEV;
1700                 }
1701         }
1702
1703         /* Program statistics memory */
1704         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1705
1706         if (nic->device_type == XFRAME_II_DEVICE) {
1707                 val64 = STAT_BC(0x320);
1708                 writeq(val64, &bar0->stat_byte_cnt);
1709         }
1710
1711         /*
1712          * Initializing the sampling rate for the device to calculate the
1713          * bandwidth utilization.
1714          */
1715         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1716             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1717         writeq(val64, &bar0->mac_link_util);
1718
1719         /*
1720          * Initializing the Transmit and Receive Traffic Interrupt
1721          * Scheme.
1722          */
1723
1724         /* Initialize TTI */
1725         if (SUCCESS != init_tti(nic, nic->last_link_state))
1726                 return -ENODEV;
1727
1728         /* RTI Initialization */
1729         if (nic->device_type == XFRAME_II_DEVICE) {
1730                 /*
1731                  * Programmed to generate Apprx 500 Intrs per
1732                  * second
1733                  */
1734                 int count = (nic->config.bus_speed * 125)/4;
1735                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1736         } else
1737                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1738         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1739                  RTI_DATA1_MEM_RX_URNG_B(0x10) |
1740                  RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1741
1742         writeq(val64, &bar0->rti_data1_mem);
1743
1744         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1745                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1746         if (nic->config.intr_type == MSI_X)
1747             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1748                         RTI_DATA2_MEM_RX_UFC_D(0x40));
1749         else
1750             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1751                         RTI_DATA2_MEM_RX_UFC_D(0x80));
1752         writeq(val64, &bar0->rti_data2_mem);
1753
1754         for (i = 0; i < config->rx_ring_num; i++) {
1755                 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1756                                 | RTI_CMD_MEM_OFFSET(i);
1757                 writeq(val64, &bar0->rti_command_mem);
1758
1759                 /*
1760                  * Once the operation completes, the Strobe bit of the
1761                  * command register will be reset. We poll for this
1762                  * particular condition. We wait for a maximum of 500ms
1763                  * for the operation to complete, if it's not complete
1764                  * by then we return error.
1765                  */
1766                 time = 0;
1767                 while (true) {
1768                         val64 = readq(&bar0->rti_command_mem);
1769                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1770                                 break;
1771
1772                         if (time > 10) {
1773                                 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1774                                           dev->name);
1775                                 return -ENODEV;
1776                         }
1777                         time++;
1778                         msleep(50);
1779                 }
1780         }
1781
1782         /*
1783          * Initializing proper values as Pause threshold into all
1784          * the 8 Queues on Rx side.
1785          */
1786         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1787         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1788
1789         /* Disable RMAC PAD STRIPPING */
1790         add = &bar0->mac_cfg;
1791         val64 = readq(&bar0->mac_cfg);
1792         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1793         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1794         writel((u32) (val64), add);
1795         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1796         writel((u32) (val64 >> 32), (add + 4));
1797         val64 = readq(&bar0->mac_cfg);
1798
1799         /* Enable FCS stripping by adapter */
1800         add = &bar0->mac_cfg;
1801         val64 = readq(&bar0->mac_cfg);
1802         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1803         if (nic->device_type == XFRAME_II_DEVICE)
1804                 writeq(val64, &bar0->mac_cfg);
1805         else {
1806                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807                 writel((u32) (val64), add);
1808                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1809                 writel((u32) (val64 >> 32), (add + 4));
1810         }
1811
1812         /*
1813          * Set the time value to be inserted in the pause frame
1814          * generated by xena.
1815          */
1816         val64 = readq(&bar0->rmac_pause_cfg);
1817         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1818         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1819         writeq(val64, &bar0->rmac_pause_cfg);
1820
1821         /*
1822          * Set the Threshold Limit for Generating the pause frame
1823          * If the amount of data in any Queue exceeds ratio of
1824          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1825          * pause frame is generated
1826          */
1827         val64 = 0;
1828         for (i = 0; i < 4; i++) {
1829                 val64 |=
1830                     (((u64) 0xFF00 | nic->mac_control.
1831                       mc_pause_threshold_q0q3)
1832                      << (i * 2 * 8));
1833         }
1834         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1835
1836         val64 = 0;
1837         for (i = 0; i < 4; i++) {
1838                 val64 |=
1839                     (((u64) 0xFF00 | nic->mac_control.
1840                       mc_pause_threshold_q4q7)
1841                      << (i * 2 * 8));
1842         }
1843         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1844
1845         /*
1846          * TxDMA will stop Read request if the number of read split has
1847          * exceeded the limit pointed by shared_splits
1848          */
1849         val64 = readq(&bar0->pic_control);
1850         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1851         writeq(val64, &bar0->pic_control);
1852
1853         if (nic->config.bus_speed == 266) {
1854                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1855                 writeq(0x0, &bar0->read_retry_delay);
1856                 writeq(0x0, &bar0->write_retry_delay);
1857         }
1858
1859         /*
1860          * Programming the Herc to split every write transaction
1861          * that does not start on an ADB to reduce disconnects.
1862          */
1863         if (nic->device_type == XFRAME_II_DEVICE) {
1864                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1865                         MISC_LINK_STABILITY_PRD(3);
1866                 writeq(val64, &bar0->misc_control);
1867                 val64 = readq(&bar0->pic_control2);
1868                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1869                 writeq(val64, &bar0->pic_control2);
1870         }
1871         if (strstr(nic->product_name, "CX4")) {
1872                 val64 = TMAC_AVG_IPG(0x17);
1873                 writeq(val64, &bar0->tmac_avg_ipg);
1874         }
1875
1876         return SUCCESS;
1877 }
1878 #define LINK_UP_DOWN_INTERRUPT          1
1879 #define MAC_RMAC_ERR_TIMER              2
1880
1881 static int s2io_link_fault_indication(struct s2io_nic *nic)
1882 {
1883         if (nic->device_type == XFRAME_II_DEVICE)
1884                 return LINK_UP_DOWN_INTERRUPT;
1885         else
1886                 return MAC_RMAC_ERR_TIMER;
1887 }
1888
1889 /**
1890  *  do_s2io_write_bits -  update alarm bits in alarm register
1891  *  @value: alarm bits
1892  *  @flag: interrupt status
1893  *  @addr: address value
1894  *  Description: update alarm bits in alarm register
1895  *  Return Value:
1896  *  NONE.
1897  */
1898 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1899 {
1900         u64 temp64;
1901
1902         temp64 = readq(addr);
1903
1904         if(flag == ENABLE_INTRS)
1905                 temp64 &= ~((u64) value);
1906         else
1907                 temp64 |= ((u64) value);
1908         writeq(temp64, addr);
1909 }
1910
1911 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1912 {
1913         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1914         register u64 gen_int_mask = 0;
1915         u64 interruptible;
1916
1917         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1918         if (mask & TX_DMA_INTR) {
1919
1920                 gen_int_mask |= TXDMA_INT_M;
1921
1922                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1923                                 TXDMA_PCC_INT | TXDMA_TTI_INT |
1924                                 TXDMA_LSO_INT | TXDMA_TPA_INT |
1925                                 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1926
1927                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1928                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1929                                 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1930                                 &bar0->pfc_err_mask);
1931
1932                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1933                                 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1934                                 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1935
1936                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1937                                 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1938                                 PCC_N_SERR | PCC_6_COF_OV_ERR |
1939                                 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1940                                 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1941                                 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1942
1943                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1944                                 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1945
1946                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1947                                 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1948                                 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1949                                 flag, &bar0->lso_err_mask);
1950
1951                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1952                                 flag, &bar0->tpa_err_mask);
1953
1954                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1955
1956         }
1957
1958         if (mask & TX_MAC_INTR) {
1959                 gen_int_mask |= TXMAC_INT_M;
1960                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1961                                 &bar0->mac_int_mask);
1962                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1963                                 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1964                                 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1965                                 flag, &bar0->mac_tmac_err_mask);
1966         }
1967
1968         if (mask & TX_XGXS_INTR) {
1969                 gen_int_mask |= TXXGXS_INT_M;
1970                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1971                                 &bar0->xgxs_int_mask);
1972                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1973                                 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1974                                 flag, &bar0->xgxs_txgxs_err_mask);
1975         }
1976
1977         if (mask & RX_DMA_INTR) {
1978                 gen_int_mask |= RXDMA_INT_M;
1979                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1980                                 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1981                                 flag, &bar0->rxdma_int_mask);
1982                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1983                                 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1984                                 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1985                                 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1986                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1987                                 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1988                                 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1989                                 &bar0->prc_pcix_err_mask);
1990                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1991                                 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1992                                 &bar0->rpa_err_mask);
1993                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1994                                 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1995                                 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1996                                 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1997                                 flag, &bar0->rda_err_mask);
1998                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1999                                 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2000                                 flag, &bar0->rti_err_mask);
2001         }
2002
2003         if (mask & RX_MAC_INTR) {
2004                 gen_int_mask |= RXMAC_INT_M;
2005                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2006                                 &bar0->mac_int_mask);
2007                 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2008                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2009                                 RMAC_DOUBLE_ECC_ERR;
2010                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2011                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2012                 do_s2io_write_bits(interruptible,
2013                                 flag, &bar0->mac_rmac_err_mask);
2014         }
2015
2016         if (mask & RX_XGXS_INTR)
2017         {
2018                 gen_int_mask |= RXXGXS_INT_M;
2019                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2020                                 &bar0->xgxs_int_mask);
2021                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2022                                 &bar0->xgxs_rxgxs_err_mask);
2023         }
2024
2025         if (mask & MC_INTR) {
2026                 gen_int_mask |= MC_INT_M;
2027                 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2028                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2029                                 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2030                                 &bar0->mc_err_mask);
2031         }
2032         nic->general_int_mask = gen_int_mask;
2033
2034         /* Remove this line when alarm interrupts are enabled */
2035         nic->general_int_mask = 0;
2036 }
2037 /**
2038  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2039  *  @nic: device private variable,
2040  *  @mask: A mask indicating which Intr block must be modified and,
2041  *  @flag: A flag indicating whether to enable or disable the Intrs.
2042  *  Description: This function will either disable or enable the interrupts
2043  *  depending on the flag argument. The mask argument can be used to
2044  *  enable/disable any Intr block.
2045  *  Return Value: NONE.
2046  */
2047
2048 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2049 {
2050         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2051         register u64 temp64 = 0, intr_mask = 0;
2052
2053         intr_mask = nic->general_int_mask;
2054
2055         /*  Top level interrupt classification */
2056         /*  PIC Interrupts */
2057         if (mask & TX_PIC_INTR) {
2058                 /*  Enable PIC Intrs in the general intr mask register */
2059                 intr_mask |= TXPIC_INT_M;
2060                 if (flag == ENABLE_INTRS) {
2061                         /*
2062                          * If Hercules adapter enable GPIO otherwise
2063                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2064                          * interrupts for now.
2065                          * TODO
2066                          */
2067                         if (s2io_link_fault_indication(nic) ==
2068                                         LINK_UP_DOWN_INTERRUPT ) {
2069                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2070                                                 &bar0->pic_int_mask);
2071                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2072                                                 &bar0->gpio_int_mask);
2073                         } else
2074                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2075                 } else if (flag == DISABLE_INTRS) {
2076                         /*
2077                          * Disable PIC Intrs in the general
2078                          * intr mask register
2079                          */
2080                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2081                 }
2082         }
2083
2084         /*  Tx traffic interrupts */
2085         if (mask & TX_TRAFFIC_INTR) {
2086                 intr_mask |= TXTRAFFIC_INT_M;
2087                 if (flag == ENABLE_INTRS) {
2088                         /*
2089                          * Enable all the Tx side interrupts
2090                          * writing 0 Enables all 64 TX interrupt levels
2091                          */
2092                         writeq(0x0, &bar0->tx_traffic_mask);
2093                 } else if (flag == DISABLE_INTRS) {
2094                         /*
2095                          * Disable Tx Traffic Intrs in the general intr mask
2096                          * register.
2097                          */
2098                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2099                 }
2100         }
2101
2102         /*  Rx traffic interrupts */
2103         if (mask & RX_TRAFFIC_INTR) {
2104                 intr_mask |= RXTRAFFIC_INT_M;
2105                 if (flag == ENABLE_INTRS) {
2106                         /* writing 0 Enables all 8 RX interrupt levels */
2107                         writeq(0x0, &bar0->rx_traffic_mask);
2108                 } else if (flag == DISABLE_INTRS) {
2109                         /*
2110                          * Disable Rx Traffic Intrs in the general intr mask
2111                          * register.
2112                          */
2113                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2114                 }
2115         }
2116
2117         temp64 = readq(&bar0->general_int_mask);
2118         if (flag == ENABLE_INTRS)
2119                 temp64 &= ~((u64) intr_mask);
2120         else
2121                 temp64 = DISABLE_ALL_INTRS;
2122         writeq(temp64, &bar0->general_int_mask);
2123
2124         nic->general_int_mask = readq(&bar0->general_int_mask);
2125 }
2126
2127 /**
2128  *  verify_pcc_quiescent- Checks for PCC quiescent state
2129  *  Return: 1 If PCC is quiescence
2130  *          0 If PCC is not quiescence
2131  */
2132 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2133 {
2134         int ret = 0, herc;
2135         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2136         u64 val64 = readq(&bar0->adapter_status);
2137
2138         herc = (sp->device_type == XFRAME_II_DEVICE);
2139
2140         if (flag == false) {
2141                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2142                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2143                                 ret = 1;
2144                 } else {
2145                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2146                                 ret = 1;
2147                 }
2148         } else {
2149                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2150                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2151                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2152                                 ret = 1;
2153                 } else {
2154                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2155                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2156                                 ret = 1;
2157                 }
2158         }
2159
2160         return ret;
2161 }
2162 /**
2163  *  verify_xena_quiescence - Checks whether the H/W is ready
2164  *  Description: Returns whether the H/W is ready to go or not. Depending
2165  *  on whether adapter enable bit was written or not the comparison
2166  *  differs and the calling function passes the input argument flag to
2167  *  indicate this.
2168  *  Return: 1 If xena is quiescence
2169  *          0 If Xena is not quiescence
2170  */
2171
2172 static int verify_xena_quiescence(struct s2io_nic *sp)
2173 {
2174         int  mode;
2175         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2176         u64 val64 = readq(&bar0->adapter_status);
2177         mode = s2io_verify_pci_mode(sp);
2178
2179         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2180                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2181                 return 0;
2182         }
2183         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2184         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2185                 return 0;
2186         }
2187         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2188                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2189                 return 0;
2190         }
2191         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2192                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2193                 return 0;
2194         }
2195         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2196                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2197                 return 0;
2198         }
2199         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2200                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2201                 return 0;
2202         }
2203         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2204                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2205                 return 0;
2206         }
2207         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2208                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2209                 return 0;
2210         }
2211
2212         /*
2213          * In PCI 33 mode, the P_PLL is not used, and therefore,
2214          * the the P_PLL_LOCK bit in the adapter_status register will
2215          * not be asserted.
2216          */
2217         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2218                 sp->device_type == XFRAME_II_DEVICE && mode !=
2219                 PCI_MODE_PCI_33) {
2220                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2221                 return 0;
2222         }
2223         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2224                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2225                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2226                 return 0;
2227         }
2228         return 1;
2229 }
2230
2231 /**
2232  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2233  * @sp: Pointer to device specifc structure
2234  * Description :
2235  * New procedure to clear mac address reading  problems on Alpha platforms
2236  *
2237  */
2238
2239 static void fix_mac_address(struct s2io_nic * sp)
2240 {
2241         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2242         u64 val64;
2243         int i = 0;
2244
2245         while (fix_mac[i] != END_SIGN) {
2246                 writeq(fix_mac[i++], &bar0->gpio_control);
2247                 udelay(10);
2248                 val64 = readq(&bar0->gpio_control);
2249         }
2250 }
2251
2252 /**
2253  *  start_nic - Turns the device on
2254  *  @nic : device private variable.
2255  *  Description:
2256  *  This function actually turns the device on. Before this  function is
2257  *  called,all Registers are configured from their reset states
2258  *  and shared memory is allocated but the NIC is still quiescent. On
2259  *  calling this function, the device interrupts are cleared and the NIC is
2260  *  literally switched on by writing into the adapter control register.
2261  *  Return Value:
2262  *  SUCCESS on success and -1 on failure.
2263  */
2264
2265 static int start_nic(struct s2io_nic *nic)
2266 {
2267         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2268         struct net_device *dev = nic->dev;
2269         register u64 val64 = 0;
2270         u16 subid, i;
2271         struct mac_info *mac_control;
2272         struct config_param *config;
2273
2274         mac_control = &nic->mac_control;
2275         config = &nic->config;
2276
2277         /*  PRC Initialization and configuration */
2278         for (i = 0; i < config->rx_ring_num; i++) {
2279                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2280                        &bar0->prc_rxd0_n[i]);
2281
2282                 val64 = readq(&bar0->prc_ctrl_n[i]);
2283                 if (nic->rxd_mode == RXD_MODE_1)
2284                         val64 |= PRC_CTRL_RC_ENABLED;
2285                 else
2286                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2287                 if (nic->device_type == XFRAME_II_DEVICE)
2288                         val64 |= PRC_CTRL_GROUP_READS;
2289                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2290                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2291                 writeq(val64, &bar0->prc_ctrl_n[i]);
2292         }
2293
2294         if (nic->rxd_mode == RXD_MODE_3B) {
2295                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2296                 val64 = readq(&bar0->rx_pa_cfg);
2297                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2298                 writeq(val64, &bar0->rx_pa_cfg);
2299         }
2300
2301         if (vlan_tag_strip == 0) {
2302                 val64 = readq(&bar0->rx_pa_cfg);
2303                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2304                 writeq(val64, &bar0->rx_pa_cfg);
2305                 nic->vlan_strip_flag = 0;
2306         }
2307
2308         /*
2309          * Enabling MC-RLDRAM. After enabling the device, we timeout
2310          * for around 100ms, which is approximately the time required
2311          * for the device to be ready for operation.
2312          */
2313         val64 = readq(&bar0->mc_rldram_mrs);
2314         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2315         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2316         val64 = readq(&bar0->mc_rldram_mrs);
2317
2318         msleep(100);    /* Delay by around 100 ms. */
2319
2320         /* Enabling ECC Protection. */
2321         val64 = readq(&bar0->adapter_control);
2322         val64 &= ~ADAPTER_ECC_EN;
2323         writeq(val64, &bar0->adapter_control);
2324
2325         /*
2326          * Verify if the device is ready to be enabled, if so enable
2327          * it.
2328          */
2329         val64 = readq(&bar0->adapter_status);
2330         if (!verify_xena_quiescence(nic)) {
2331                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2332                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2333                           (unsigned long long) val64);
2334                 return FAILURE;
2335         }
2336
2337         /*
2338          * With some switches, link might be already up at this point.
2339          * Because of this weird behavior, when we enable laser,
2340          * we may not get link. We need to handle this. We cannot
2341          * figure out which switch is misbehaving. So we are forced to
2342          * make a global change.
2343          */
2344
2345         /* Enabling Laser. */
2346         val64 = readq(&bar0->adapter_control);
2347         val64 |= ADAPTER_EOI_TX_ON;
2348         writeq(val64, &bar0->adapter_control);
2349
2350         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2351                 /*
2352                  * Dont see link state interrupts initally on some switches,
2353                  * so directly scheduling the link state task here.
2354                  */
2355                 schedule_work(&nic->set_link_task);
2356         }
2357         /* SXE-002: Initialize link and activity LED */
2358         subid = nic->pdev->subsystem_device;
2359         if (((subid & 0xFF) >= 0x07) &&
2360             (nic->device_type == XFRAME_I_DEVICE)) {
2361                 val64 = readq(&bar0->gpio_control);
2362                 val64 |= 0x0000800000000000ULL;
2363                 writeq(val64, &bar0->gpio_control);
2364                 val64 = 0x0411040400000000ULL;
2365                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2366         }
2367
2368         return SUCCESS;
2369 }
2370 /**
2371  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2372  */
2373 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2374                                         TxD *txdlp, int get_off)
2375 {
2376         struct s2io_nic *nic = fifo_data->nic;
2377         struct sk_buff *skb;
2378         struct TxD *txds;
2379         u16 j, frg_cnt;
2380
2381         txds = txdlp;
2382         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2383                 pci_unmap_single(nic->pdev, (dma_addr_t)
2384                         txds->Buffer_Pointer, sizeof(u64),
2385                         PCI_DMA_TODEVICE);
2386                 txds++;
2387         }
2388
2389         skb = (struct sk_buff *) ((unsigned long)
2390                         txds->Host_Control);
2391         if (!skb) {
2392                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2393                 return NULL;
2394         }
2395         pci_unmap_single(nic->pdev, (dma_addr_t)
2396                          txds->Buffer_Pointer,
2397                          skb->len - skb->data_len,
2398                          PCI_DMA_TODEVICE);
2399         frg_cnt = skb_shinfo(skb)->nr_frags;
2400         if (frg_cnt) {
2401                 txds++;
2402                 for (j = 0; j < frg_cnt; j++, txds++) {
2403                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404                         if (!txds->Buffer_Pointer)
2405                                 break;
2406                         pci_unmap_page(nic->pdev, (dma_addr_t)
2407                                         txds->Buffer_Pointer,
2408                                        frag->size, PCI_DMA_TODEVICE);
2409                 }
2410         }
2411         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2412         return(skb);
2413 }
2414
2415 /**
2416  *  free_tx_buffers - Free all queued Tx buffers
2417  *  @nic : device private variable.
2418  *  Description:
2419  *  Free all queued Tx buffers.
2420  *  Return Value: void
2421 */
2422
2423 static void free_tx_buffers(struct s2io_nic *nic)
2424 {
2425         struct net_device *dev = nic->dev;
2426         struct sk_buff *skb;
2427         struct TxD *txdp;
2428         int i, j;
2429         struct mac_info *mac_control;
2430         struct config_param *config;
2431         int cnt = 0;
2432
2433         mac_control = &nic->mac_control;
2434         config = &nic->config;
2435
2436         for (i = 0; i < config->tx_fifo_num; i++) {
2437                 unsigned long flags;
2438                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2439                 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2440                         txdp = (struct TxD *) \
2441                         mac_control->fifos[i].list_info[j].list_virt_addr;
2442                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2443                         if (skb) {
2444                                 nic->mac_control.stats_info->sw_stat.mem_freed
2445                                         += skb->truesize;
2446                                 dev_kfree_skb(skb);
2447                                 cnt++;
2448                         }
2449                 }
2450                 DBG_PRINT(INTR_DBG,
2451                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2452                           dev->name, cnt, i);
2453                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2454                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2455                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2456         }
2457 }
2458
2459 /**
2460  *   stop_nic -  To stop the nic
2461  *   @nic ; device private variable.
2462  *   Description:
2463  *   This function does exactly the opposite of what the start_nic()
2464  *   function does. This function is called to stop the device.
2465  *   Return Value:
2466  *   void.
2467  */
2468
2469 static void stop_nic(struct s2io_nic *nic)
2470 {
2471         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2472         register u64 val64 = 0;
2473         u16 interruptible;
2474         struct mac_info *mac_control;
2475         struct config_param *config;
2476
2477         mac_control = &nic->mac_control;
2478         config = &nic->config;
2479
2480         /*  Disable all interrupts */
2481         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2482         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2483         interruptible |= TX_PIC_INTR;
2484         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2485
2486         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487         val64 = readq(&bar0->adapter_control);
2488         val64 &= ~(ADAPTER_CNTL_EN);
2489         writeq(val64, &bar0->adapter_control);
2490 }
2491
2492 /**
2493  *  fill_rx_buffers - Allocates the Rx side skbs
2494  *  @ring_info: per ring structure
2495  *  @from_card_up: If this is true, we will map the buffer to get
2496  *     the dma address for buf0 and buf1 to give it to the card.
2497  *     Else we will sync the already mapped buffer to give it to the card.
2498  *  Description:
2499  *  The function allocates Rx side skbs and puts the physical
2500  *  address of these buffers into the RxD buffer pointers, so that the NIC
2501  *  can DMA the received frame into these locations.
2502  *  The NIC supports 3 receive modes, viz
2503  *  1. single buffer,
2504  *  2. three buffer and
2505  *  3. Five buffer modes.
2506  *  Each mode defines how many fragments the received frame will be split
2507  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2508  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509  *  is split into 3 fragments. As of now only single buffer mode is
2510  *  supported.
2511  *   Return Value:
2512  *  SUCCESS on success or an appropriate -ve value on failure.
2513  */
2514 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2515                                 int from_card_up)
2516 {
2517         struct sk_buff *skb;
2518         struct RxD_t *rxdp;
2519         int off, size, block_no, block_no1;
2520         u32 alloc_tab = 0;
2521         u32 alloc_cnt;
2522         u64 tmp;
2523         struct buffAdd *ba;
2524         struct RxD_t *first_rxdp = NULL;
2525         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2526         int rxd_index = 0;
2527         struct RxD1 *rxdp1;
2528         struct RxD3 *rxdp3;
2529         struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2530
2531         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2532
2533         block_no1 = ring->rx_curr_get_info.block_index;
2534         while (alloc_tab < alloc_cnt) {
2535                 block_no = ring->rx_curr_put_info.block_index;
2536
2537                 off = ring->rx_curr_put_info.offset;
2538
2539                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2540
2541                 rxd_index = off + 1;
2542                 if (block_no)
2543                         rxd_index += (block_no * ring->rxd_count);
2544
2545                 if ((block_no == block_no1) &&
2546                         (off == ring->rx_curr_get_info.offset) &&
2547                         (rxdp->Host_Control)) {
2548                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2549                                 ring->dev->name);
2550                         DBG_PRINT(INTR_DBG, " info equated\n");
2551                         goto end;
2552                 }
2553                 if (off && (off == ring->rxd_count)) {
2554                         ring->rx_curr_put_info.block_index++;
2555                         if (ring->rx_curr_put_info.block_index ==
2556                                                         ring->block_count)
2557                                 ring->rx_curr_put_info.block_index = 0;
2558                         block_no = ring->rx_curr_put_info.block_index;
2559                         off = 0;
2560                         ring->rx_curr_put_info.offset = off;
2561                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2562                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2563                                   ring->dev->name, rxdp);
2564
2565                 }
2566
2567                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2568                         ((ring->rxd_mode == RXD_MODE_3B) &&
2569                                 (rxdp->Control_2 & s2BIT(0)))) {
2570                         ring->rx_curr_put_info.offset = off;
2571                         goto end;
2572                 }
2573                 /* calculate size of skb based on ring mode */
2574                 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2575                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2576                 if (ring->rxd_mode == RXD_MODE_1)
2577                         size += NET_IP_ALIGN;
2578                 else
2579                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2580
2581                 /* allocate skb */
2582                 skb = dev_alloc_skb(size);
2583                 if(!skb) {
2584                         DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2585                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2586                         if (first_rxdp) {
2587                                 wmb();
2588                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2589                         }
2590                         stats->mem_alloc_fail_cnt++;
2591
2592                         return -ENOMEM ;
2593                 }
2594                 stats->mem_allocated += skb->truesize;
2595
2596                 if (ring->rxd_mode == RXD_MODE_1) {
2597                         /* 1 buffer mode - normal operation mode */
2598                         rxdp1 = (struct RxD1*)rxdp;
2599                         memset(rxdp, 0, sizeof(struct RxD1));
2600                         skb_reserve(skb, NET_IP_ALIGN);
2601                         rxdp1->Buffer0_ptr = pci_map_single
2602                             (ring->pdev, skb->data, size - NET_IP_ALIGN,
2603                                 PCI_DMA_FROMDEVICE);
2604                         if (pci_dma_mapping_error(nic->pdev,
2605                                                 rxdp1->Buffer0_ptr))
2606                                 goto pci_map_failed;
2607
2608                         rxdp->Control_2 =
2609                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2610                         rxdp->Host_Control = (unsigned long) (skb);
2611                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2612                         /*
2613                          * 2 buffer mode -
2614                          * 2 buffer mode provides 128
2615                          * byte aligned receive buffers.
2616                          */
2617
2618                         rxdp3 = (struct RxD3*)rxdp;
2619                         /* save buffer pointers to avoid frequent dma mapping */
2620                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2621                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2622                         memset(rxdp, 0, sizeof(struct RxD3));
2623                         /* restore the buffer pointers for dma sync*/
2624                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2625                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2626
2627                         ba = &ring->ba[block_no][off];
2628                         skb_reserve(skb, BUF0_LEN);
2629                         tmp = (u64)(unsigned long) skb->data;
2630                         tmp += ALIGN_SIZE;
2631                         tmp &= ~ALIGN_SIZE;
2632                         skb->data = (void *) (unsigned long)tmp;
2633                         skb_reset_tail_pointer(skb);
2634
2635                         if (from_card_up) {
2636                                 rxdp3->Buffer0_ptr =
2637                                    pci_map_single(ring->pdev, ba->ba_0,
2638                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
2639                         if (pci_dma_mapping_error(nic->pdev,
2640                                                 rxdp3->Buffer0_ptr))
2641                                         goto pci_map_failed;
2642                         } else
2643                                 pci_dma_sync_single_for_device(ring->pdev,
2644                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2645                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2646
2647                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2648                         if (ring->rxd_mode == RXD_MODE_3B) {
2649                                 /* Two buffer mode */
2650
2651                                 /*
2652                                  * Buffer2 will have L3/L4 header plus
2653                                  * L4 payload
2654                                  */
2655                                 rxdp3->Buffer2_ptr = pci_map_single
2656                                 (ring->pdev, skb->data, ring->mtu + 4,
2657                                                 PCI_DMA_FROMDEVICE);
2658
2659                                 if (pci_dma_mapping_error(nic->pdev,
2660                                                         rxdp3->Buffer2_ptr))
2661                                         goto pci_map_failed;
2662
2663                                 if (from_card_up) {
2664                                         rxdp3->Buffer1_ptr =
2665                                                 pci_map_single(ring->pdev,
2666                                                 ba->ba_1, BUF1_LEN,
2667                                                 PCI_DMA_FROMDEVICE);
2668
2669                                         if (pci_dma_mapping_error(nic->pdev,
2670                                                 rxdp3->Buffer1_ptr)) {
2671                                                 pci_unmap_single
2672                                                         (ring->pdev,
2673                                                     (dma_addr_t)(unsigned long)
2674                                                         skb->data,
2675                                                         ring->mtu + 4,
2676                                                         PCI_DMA_FROMDEVICE);
2677                                                 goto pci_map_failed;
2678                                         }
2679                                 }
2680                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2681                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2682                                                                 (ring->mtu + 4);
2683                         }
2684                         rxdp->Control_2 |= s2BIT(0);
2685                         rxdp->Host_Control = (unsigned long) (skb);
2686                 }
2687                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2688                         rxdp->Control_1 |= RXD_OWN_XENA;
2689                 off++;
2690                 if (off == (ring->rxd_count + 1))
2691                         off = 0;
2692                 ring->rx_curr_put_info.offset = off;
2693
2694                 rxdp->Control_2 |= SET_RXD_MARKER;
2695                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2696                         if (first_rxdp) {
2697                                 wmb();
2698                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2699                         }
2700                         first_rxdp = rxdp;
2701                 }
2702                 ring->rx_bufs_left += 1;
2703                 alloc_tab++;
2704         }
2705
2706       end:
2707         /* Transfer ownership of first descriptor to adapter just before
2708          * exiting. Before that, use memory barrier so that ownership
2709          * and other fields are seen by adapter correctly.
2710          */
2711         if (first_rxdp) {
2712                 wmb();
2713                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2714         }
2715
2716         return SUCCESS;
2717 pci_map_failed:
2718         stats->pci_map_fail_cnt++;
2719         stats->mem_freed += skb->truesize;
2720         dev_kfree_skb_irq(skb);
2721         return -ENOMEM;
2722 }
2723
2724 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2725 {
2726         struct net_device *dev = sp->dev;
2727         int j;
2728         struct sk_buff *skb;
2729         struct RxD_t *rxdp;
2730         struct mac_info *mac_control;
2731         struct buffAdd *ba;
2732         struct RxD1 *rxdp1;
2733         struct RxD3 *rxdp3;
2734
2735         mac_control = &sp->mac_control;
2736         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2737                 rxdp = mac_control->rings[ring_no].
2738                                 rx_blocks[blk].rxds[j].virt_addr;
2739                 skb = (struct sk_buff *)
2740                         ((unsigned long) rxdp->Host_Control);
2741                 if (!skb) {
2742                         continue;
2743                 }
2744                 if (sp->rxd_mode == RXD_MODE_1) {
2745                         rxdp1 = (struct RxD1*)rxdp;
2746                         pci_unmap_single(sp->pdev, (dma_addr_t)
2747                                 rxdp1->Buffer0_ptr,
2748                                 dev->mtu +
2749                                 HEADER_ETHERNET_II_802_3_SIZE
2750                                 + HEADER_802_2_SIZE +
2751                                 HEADER_SNAP_SIZE,
2752                                 PCI_DMA_FROMDEVICE);
2753                         memset(rxdp, 0, sizeof(struct RxD1));
2754                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2755                         rxdp3 = (struct RxD3*)rxdp;
2756                         ba = &mac_control->rings[ring_no].
2757                                 ba[blk][j];
2758                         pci_unmap_single(sp->pdev, (dma_addr_t)
2759                                 rxdp3->Buffer0_ptr,
2760                                 BUF0_LEN,
2761                                 PCI_DMA_FROMDEVICE);
2762                         pci_unmap_single(sp->pdev, (dma_addr_t)
2763                                 rxdp3->Buffer1_ptr,
2764                                 BUF1_LEN,
2765                                 PCI_DMA_FROMDEVICE);
2766                         pci_unmap_single(sp->pdev, (dma_addr_t)
2767                                 rxdp3->Buffer2_ptr,
2768                                 dev->mtu + 4,
2769                                 PCI_DMA_FROMDEVICE);
2770                         memset(rxdp, 0, sizeof(struct RxD3));
2771                 }
2772                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2773                 dev_kfree_skb(skb);
2774                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2775         }
2776 }
2777
2778 /**
2779  *  free_rx_buffers - Frees all Rx buffers
2780  *  @sp: device private variable.
2781  *  Description:
2782  *  This function will free all Rx buffers allocated by host.
2783  *  Return Value:
2784  *  NONE.
2785  */
2786
2787 static void free_rx_buffers(struct s2io_nic *sp)
2788 {
2789         struct net_device *dev = sp->dev;
2790         int i, blk = 0, buf_cnt = 0;
2791         struct mac_info *mac_control;
2792         struct config_param *config;
2793
2794         mac_control = &sp->mac_control;
2795         config = &sp->config;
2796
2797         for (i = 0; i < config->rx_ring_num; i++) {
2798                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2799                         free_rxd_blk(sp,i,blk);
2800
2801                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2802                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2803                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2804                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2805                 mac_control->rings[i].rx_bufs_left = 0;
2806                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2807                           dev->name, buf_cnt, i);
2808         }
2809 }
2810
2811 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2812 {
2813         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2814                 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2815                 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2816         }
2817         return 0;
2818 }
2819
2820 /**
2821  * s2io_poll - Rx interrupt handler for NAPI support
2822  * @napi : pointer to the napi structure.
2823  * @budget : The number of packets that were budgeted to be processed
2824  * during  one pass through the 'Poll" function.
2825  * Description:
2826  * Comes into picture only if NAPI support has been incorporated. It does
2827  * the same thing that rx_intr_handler does, but not in a interrupt context
2828  * also It will process only a given number of packets.
2829  * Return value:
2830  * 0 on success and 1 if there are No Rx packets to be processed.
2831  */
2832
2833 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2834 {
2835         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836         struct net_device *dev = ring->dev;
2837         struct config_param *config;
2838         struct mac_info *mac_control;
2839         int pkts_processed = 0;
2840         u8 __iomem *addr = NULL;
2841         u8 val8 = 0;
2842         struct s2io_nic *nic = netdev_priv(dev);
2843         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2844         int budget_org = budget;
2845
2846         config = &nic->config;
2847         mac_control = &nic->mac_control;
2848
2849         if (unlikely(!is_s2io_card_up(nic)))
2850                 return 0;
2851
2852         pkts_processed = rx_intr_handler(ring, budget);
2853         s2io_chk_rx_buffers(nic, ring);
2854
2855         if (pkts_processed < budget_org) {
2856                 napi_complete(napi);
2857                 /*Re Enable MSI-Rx Vector*/
2858                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2859                 addr += 7 - ring->ring_no;
2860                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2861                 writeb(val8, addr);
2862                 val8 = readb(addr);
2863         }
2864         return pkts_processed;
2865 }
2866 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2867 {
2868         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2869         struct ring_info *ring;
2870         struct config_param *config;
2871         struct mac_info *mac_control;
2872         int pkts_processed = 0;
2873         int ring_pkts_processed, i;
2874         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2875         int budget_org = budget;
2876
2877         config = &nic->config;
2878         mac_control = &nic->mac_control;
2879
2880         if (unlikely(!is_s2io_card_up(nic)))
2881                 return 0;
2882
2883         for (i = 0; i < config->rx_ring_num; i++) {
2884                 ring = &mac_control->rings[i];
2885                 ring_pkts_processed = rx_intr_handler(ring, budget);
2886                 s2io_chk_rx_buffers(nic, ring);
2887                 pkts_processed += ring_pkts_processed;
2888                 budget -= ring_pkts_processed;
2889                 if (budget <= 0)
2890                         break;
2891         }
2892         if (pkts_processed < budget_org) {
2893                 napi_complete(napi);
2894                 /* Re enable the Rx interrupts for the ring */
2895                 writeq(0, &bar0->rx_traffic_mask);
2896                 readl(&bar0->rx_traffic_mask);
2897         }
2898         return pkts_processed;
2899 }
2900
2901 #ifdef CONFIG_NET_POLL_CONTROLLER
2902 /**
2903  * s2io_netpoll - netpoll event handler entry point
2904  * @dev : pointer to the device structure.
2905  * Description:
2906  *      This function will be called by upper layer to check for events on the
2907  * interface in situations where interrupts are disabled. It is used for
2908  * specific in-kernel networking tasks, such as remote consoles and kernel
2909  * debugging over the network (example netdump in RedHat).
2910  */
2911 static void s2io_netpoll(struct net_device *dev)
2912 {
2913         struct s2io_nic *nic = netdev_priv(dev);
2914         struct mac_info *mac_control;
2915         struct config_param *config;
2916         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2917         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2918         int i;
2919
2920         if (pci_channel_offline(nic->pdev))
2921                 return;
2922
2923         disable_irq(dev->irq);
2924
2925         mac_control = &nic->mac_control;
2926         config = &nic->config;
2927
2928         writeq(val64, &bar0->rx_traffic_int);
2929         writeq(val64, &bar0->tx_traffic_int);
2930
2931         /* we need to free up the transmitted skbufs or else netpoll will
2932          * run out of skbs and will fail and eventually netpoll application such
2933          * as netdump will fail.
2934          */
2935         for (i = 0; i < config->tx_fifo_num; i++)
2936                 tx_intr_handler(&mac_control->fifos[i]);
2937
2938         /* check for received packet and indicate up to network */
2939         for (i = 0; i < config->rx_ring_num; i++)
2940                 rx_intr_handler(&mac_control->rings[i], 0);
2941
2942         for (i = 0; i < config->rx_ring_num; i++) {
2943                 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2944                                 -ENOMEM) {
2945                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2946                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2947                         break;
2948                 }
2949         }
2950         enable_irq(dev->irq);
2951         return;
2952 }
2953 #endif
2954
2955 /**
2956  *  rx_intr_handler - Rx interrupt handler
2957  *  @ring_info: per ring structure.
2958  *  @budget: budget for napi processing.
2959  *  Description:
2960  *  If the interrupt is because of a received frame or if the
2961  *  receive ring contains fresh as yet un-processed frames,this function is
2962  *  called. It picks out the RxD at which place the last Rx processing had
2963  *  stopped and sends the skb to the OSM's Rx handler and then increments
2964  *  the offset.
2965  *  Return Value:
2966  *  No. of napi packets processed.
2967  */
2968 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2969 {
2970         int get_block, put_block;
2971         struct rx_curr_get_info get_info, put_info;
2972         struct RxD_t *rxdp;
2973         struct sk_buff *skb;
2974         int pkt_cnt = 0, napi_pkts = 0;
2975         int i;
2976         struct RxD1* rxdp1;
2977         struct RxD3* rxdp3;
2978
2979         get_info = ring_data->rx_curr_get_info;
2980         get_block = get_info.block_index;
2981         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2982         put_block = put_info.block_index;
2983         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2984
2985         while (RXD_IS_UP2DT(rxdp)) {
2986                 /*
2987                  * If your are next to put index then it's
2988                  * FIFO full condition
2989                  */
2990                 if ((get_block == put_block) &&
2991                     (get_info.offset + 1) == put_info.offset) {
2992                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2993                                 ring_data->dev->name);
2994                         break;
2995                 }
2996                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2997                 if (skb == NULL) {
2998                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2999                                   ring_data->dev->name);
3000                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3001                         return 0;
3002                 }
3003                 if (ring_data->rxd_mode == RXD_MODE_1) {
3004                         rxdp1 = (struct RxD1*)rxdp;
3005                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
3006                                 rxdp1->Buffer0_ptr,
3007                                 ring_data->mtu +
3008                                 HEADER_ETHERNET_II_802_3_SIZE +
3009                                 HEADER_802_2_SIZE +
3010                                 HEADER_SNAP_SIZE,
3011                                 PCI_DMA_FROMDEVICE);
3012                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3013                         rxdp3 = (struct RxD3*)rxdp;
3014                         pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3015                                 rxdp3->Buffer0_ptr,
3016                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
3017                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
3018                                 rxdp3->Buffer2_ptr,
3019                                 ring_data->mtu + 4,
3020                                 PCI_DMA_FROMDEVICE);
3021                 }
3022                 prefetch(skb->data);
3023                 rx_osm_handler(ring_data, rxdp);
3024                 get_info.offset++;
3025                 ring_data->rx_curr_get_info.offset = get_info.offset;
3026                 rxdp = ring_data->rx_blocks[get_block].
3027                                 rxds[get_info.offset].virt_addr;
3028                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3029                         get_info.offset = 0;
3030                         ring_data->rx_curr_get_info.offset = get_info.offset;
3031                         get_block++;
3032                         if (get_block == ring_data->block_count)
3033                                 get_block = 0;
3034                         ring_data->rx_curr_get_info.block_index = get_block;
3035                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3036                 }
3037
3038                 if (ring_data->nic->config.napi) {
3039                         budget--;
3040                         napi_pkts++;
3041                         if (!budget)
3042                                 break;
3043                 }
3044                 pkt_cnt++;
3045                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3046                         break;
3047         }
3048         if (ring_data->lro) {
3049                 /* Clear all LRO sessions before exiting */
3050                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3051                         struct lro *lro = &ring_data->lro0_n[i];
3052                         if (lro->in_use) {
3053                                 update_L3L4_header(ring_data->nic, lro);
3054                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3055                                 clear_lro_session(lro);
3056                         }
3057                 }
3058         }
3059         return(napi_pkts);
3060 }
3061
3062 /**
3063  *  tx_intr_handler - Transmit interrupt handler
3064  *  @nic : device private variable
3065  *  Description:
3066  *  If an interrupt was raised to indicate DMA complete of the
3067  *  Tx packet, this function is called. It identifies the last TxD
3068  *  whose buffer was freed and frees all skbs whose data have already
3069  *  DMA'ed into the NICs internal memory.
3070  *  Return Value:
3071  *  NONE
3072  */
3073
3074 static void tx_intr_handler(struct fifo_info *fifo_data)
3075 {
3076         struct s2io_nic *nic = fifo_data->nic;
3077         struct tx_curr_get_info get_info, put_info;
3078         struct sk_buff *skb = NULL;
3079         struct TxD *txdlp;
3080         int pkt_cnt = 0;
3081         unsigned long flags = 0;
3082         u8 err_mask;
3083
3084         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3085                         return;
3086
3087         get_info = fifo_data->tx_curr_get_info;
3088         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3089         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3090             list_virt_addr;
3091         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3092                (get_info.offset != put_info.offset) &&
3093                (txdlp->Host_Control)) {
3094                 /* Check for TxD errors */
3095                 if (txdlp->Control_1 & TXD_T_CODE) {
3096                         unsigned long long err;
3097                         err = txdlp->Control_1 & TXD_T_CODE;
3098                         if (err & 0x1) {
3099                                 nic->mac_control.stats_info->sw_stat.
3100                                                 parity_err_cnt++;
3101                         }
3102
3103                         /* update t_code statistics */
3104                         err_mask = err >> 48;
3105                         switch(err_mask) {
3106                                 case 2:
3107                                         nic->mac_control.stats_info->sw_stat.
3108                                                         tx_buf_abort_cnt++;
3109                                 break;
3110
3111                                 case 3:
3112                                         nic->mac_control.stats_info->sw_stat.
3113                                                         tx_desc_abort_cnt++;
3114                                 break;
3115
3116                                 case 7:
3117                                         nic->mac_control.stats_info->sw_stat.
3118                                                         tx_parity_err_cnt++;
3119                                 break;
3120
3121                                 case 10:
3122                                         nic->mac_control.stats_info->sw_stat.
3123                                                         tx_link_loss_cnt++;
3124                                 break;
3125
3126                                 case 15:
3127                                         nic->mac_control.stats_info->sw_stat.
3128                                                         tx_list_proc_err_cnt++;
3129                                 break;
3130                         }
3131                 }
3132
3133                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3134                 if (skb == NULL) {
3135                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3136                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
3137                         __func__);
3138                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3139                         return;
3140                 }
3141                 pkt_cnt++;
3142
3143                 /* Updating the statistics block */
3144                 nic->dev->stats.tx_bytes += skb->len;
3145                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3146                 dev_kfree_skb_irq(skb);
3147
3148                 get_info.offset++;
3149                 if (get_info.offset == get_info.fifo_len + 1)
3150                         get_info.offset = 0;
3151                 txdlp = (struct TxD *) fifo_data->list_info
3152                     [get_info.offset].list_virt_addr;
3153                 fifo_data->tx_curr_get_info.offset =
3154                     get_info.offset;
3155         }
3156
3157         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3158
3159         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3160 }
3161
3162 /**
3163  *  s2io_mdio_write - Function to write in to MDIO registers
3164  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3165  *  @addr     : address value
3166  *  @value    : data value
3167  *  @dev      : pointer to net_device structure
3168  *  Description:
3169  *  This function is used to write values to the MDIO registers
3170  *  NONE
3171  */
3172 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3173 {
3174         u64 val64 = 0x0;
3175         struct s2io_nic *sp = netdev_priv(dev);
3176         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3177
3178         //address transaction
3179         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3180                         | MDIO_MMD_DEV_ADDR(mmd_type)
3181                         | MDIO_MMS_PRT_ADDR(0x0);
3182         writeq(val64, &bar0->mdio_control);
3183         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184         writeq(val64, &bar0->mdio_control);
3185         udelay(100);
3186
3187         //Data transaction
3188         val64 = 0x0;
3189         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3190                         | MDIO_MMD_DEV_ADDR(mmd_type)
3191                         | MDIO_MMS_PRT_ADDR(0x0)
3192                         | MDIO_MDIO_DATA(value)
3193                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
3194         writeq(val64, &bar0->mdio_control);
3195         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3196         writeq(val64, &bar0->mdio_control);
3197         udelay(100);
3198
3199         val64 = 0x0;
3200         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3201         | MDIO_MMD_DEV_ADDR(mmd_type)
3202         | MDIO_MMS_PRT_ADDR(0x0)
3203         | MDIO_OP(MDIO_OP_READ_TRANS);
3204         writeq(val64, &bar0->mdio_control);
3205         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3206         writeq(val64, &bar0->mdio_control);
3207         udelay(100);
3208
3209 }
3210
3211 /**
3212  *  s2io_mdio_read - Function to write in to MDIO registers
3213  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3214  *  @addr     : address value
3215  *  @dev      : pointer to net_device structure
3216  *  Description:
3217  *  This function is used to read values to the MDIO registers
3218  *  NONE
3219  */
3220 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3221 {
3222         u64 val64 = 0x0;
3223         u64 rval64 = 0x0;
3224         struct s2io_nic *sp = netdev_priv(dev);
3225         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3226
3227         /* address transaction */
3228         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3229                         | MDIO_MMD_DEV_ADDR(mmd_type)
3230                         | MDIO_MMS_PRT_ADDR(0x0);
3231         writeq(val64, &bar0->mdio_control);
3232         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3233         writeq(val64, &bar0->mdio_control);
3234         udelay(100);
3235
3236         /* Data transaction */
3237         val64 = 0x0;
3238         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3239                         | MDIO_MMD_DEV_ADDR(mmd_type)
3240                         | MDIO_MMS_PRT_ADDR(0x0)
3241                         | MDIO_OP(MDIO_OP_READ_TRANS);
3242         writeq(val64, &bar0->mdio_control);
3243         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3244         writeq(val64, &bar0->mdio_control);
3245         udelay(100);
3246
3247         /* Read the value from regs */
3248         rval64 = readq(&bar0->mdio_control);
3249         rval64 = rval64 & 0xFFFF0000;
3250         rval64 = rval64 >> 16;
3251         return rval64;
3252 }
3253 /**
3254  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3255  *  @counter      : couter value to be updated
3256  *  @flag         : flag to indicate the status
3257  *  @type         : counter type
3258  *  Description:
3259  *  This function is to check the status of the xpak counters value
3260  *  NONE
3261  */
3262
3263 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3264 {
3265         u64 mask = 0x3;
3266         u64 val64;
3267         int i;
3268         for(i = 0; i <index; i++)
3269                 mask = mask << 0x2;
3270
3271         if(flag > 0)
3272         {
3273                 *counter = *counter + 1;
3274                 val64 = *regs_stat & mask;
3275                 val64 = val64 >> (index * 0x2);
3276                 val64 = val64 + 1;
3277                 if(val64 == 3)
3278                 {
3279                         switch(type)
3280                         {
3281                         case 1:
3282                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3283                                           "service. Excessive temperatures may "
3284                                           "result in premature transceiver "
3285                                           "failure \n");
3286                         break;
3287                         case 2:
3288                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3289                                           "service Excessive bias currents may "
3290                                           "indicate imminent laser diode "
3291                                           "failure \n");
3292                         break;
3293                         case 3:
3294                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3295                                           "service Excessive laser output "
3296                                           "power may saturate far-end "
3297                                           "receiver\n");
3298                         break;
3299                         default:
3300                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3301                                           "type \n");
3302                         }
3303                         val64 = 0x0;
3304                 }
3305                 val64 = val64 << (index * 0x2);
3306                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3307
3308         } else {
3309                 *regs_stat = *regs_stat & (~mask);
3310         }
3311 }
3312
3313 /**
3314  *  s2io_updt_xpak_counter - Function to update the xpak counters
3315  *  @dev         : pointer to net_device struct
3316  *  Description:
3317  *  This function is to upate the status of the xpak counters value
3318  *  NONE
3319  */
3320 static void s2io_updt_xpak_counter(struct net_device *dev)
3321 {
3322         u16 flag  = 0x0;
3323         u16 type  = 0x0;
3324         u16 val16 = 0x0;
3325         u64 val64 = 0x0;
3326         u64 addr  = 0x0;
3327
3328         struct s2io_nic *sp = netdev_priv(dev);
3329         struct stat_block *stat_info = sp->mac_control.stats_info;
3330
3331         /* Check the communication with the MDIO slave */
3332         addr = MDIO_CTRL1;
3333         val64 = 0x0;
3334         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3335         if((val64 == 0xFFFF) || (val64 == 0x0000))
3336         {
3337                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3338                           "Returned %llx\n", (unsigned long long)val64);
3339                 return;
3340         }
3341
3342         /* Check for the expected value of control reg 1 */
3343         if(val64 != MDIO_CTRL1_SPEED10G)
3344         {
3345                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3346                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x%x\n",
3347                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3348                 return;
3349         }
3350
3351         /* Loading the DOM register to MDIO register */
3352         addr = 0xA100;
3353         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3354         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3355
3356         /* Reading the Alarm flags */
3357         addr = 0xA070;
3358         val64 = 0x0;
3359         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3360
3361         flag = CHECKBIT(val64, 0x7);
3362         type = 1;
3363         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3364                                 &stat_info->xpak_stat.xpak_regs_stat,
3365                                 0x0, flag, type);
3366
3367         if(CHECKBIT(val64, 0x6))
3368                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3369
3370         flag = CHECKBIT(val64, 0x3);
3371         type = 2;
3372         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3373                                 &stat_info->xpak_stat.xpak_regs_stat,
3374                                 0x2, flag, type);
3375
3376         if(CHECKBIT(val64, 0x2))
3377                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3378
3379         flag = CHECKBIT(val64, 0x1);
3380         type = 3;
3381         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3382                                 &stat_info->xpak_stat.xpak_regs_stat,
3383                                 0x4, flag, type);
3384
3385         if(CHECKBIT(val64, 0x0))
3386                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3387
3388         /* Reading the Warning flags */
3389         addr = 0xA074;
3390         val64 = 0x0;
3391         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3392
3393         if(CHECKBIT(val64, 0x7))
3394                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3395
3396         if(CHECKBIT(val64, 0x6))
3397                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3398
3399         if(CHECKBIT(val64, 0x3))
3400                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3401
3402         if(CHECKBIT(val64, 0x2))
3403                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3404
3405         if(CHECKBIT(val64, 0x1))
3406                 stat_info->xpak_stat.warn_laser_output_power_high++;
3407
3408         if(CHECKBIT(val64, 0x0))
3409                 stat_info->xpak_stat.warn_laser_output_power_low++;
3410 }
3411
3412 /**
3413  *  wait_for_cmd_complete - waits for a command to complete.
3414  *  @sp : private member of the device structure, which is a pointer to the
3415  *  s2io_nic structure.
3416  *  Description: Function that waits for a command to Write into RMAC
3417  *  ADDR DATA registers to be completed and returns either success or
3418  *  error depending on whether the command was complete or not.
3419  *  Return value:
3420  *   SUCCESS on success and FAILURE on failure.
3421  */
3422
3423 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3424                                 int bit_state)
3425 {
3426         int ret = FAILURE, cnt = 0, delay = 1;
3427         u64 val64;
3428
3429         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3430                 return FAILURE;
3431
3432         do {
3433                 val64 = readq(addr);
3434                 if (bit_state == S2IO_BIT_RESET) {
3435                         if (!(val64 & busy_bit)) {
3436                                 ret = SUCCESS;
3437                                 break;
3438                         }
3439                 } else {
3440                         if (!(val64 & busy_bit)) {
3441                                 ret = SUCCESS;
3442                                 break;
3443                         }
3444                 }
3445
3446                 if(in_interrupt())
3447                         mdelay(delay);
3448                 else
3449                         msleep(delay);
3450
3451                 if (++cnt >= 10)
3452                         delay = 50;
3453         } while (cnt < 20);
3454         return ret;
3455 }
3456 /*
3457  * check_pci_device_id - Checks if the device id is supported
3458  * @id : device id
3459  * Description: Function to check if the pci device id is supported by driver.
3460  * Return value: Actual device id if supported else PCI_ANY_ID
3461  */
3462 static u16 check_pci_device_id(u16 id)
3463 {
3464         switch (id) {
3465         case PCI_DEVICE_ID_HERC_WIN:
3466         case PCI_DEVICE_ID_HERC_UNI:
3467                 return XFRAME_II_DEVICE;
3468         case PCI_DEVICE_ID_S2IO_UNI:
3469         case PCI_DEVICE_ID_S2IO_WIN:
3470                 return XFRAME_I_DEVICE;
3471         default:
3472                 return PCI_ANY_ID;
3473         }
3474 }
3475
3476 /**
3477  *  s2io_reset - Resets the card.
3478  *  @sp : private member of the device structure.
3479  *  Description: Function to Reset the card. This function then also
3480  *  restores the previously saved PCI configuration space registers as
3481  *  the card reset also resets the configuration space.
3482  *  Return value:
3483  *  void.
3484  */
3485
3486 static void s2io_reset(struct s2io_nic * sp)
3487 {
3488         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3489         u64 val64;
3490         u16 subid, pci_cmd;
3491         int i;
3492         u16 val16;
3493         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3494         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3495
3496         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3497                         __func__, sp->dev->name);
3498
3499         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3500         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3501
3502         val64 = SW_RESET_ALL;
3503         writeq(val64, &bar0->sw_reset);
3504         if (strstr(sp->product_name, "CX4")) {
3505                 msleep(750);
3506         }
3507         msleep(250);
3508         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3509
3510                 /* Restore the PCI state saved during initialization. */
3511                 pci_restore_state(sp->pdev);
3512                 pci_read_config_word(sp->pdev, 0x2, &val16);
3513                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3514                         break;
3515                 msleep(200);
3516         }
3517
3518         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3519                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
3520         }
3521
3522         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3523
3524         s2io_init_pci(sp);
3525
3526         /* Set swapper to enable I/O register access */
3527         s2io_set_swapper(sp);
3528
3529         /* restore mac_addr entries */
3530         do_s2io_restore_unicast_mc(sp);
3531
3532         /* Restore the MSIX table entries from local variables */
3533         restore_xmsi_data(sp);
3534
3535         /* Clear certain PCI/PCI-X fields after reset */
3536         if (sp->device_type == XFRAME_II_DEVICE) {
3537                 /* Clear "detected parity error" bit */
3538                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3539
3540                 /* Clearing PCIX Ecc status register */
3541                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3542
3543                 /* Clearing PCI_STATUS error reflected here */
3544                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3545         }
3546
3547         /* Reset device statistics maintained by OS */
3548         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3549
3550         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3551         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3552         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3553         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3554         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3555         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3556         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3557         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3558         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3559         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3560         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3561         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3562         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3563         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3564         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3565         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3566         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3567         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3568         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3569
3570         /* SXE-002: Configure link and activity LED to turn it off */
3571         subid = sp->pdev->subsystem_device;
3572         if (((subid & 0xFF) >= 0x07) &&
3573             (sp->device_type == XFRAME_I_DEVICE)) {
3574                 val64 = readq(&bar0->gpio_control);
3575                 val64 |= 0x0000800000000000ULL;
3576                 writeq(val64, &bar0->gpio_control);
3577                 val64 = 0x0411040400000000ULL;
3578                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3579         }
3580
3581         /*
3582          * Clear spurious ECC interrupts that would have occured on
3583          * XFRAME II cards after reset.
3584          */
3585         if (sp->device_type == XFRAME_II_DEVICE) {
3586                 val64 = readq(&bar0->pcc_err_reg);
3587                 writeq(val64, &bar0->pcc_err_reg);
3588         }
3589
3590         sp->device_enabled_once = false;
3591 }
3592
3593 /**
3594  *  s2io_set_swapper - to set the swapper controle on the card
3595  *  @sp : private member of the device structure,
3596  *  pointer to the s2io_nic structure.
3597  *  Description: Function to set the swapper control on the card
3598  *  correctly depending on the 'endianness' of the system.
3599  *  Return value:
3600  *  SUCCESS on success and FAILURE on failure.
3601  */
3602
3603 static int s2io_set_swapper(struct s2io_nic * sp)
3604 {
3605         struct net_device *dev = sp->dev;
3606         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3607         u64 val64, valt, valr;
3608
3609         /*
3610          * Set proper endian settings and verify the same by reading
3611          * the PIF Feed-back register.
3612          */
3613
3614         val64 = readq(&bar0->pif_rd_swapper_fb);
3615         if (val64 != 0x0123456789ABCDEFULL) {
3616                 int i = 0;
3617                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3618                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3619                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3620                                 0};                     /* FE=0, SE=0 */
3621
3622                 while(i<4) {
3623                         writeq(value[i], &bar0->swapper_ctrl);
3624                         val64 = readq(&bar0->pif_rd_swapper_fb);
3625                         if (val64 == 0x0123456789ABCDEFULL)
3626                                 break;
3627                         i++;
3628                 }
3629                 if (i == 4) {
3630                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3631                                 dev->name);
3632                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3633                                 (unsigned long long) val64);
3634                         return FAILURE;
3635                 }
3636                 valr = value[i];
3637         } else {
3638                 valr = readq(&bar0->swapper_ctrl);
3639         }
3640
3641         valt = 0x0123456789ABCDEFULL;
3642         writeq(valt, &bar0->xmsi_address);
3643         val64 = readq(&bar0->xmsi_address);
3644
3645         if(val64 != valt) {
3646                 int i = 0;
3647                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3648                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3649                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3650                                 0};                     /* FE=0, SE=0 */
3651
3652                 while(i<4) {
3653                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3654                         writeq(valt, &bar0->xmsi_address);
3655                         val64 = readq(&bar0->xmsi_address);
3656                         if(val64 == valt)
3657                                 break;
3658                         i++;
3659                 }
3660                 if(i == 4) {
3661                         unsigned long long x = val64;
3662                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3663                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3664                         return FAILURE;
3665                 }
3666         }
3667         val64 = readq(&bar0->swapper_ctrl);
3668         val64 &= 0xFFFF000000000000ULL;
3669
3670 #ifdef  __BIG_ENDIAN
3671         /*
3672          * The device by default set to a big endian format, so a
3673          * big endian driver need not set anything.
3674          */
3675         val64 |= (SWAPPER_CTRL_TXP_FE |
3676                  SWAPPER_CTRL_TXP_SE |
3677                  SWAPPER_CTRL_TXD_R_FE |
3678                  SWAPPER_CTRL_TXD_W_FE |
3679                  SWAPPER_CTRL_TXF_R_FE |
3680                  SWAPPER_CTRL_RXD_R_FE |
3681                  SWAPPER_CTRL_RXD_W_FE |
3682                  SWAPPER_CTRL_RXF_W_FE |
3683                  SWAPPER_CTRL_XMSI_FE |
3684                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3685         if (sp->config.intr_type == INTA)
3686                 val64 |= SWAPPER_CTRL_XMSI_SE;
3687         writeq(val64, &bar0->swapper_ctrl);
3688 #else
3689         /*
3690          * Initially we enable all bits to make it accessible by the
3691          * driver, then we selectively enable only those bits that
3692          * we want to set.
3693          */
3694         val64 |= (SWAPPER_CTRL_TXP_FE |
3695                  SWAPPER_CTRL_TXP_SE |
3696                  SWAPPER_CTRL_TXD_R_FE |
3697                  SWAPPER_CTRL_TXD_R_SE |
3698                  SWAPPER_CTRL_TXD_W_FE |
3699                  SWAPPER_CTRL_TXD_W_SE |
3700                  SWAPPER_CTRL_TXF_R_FE |
3701                  SWAPPER_CTRL_RXD_R_FE |
3702                  SWAPPER_CTRL_RXD_R_SE |
3703                  SWAPPER_CTRL_RXD_W_FE |
3704                  SWAPPER_CTRL_RXD_W_SE |
3705                  SWAPPER_CTRL_RXF_W_FE |
3706                  SWAPPER_CTRL_XMSI_FE |
3707                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3708         if (sp->config.intr_type == INTA)
3709                 val64 |= SWAPPER_CTRL_XMSI_SE;
3710         writeq(val64, &bar0->swapper_ctrl);
3711 #endif
3712         val64 = readq(&bar0->swapper_ctrl);
3713
3714         /*
3715          * Verifying if endian settings are accurate by reading a
3716          * feedback register.
3717          */
3718         val64 = readq(&bar0->pif_rd_swapper_fb);
3719         if (val64 != 0x0123456789ABCDEFULL) {
3720                 /* Endian settings are incorrect, calls for another dekko. */
3721                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3722                           dev->name);
3723                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3724                           (unsigned long long) val64);
3725                 return FAILURE;
3726         }
3727
3728         return SUCCESS;
3729 }
3730
3731 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3732 {
3733         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3734         u64 val64;
3735         int ret = 0, cnt = 0;
3736
3737         do {
3738                 val64 = readq(&bar0->xmsi_access);
3739                 if (!(val64 & s2BIT(15)))
3740                         break;
3741                 mdelay(1);
3742                 cnt++;
3743         } while(cnt < 5);
3744         if (cnt == 5) {
3745                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3746                 ret = 1;
3747         }
3748
3749         return ret;
3750 }
3751
3752 static void restore_xmsi_data(struct s2io_nic *nic)
3753 {
3754         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3755         u64 val64;
3756         int i, msix_index;
3757
3758
3759         if (nic->device_type == XFRAME_I_DEVICE)
3760                 return;
3761
3762         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3763                 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3764                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3765                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3766                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3767                 writeq(val64, &bar0->xmsi_access);
3768                 if (wait_for_msix_trans(nic, msix_index)) {
3769                         DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3770                         continue;
3771                 }
3772         }
3773 }
3774
3775 static void store_xmsi_data(struct s2io_nic *nic)
3776 {
3777         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3778         u64 val64, addr, data;
3779         int i, msix_index;
3780
3781         if (nic->device_type == XFRAME_I_DEVICE)
3782                 return;
3783
3784         /* Store and display */
3785         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3786                 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3787                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3788                 writeq(val64, &bar0->xmsi_access);
3789                 if (wait_for_msix_trans(nic, msix_index)) {
3790                         DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3791                         continue;
3792                 }
3793                 addr = readq(&bar0->xmsi_address);
3794                 data = readq(&bar0->xmsi_data);
3795                 if (addr && data) {
3796                         nic->msix_info[i].addr = addr;
3797                         nic->msix_info[i].data = data;
3798                 }
3799         }
3800 }
3801
3802 static int s2io_enable_msi_x(struct s2io_nic *nic)
3803 {
3804         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3805         u64 rx_mat;
3806         u16 msi_control; /* Temp variable */
3807         int ret, i, j, msix_indx = 1;
3808
3809         nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3810                                GFP_KERNEL);
3811         if (!nic->entries) {
3812                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3813                         __func__);
3814                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3815                 return -ENOMEM;
3816         }
3817         nic->mac_control.stats_info->sw_stat.mem_allocated
3818                 += (nic->num_entries * sizeof(struct msix_entry));
3819
3820         memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3821
3822         nic->s2io_entries =
3823                 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3824                                    GFP_KERNEL);
3825         if (!nic->s2io_entries) {
3826                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3827                         __func__);
3828                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3829                 kfree(nic->entries);
3830                 nic->mac_control.stats_info->sw_stat.mem_freed
3831                         += (nic->num_entries * sizeof(struct msix_entry));
3832                 return -ENOMEM;
3833         }
3834          nic->mac_control.stats_info->sw_stat.mem_allocated
3835                 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3836         memset(nic->s2io_entries, 0,
3837                 nic->num_entries * sizeof(struct s2io_msix_entry));
3838
3839         nic->entries[0].entry = 0;
3840         nic->s2io_entries[0].entry = 0;
3841         nic->s2io_entries[0].in_use = MSIX_FLG;
3842         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3843         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3844
3845         for (i = 1; i < nic->num_entries; i++) {
3846                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3847                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3848                 nic->s2io_entries[i].arg = NULL;
3849                 nic->s2io_entries[i].in_use = 0;
3850         }
3851
3852         rx_mat = readq(&bar0->rx_mat);
3853         for (j = 0; j < nic->config.rx_ring_num; j++) {
3854                 rx_mat |= RX_MAT_SET(j, msix_indx);
3855                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3856                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3857                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3858                 msix_indx += 8;
3859         }
3860         writeq(rx_mat, &bar0->rx_mat);
3861         readq(&bar0->rx_mat);
3862
3863         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3864         /* We fail init if error or we get less vectors than min required */
3865         if (ret) {
3866                 DBG_PRINT(ERR_DBG, "s2io: Enabling MSI-X failed\n");
3867                 kfree(nic->entries);
3868                 nic->mac_control.stats_info->sw_stat.mem_freed
3869                         += (nic->num_entries * sizeof(struct msix_entry));
3870                 kfree(nic->s2io_entries);
3871                 nic->mac_control.stats_info->sw_stat.mem_freed
3872                         += (nic->num_entries * sizeof(struct s2io_msix_entry));
3873                 nic->entries = NULL;
3874                 nic->s2io_entries = NULL;
3875                 return -ENOMEM;
3876         }
3877
3878         /*
3879          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3880          * in the herc NIC. (Temp change, needs to be removed later)
3881          */
3882         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3883         msi_control |= 0x1; /* Enable MSI */
3884         pci_write_config_word(nic->pdev, 0x42, msi_control);
3885
3886         return 0;
3887 }
3888
3889 /* Handle software interrupt used during MSI(X) test */
3890 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3891 {
3892         struct s2io_nic *sp = dev_id;
3893
3894         sp->msi_detected = 1;
3895         wake_up(&sp->msi_wait);
3896
3897         return IRQ_HANDLED;
3898 }
3899
3900 /* Test interrupt path by forcing a a software IRQ */
3901 static int s2io_test_msi(struct s2io_nic *sp)
3902 {
3903         struct pci_dev *pdev = sp->pdev;
3904         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3905         int err;
3906         u64 val64, saved64;
3907
3908         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3909                         sp->name, sp);
3910         if (err) {
3911                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3912                        sp->dev->name, pci_name(pdev), pdev->irq);
3913                 return err;
3914         }
3915
3916         init_waitqueue_head (&sp->msi_wait);
3917         sp->msi_detected = 0;
3918
3919         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3920         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3921         val64 |= SCHED_INT_CTRL_TIMER_EN;
3922         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3923         writeq(val64, &bar0->scheduled_int_ctrl);
3924
3925         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3926
3927         if (!sp->msi_detected) {
3928                 /* MSI(X) test failed, go back to INTx mode */
3929                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3930                         "using MSI(X) during test\n", sp->dev->name,
3931                         pci_name(pdev));
3932
3933                 err = -EOPNOTSUPP;
3934         }
3935
3936         free_irq(sp->entries[1].vector, sp);
3937
3938         writeq(saved64, &bar0->scheduled_int_ctrl);
3939
3940         return err;
3941 }
3942
3943 static void remove_msix_isr(struct s2io_nic *sp)
3944 {
3945         int i;
3946         u16 msi_control;
3947
3948         for (i = 0; i < sp->num_entries; i++) {
3949                 if (sp->s2io_entries[i].in_use ==
3950                         MSIX_REGISTERED_SUCCESS) {
3951                         int vector = sp->entries[i].vector;
3952                         void *arg = sp->s2io_entries[i].arg;
3953                         free_irq(vector, arg);
3954                 }
3955         }
3956
3957         kfree(sp->entries);
3958         kfree(sp->s2io_entries);
3959         sp->entries = NULL;
3960         sp->s2io_entries = NULL;
3961
3962         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3963         msi_control &= 0xFFFE; /* Disable MSI */
3964         pci_write_config_word(sp->pdev, 0x42, msi_control);
3965
3966         pci_disable_msix(sp->pdev);
3967 }
3968
3969 static void remove_inta_isr(struct s2io_nic *sp)
3970 {
3971         struct net_device *dev = sp->dev;
3972
3973         free_irq(sp->pdev->irq, dev);
3974 }
3975
3976 /* ********************************************************* *
3977  * Functions defined below concern the OS part of the driver *
3978  * ********************************************************* */
3979
3980 /**
3981  *  s2io_open - open entry point of the driver
3982  *  @dev : pointer to the device structure.
3983  *  Description:
3984  *  This function is the open entry point of the driver. It mainly calls a
3985  *  function to allocate Rx buffers and inserts them into the buffer
3986  *  descriptors and then enables the Rx part of the NIC.
3987  *  Return value:
3988  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3989  *   file on failure.
3990  */
3991
3992 static int s2io_open(struct net_device *dev)
3993 {
3994         struct s2io_nic *sp = netdev_priv(dev);
3995         int err = 0;
3996
3997         /*
3998          * Make sure you have link off by default every time
3999          * Nic is initialized
4000          */
4001         netif_carrier_off(dev);
4002         sp->last_link_state = 0;
4003
4004         /* Initialize H/W and enable interrupts */
4005         err = s2io_card_up(sp);
4006         if (err) {
4007                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4008                           dev->name);
4009                 goto hw_init_failed;
4010         }
4011
4012         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4013                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4014                 s2io_card_down(sp);
4015                 err = -ENODEV;
4016                 goto hw_init_failed;
4017         }
4018         s2io_start_all_tx_queue(sp);
4019         return 0;
4020
4021 hw_init_failed:
4022         if (sp->config.intr_type == MSI_X) {
4023                 if (sp->entries) {
4024                         kfree(sp->entries);
4025                         sp->mac_control.stats_info->sw_stat.mem_freed
4026                         += (sp->num_entries * sizeof(struct msix_entry));
4027                 }
4028                 if (sp->s2io_entries) {
4029                         kfree(sp->s2io_entries);
4030                         sp->mac_control.stats_info->sw_stat.mem_freed
4031                         += (sp->num_entries * sizeof(struct s2io_msix_entry));
4032                 }
4033         }
4034         return err;
4035 }
4036
4037 /**
4038  *  s2io_close -close entry point of the driver
4039  *  @dev : device pointer.
4040  *  Description:
4041  *  This is the stop entry point of the driver. It needs to undo exactly
4042  *  whatever was done by the open entry point,thus it's usually referred to
4043  *  as the close function.Among other things this function mainly stops the
4044  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4045  *  Return value:
4046  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4047  *  file on failure.
4048  */
4049
4050 static int s2io_close(struct net_device *dev)
4051 {
4052         struct s2io_nic *sp = netdev_priv(dev);
4053         struct config_param *config = &sp->config;
4054         u64 tmp64;
4055         int offset;
4056
4057         /* Return if the device is already closed               *
4058         *  Can happen when s2io_card_up failed in change_mtu    *
4059         */
4060         if (!is_s2io_card_up(sp))
4061                 return 0;
4062
4063         s2io_stop_all_tx_queue(sp);
4064         /* delete all populated mac entries */
4065         for (offset = 1; offset < config->max_mc_addr; offset++) {
4066                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4067                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4068                         do_s2io_delete_unicast_mc(sp, tmp64);
4069         }
4070
4071         s2io_card_down(sp);
4072
4073         return 0;
4074 }
4075
4076 /**
4077  *  s2io_xmit - Tx entry point of te driver
4078  *  @skb : the socket buffer containing the Tx data.
4079  *  @dev : device pointer.
4080  *  Description :
4081  *  This function is the Tx entry point of the driver. S2IO NIC supports
4082  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4083  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4084  *  not be upadted.
4085  *  Return value:
4086  *  0 on success & 1 on failure.
4087  */
4088
4089 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4090 {
4091         struct s2io_nic *sp = netdev_priv(dev);
4092         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4093         register u64 val64;
4094         struct TxD *txdp;
4095         struct TxFIFO_element __iomem *tx_fifo;
4096         unsigned long flags = 0;
4097         u16 vlan_tag = 0;
4098         struct fifo_info *fifo = NULL;
4099         struct mac_info *mac_control;
4100         struct config_param *config;
4101         int do_spin_lock = 1;
4102         int offload_type;
4103         int enable_per_list_interrupt = 0;
4104         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4105
4106         mac_control = &sp->mac_control;
4107         config = &sp->config;
4108
4109         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4110
4111         if (unlikely(skb->len <= 0)) {
4112                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4113                 dev_kfree_skb_any(skb);
4114                 return 0;
4115         }
4116
4117         if (!is_s2io_card_up(sp)) {
4118                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4119                           dev->name);
4120                 dev_kfree_skb(skb);
4121                 return 0;
4122         }
4123
4124         queue = 0;
4125         if (sp->vlgrp && vlan_tx_tag_present(skb))
4126                 vlan_tag = vlan_tx_tag_get(skb);
4127         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4128                 if (skb->protocol == htons(ETH_P_IP)) {
4129                         struct iphdr *ip;
4130                         struct tcphdr *th;
4131                         ip = ip_hdr(skb);
4132
4133                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4134                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4135                                                 ip->ihl*4);
4136
4137                                 if (ip->protocol == IPPROTO_TCP) {
4138                                         queue_len = sp->total_tcp_fifos;
4139                                         queue = (ntohs(th->source) +
4140                                                         ntohs(th->dest)) &
4141                                             sp->fifo_selector[queue_len - 1];
4142                                         if (queue >= queue_len)
4143                                                 queue = queue_len - 1;
4144                                 } else if (ip->protocol == IPPROTO_UDP) {
4145                                         queue_len = sp->total_udp_fifos;
4146                                         queue = (ntohs(th->source) +
4147                                                         ntohs(th->dest)) &
4148                                             sp->fifo_selector[queue_len - 1];
4149                                         if (queue >= queue_len)
4150                                                 queue = queue_len - 1;
4151                                         queue += sp->udp_fifo_idx;
4152                                         if (skb->len > 1024)
4153                                                 enable_per_list_interrupt = 1;
4154                                         do_spin_lock = 0;
4155                                 }
4156                         }
4157                 }
4158         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4159                 /* get fifo number based on skb->priority value */
4160                 queue = config->fifo_mapping
4161                                         [skb->priority & (MAX_TX_FIFOS - 1)];
4162         fifo = &mac_control->fifos[queue];
4163
4164         if (do_spin_lock)
4165                 spin_lock_irqsave(&fifo->tx_lock, flags);
4166         else {
4167                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4168                         return NETDEV_TX_LOCKED;
4169         }
4170
4171         if (sp->config.multiq) {
4172                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4173                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4174                         return NETDEV_TX_BUSY;
4175                 }
4176         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4177                 if (netif_queue_stopped(dev)) {
4178                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179                         return NETDEV_TX_BUSY;
4180                 }
4181         }
4182
4183         put_off = (u16) fifo->tx_curr_put_info.offset;
4184         get_off = (u16) fifo->tx_curr_get_info.offset;
4185         txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4186
4187         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4188         /* Avoid "put" pointer going beyond "get" pointer */
4189         if (txdp->Host_Control ||
4190                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4191                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4192                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4193                 dev_kfree_skb(skb);
4194                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4195                 return 0;
4196         }
4197
4198         offload_type = s2io_offload_type(skb);
4199         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4200                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4201                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4202         }
4203         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4204                 txdp->Control_2 |=
4205                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4206                      TXD_TX_CKO_UDP_EN);
4207         }
4208         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4209         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4210         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4211         if (enable_per_list_interrupt)
4212                 if (put_off & (queue_len >> 5))
4213                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4214         if (vlan_tag) {
4215                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4216                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4217         }
4218
4219         frg_len = skb->len - skb->data_len;
4220         if (offload_type == SKB_GSO_UDP) {
4221                 int ufo_size;
4222
4223                 ufo_size = s2io_udp_mss(skb);
4224                 ufo_size &= ~7;
4225                 txdp->Control_1 |= TXD_UFO_EN;
4226                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4227                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4228 #ifdef __BIG_ENDIAN
4229                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4230                 fifo->ufo_in_band_v[put_off] =
4231                                 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4232 #else
4233                 fifo->ufo_in_band_v[put_off] =
4234                                 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4235 #endif
4236                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4237                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4238                                         fifo->ufo_in_band_v,
4239                                         sizeof(u64), PCI_DMA_TODEVICE);
4240                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4241                         goto pci_map_failed;
4242                 txdp++;
4243         }
4244
4245         txdp->Buffer_Pointer = pci_map_single
4246             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4247         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4248                 goto pci_map_failed;
4249
4250         txdp->Host_Control = (unsigned long) skb;
4251         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4252         if (offload_type == SKB_GSO_UDP)
4253                 txdp->Control_1 |= TXD_UFO_EN;
4254
4255         frg_cnt = skb_shinfo(skb)->nr_frags;
4256         /* For fragmented SKB. */
4257         for (i = 0; i < frg_cnt; i++) {
4258                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4259                 /* A '0' length fragment will be ignored */
4260                 if (!frag->size)
4261                         continue;
4262                 txdp++;
4263                 txdp->Buffer_Pointer = (u64) pci_map_page
4264                     (sp->pdev, frag->page, frag->page_offset,
4265                      frag->size, PCI_DMA_TODEVICE);
4266                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4267                 if (offload_type == SKB_GSO_UDP)
4268                         txdp->Control_1 |= TXD_UFO_EN;
4269         }
4270         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4271
4272         if (offload_type == SKB_GSO_UDP)
4273                 frg_cnt++; /* as Txd0 was used for inband header */
4274
4275         tx_fifo = mac_control->tx_FIFO_start[queue];
4276         val64 = fifo->list_info[put_off].list_phy_addr;
4277         writeq(val64, &tx_fifo->TxDL_Pointer);
4278
4279         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4280                  TX_FIFO_LAST_LIST);
4281         if (offload_type)
4282                 val64 |= TX_FIFO_SPECIAL_FUNC;
4283
4284         writeq(val64, &tx_fifo->List_Control);
4285
4286         mmiowb();
4287
4288         put_off++;
4289         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4290                 put_off = 0;
4291         fifo->tx_curr_put_info.offset = put_off;
4292
4293         /* Avoid "put" pointer going beyond "get" pointer */
4294         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4295                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4296                 DBG_PRINT(TX_DBG,
4297                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4298                           put_off, get_off);
4299                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4300         }
4301         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4302         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4303
4304         if (sp->config.intr_type == MSI_X)
4305                 tx_intr_handler(fifo);
4306
4307         return 0;
4308 pci_map_failed:
4309         stats->pci_map_fail_cnt++;
4310         s2io_stop_tx_queue(sp, fifo->fifo_no);
4311         stats->mem_freed += skb->truesize;
4312         dev_kfree_skb(skb);
4313         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4314         return 0;
4315 }
4316
4317 static void
4318 s2io_alarm_handle(unsigned long data)
4319 {
4320         struct s2io_nic *sp = (struct s2io_nic *)data;
4321         struct net_device *dev = sp->dev;
4322
4323         s2io_handle_errors(dev);
4324         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4325 }
4326
4327 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4328 {
4329         struct ring_info *ring = (struct ring_info *)dev_id;
4330         struct s2io_nic *sp = ring->nic;
4331         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4332
4333         if (unlikely(!is_s2io_card_up(sp)))
4334                 return IRQ_HANDLED;
4335
4336         if (sp->config.napi) {
4337                 u8 __iomem *addr = NULL;
4338                 u8 val8 = 0;
4339
4340                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4341                 addr += (7 - ring->ring_no);
4342                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4343                 writeb(val8, addr);
4344                 val8 = readb(addr);
4345                 napi_schedule(&ring->napi);
4346         } else {
4347                 rx_intr_handler(ring, 0);
4348                 s2io_chk_rx_buffers(sp, ring);
4349         }
4350
4351         return IRQ_HANDLED;
4352 }
4353
4354 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4355 {
4356         int i;
4357         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4358         struct s2io_nic *sp = fifos->nic;
4359         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4360         struct config_param *config  = &sp->config;
4361         u64 reason;
4362
4363         if (unlikely(!is_s2io_card_up(sp)))
4364                 return IRQ_NONE;
4365
4366         reason = readq(&bar0->general_int_status);
4367         if (unlikely(reason == S2IO_MINUS_ONE))
4368                 /* Nothing much can be done. Get out */
4369                 return IRQ_HANDLED;
4370
4371         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4372                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4373
4374                 if (reason & GEN_INTR_TXPIC)
4375                         s2io_txpic_intr_handle(sp);
4376
4377                 if (reason & GEN_INTR_TXTRAFFIC)
4378                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4379
4380                 for (i = 0; i < config->tx_fifo_num; i++)
4381                         tx_intr_handler(&fifos[i]);
4382
4383                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4384                 readl(&bar0->general_int_status);
4385                 return IRQ_HANDLED;
4386         }
4387         /* The interrupt was not raised by us */
4388         return IRQ_NONE;
4389 }
4390
4391 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4392 {
4393         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4394         u64 val64;
4395
4396         val64 = readq(&bar0->pic_int_status);
4397         if (val64 & PIC_INT_GPIO) {
4398                 val64 = readq(&bar0->gpio_int_reg);
4399                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4400                     (val64 & GPIO_INT_REG_LINK_UP)) {
4401                         /*
4402                          * This is unstable state so clear both up/down
4403                          * interrupt and adapter to re-evaluate the link state.
4404                          */
4405                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4406                         val64 |= GPIO_INT_REG_LINK_UP;
4407                         writeq(val64, &bar0->gpio_int_reg);
4408                         val64 = readq(&bar0->gpio_int_mask);
4409                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4410                                    GPIO_INT_MASK_LINK_DOWN);
4411                         writeq(val64, &bar0->gpio_int_mask);
4412                 }
4413                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4414                         val64 = readq(&bar0->adapter_status);
4415                                 /* Enable Adapter */
4416                         val64 = readq(&bar0->adapter_control);
4417                         val64 |= ADAPTER_CNTL_EN;
4418                         writeq(val64, &bar0->adapter_control);
4419                         val64 |= ADAPTER_LED_ON;
4420                         writeq(val64, &bar0->adapter_control);
4421                         if (!sp->device_enabled_once)
4422                                 sp->device_enabled_once = 1;
4423
4424                         s2io_link(sp, LINK_UP);
4425                         /*
4426                          * unmask link down interrupt and mask link-up
4427                          * intr
4428                          */
4429                         val64 = readq(&bar0->gpio_int_mask);
4430                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4431                         val64 |= GPIO_INT_MASK_LINK_UP;
4432                         writeq(val64, &bar0->gpio_int_mask);
4433
4434                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4435                         val64 = readq(&bar0->adapter_status);
4436                         s2io_link(sp, LINK_DOWN);
4437                         /* Link is down so unmaks link up interrupt */
4438                         val64 = readq(&bar0->gpio_int_mask);
4439                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4440                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4441                         writeq(val64, &bar0->gpio_int_mask);
4442
4443                         /* turn off LED */
4444                         val64 = readq(&bar0->adapter_control);
4445                         val64 = val64 &(~ADAPTER_LED_ON);
4446                         writeq(val64, &bar0->adapter_control);
4447                 }
4448         }
4449         val64 = readq(&bar0->gpio_int_mask);
4450 }
4451
4452 /**
4453  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4454  *  @value: alarm bits
4455  *  @addr: address value
4456  *  @cnt: counter variable
4457  *  Description: Check for alarm and increment the counter
4458  *  Return Value:
4459  *  1 - if alarm bit set
4460  *  0 - if alarm bit is not set
4461  */
4462 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4463                           unsigned long long *cnt)
4464 {
4465         u64 val64;
4466         val64 = readq(addr);
4467         if ( val64 & value ) {
4468                 writeq(val64, addr);
4469                 (*cnt)++;
4470                 return 1;
4471         }
4472         return 0;
4473
4474 }
4475
4476 /**
4477  *  s2io_handle_errors - Xframe error indication handler
4478  *  @nic: device private variable
4479  *  Description: Handle alarms such as loss of link, single or
4480  *  double ECC errors, critical and serious errors.
4481  *  Return Value:
4482  *  NONE
4483  */
4484 static void s2io_handle_errors(void * dev_id)
4485 {
4486         struct net_device *dev = (struct net_device *) dev_id;
4487         struct s2io_nic *sp = netdev_priv(dev);
4488         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4489         u64 temp64 = 0,val64=0;
4490         int i = 0;
4491
4492         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4493         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4494
4495         if (!is_s2io_card_up(sp))
4496                 return;
4497
4498         if (pci_channel_offline(sp->pdev))
4499                 return;
4500
4501         memset(&sw_stat->ring_full_cnt, 0,
4502                 sizeof(sw_stat->ring_full_cnt));
4503
4504         /* Handling the XPAK counters update */
4505         if(stats->xpak_timer_count < 72000) {
4506                 /* waiting for an hour */
4507                 stats->xpak_timer_count++;
4508         } else {
4509                 s2io_updt_xpak_counter(dev);
4510                 /* reset the count to zero */
4511                 stats->xpak_timer_count = 0;
4512         }
4513
4514         /* Handling link status change error Intr */
4515         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4516                 val64 = readq(&bar0->mac_rmac_err_reg);
4517                 writeq(val64, &bar0->mac_rmac_err_reg);
4518                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4519                         schedule_work(&sp->set_link_task);
4520         }
4521
4522         /* In case of a serious error, the device will be Reset. */
4523         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4524                                 &sw_stat->serious_err_cnt))
4525                 goto reset;
4526
4527         /* Check for data parity error */
4528         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4529                                 &sw_stat->parity_err_cnt))
4530                 goto reset;
4531
4532         /* Check for ring full counter */
4533         if (sp->device_type == XFRAME_II_DEVICE) {
4534                 val64 = readq(&bar0->ring_bump_counter1);
4535                 for (i=0; i<4; i++) {
4536                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4537                         temp64 >>= 64 - ((i+1)*16);
4538                         sw_stat->ring_full_cnt[i] += temp64;
4539                 }
4540
4541                 val64 = readq(&bar0->ring_bump_counter2);
4542                 for (i=0; i<4; i++) {
4543                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4544                         temp64 >>= 64 - ((i+1)*16);
4545                          sw_stat->ring_full_cnt[i+4] += temp64;
4546                 }
4547         }
4548
4549         val64 = readq(&bar0->txdma_int_status);
4550         /*check for pfc_err*/
4551         if (val64 & TXDMA_PFC_INT) {
4552                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4553                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4554                                 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4555                                 &sw_stat->pfc_err_cnt))
4556                         goto reset;
4557                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4558                                 &sw_stat->pfc_err_cnt);
4559         }
4560
4561         /*check for tda_err*/
4562         if (val64 & TXDMA_TDA_INT) {
4563                 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4564                                 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4565                                 &sw_stat->tda_err_cnt))
4566                         goto reset;
4567                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4568                                 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4569         }
4570         /*check for pcc_err*/
4571         if (val64 & TXDMA_PCC_INT) {
4572                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4573                                 | PCC_N_SERR | PCC_6_COF_OV_ERR
4574                                 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4575                                 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4576                                 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4577                                 &sw_stat->pcc_err_cnt))
4578                         goto reset;
4579                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4580                                 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4581         }
4582
4583         /*check for tti_err*/
4584         if (val64 & TXDMA_TTI_INT) {
4585                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4586                                 &sw_stat->tti_err_cnt))
4587                         goto reset;
4588                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4589                                 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4590         }
4591
4592         /*check for lso_err*/
4593         if (val64 & TXDMA_LSO_INT) {
4594                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4595                                 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4596                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4597                         goto reset;
4598                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4599                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4600         }
4601
4602         /*check for tpa_err*/
4603         if (val64 & TXDMA_TPA_INT) {
4604                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4605                         &sw_stat->tpa_err_cnt))
4606                         goto reset;
4607                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4608                         &sw_stat->tpa_err_cnt);
4609         }
4610
4611         /*check for sm_err*/
4612         if (val64 & TXDMA_SM_INT) {
4613                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4614                         &sw_stat->sm_err_cnt))
4615                         goto reset;
4616         }
4617
4618         val64 = readq(&bar0->mac_int_status);
4619         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4620                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4621                                 &bar0->mac_tmac_err_reg,
4622                                 &sw_stat->mac_tmac_err_cnt))
4623                         goto reset;
4624                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4625                                 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4626                                 &bar0->mac_tmac_err_reg,
4627                                 &sw_stat->mac_tmac_err_cnt);
4628         }
4629
4630         val64 = readq(&bar0->xgxs_int_status);
4631         if (val64 & XGXS_INT_STATUS_TXGXS) {
4632                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4633                                 &bar0->xgxs_txgxs_err_reg,
4634                                 &sw_stat->xgxs_txgxs_err_cnt))
4635                         goto reset;
4636                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4637                                 &bar0->xgxs_txgxs_err_reg,
4638                                 &sw_stat->xgxs_txgxs_err_cnt);
4639         }
4640
4641         val64 = readq(&bar0->rxdma_int_status);
4642         if (val64 & RXDMA_INT_RC_INT_M) {
4643                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4644                                 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4645                                 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4646                         goto reset;
4647                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4648                                 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4649                                 &sw_stat->rc_err_cnt);
4650                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4651                                 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4652                                 &sw_stat->prc_pcix_err_cnt))
4653                         goto reset;
4654                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4655                                 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4656                                 &sw_stat->prc_pcix_err_cnt);
4657         }
4658
4659         if (val64 & RXDMA_INT_RPA_INT_M) {
4660                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4661                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4662                         goto reset;
4663                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4664                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4665         }
4666
4667         if (val64 & RXDMA_INT_RDA_INT_M) {
4668                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4669                                 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4670                                 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4671                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4672                         goto reset;
4673                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4674                                 | RDA_MISC_ERR | RDA_PCIX_ERR,
4675                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4676         }
4677
4678         if (val64 & RXDMA_INT_RTI_INT_M) {
4679                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4680                                 &sw_stat->rti_err_cnt))
4681                         goto reset;
4682                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4683                                 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4684         }
4685
4686         val64 = readq(&bar0->mac_int_status);
4687         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4688                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4689                                 &bar0->mac_rmac_err_reg,
4690                                 &sw_stat->mac_rmac_err_cnt))
4691                         goto reset;
4692                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4693                                 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4694                                 &sw_stat->mac_rmac_err_cnt);
4695         }
4696
4697         val64 = readq(&bar0->xgxs_int_status);
4698         if (val64 & XGXS_INT_STATUS_RXGXS) {
4699                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4700                                 &bar0->xgxs_rxgxs_err_reg,
4701                                 &sw_stat->xgxs_rxgxs_err_cnt))
4702                         goto reset;
4703         }
4704
4705         val64 = readq(&bar0->mc_int_status);
4706         if(val64 & MC_INT_STATUS_MC_INT) {
4707                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4708                                 &sw_stat->mc_err_cnt))
4709                         goto reset;
4710
4711                 /* Handling Ecc errors */
4712                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4713                         writeq(val64, &bar0->mc_err_reg);
4714                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4715                                 sw_stat->double_ecc_errs++;
4716                                 if (sp->device_type != XFRAME_II_DEVICE) {
4717                                         /*
4718                                          * Reset XframeI only if critical error
4719                                          */
4720                                         if (val64 &
4721                                                 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4722                                                 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4723                                                                 goto reset;
4724                                         }
4725                         } else
4726                                 sw_stat->single_ecc_errs++;
4727                 }
4728         }
4729         return;
4730
4731 reset:
4732         s2io_stop_all_tx_queue(sp);
4733         schedule_work(&sp->rst_timer_task);
4734         sw_stat->soft_reset_cnt++;
4735         return;
4736 }
4737
4738 /**
4739  *  s2io_isr - ISR handler of the device .
4740  *  @irq: the irq of the device.
4741  *  @dev_id: a void pointer to the dev structure of the NIC.
4742  *  Description:  This function is the ISR handler of the device. It
4743  *  identifies the reason for the interrupt and calls the relevant
4744  *  service routines. As a contongency measure, this ISR allocates the
4745  *  recv buffers, if their numbers are below the panic value which is
4746  *  presently set to 25% of the original number of rcv buffers allocated.
4747  *  Return value:
4748  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4749  *   IRQ_NONE: will be returned if interrupt is not from our device
4750  */
4751 static irqreturn_t s2io_isr(int irq, void *dev_id)
4752 {
4753         struct net_device *dev = (struct net_device *) dev_id;
4754         struct s2io_nic *sp = netdev_priv(dev);
4755         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4756         int i;
4757         u64 reason = 0;
4758         struct mac_info *mac_control;
4759         struct config_param *config;
4760
4761         /* Pretend we handled any irq's from a disconnected card */
4762         if (pci_channel_offline(sp->pdev))
4763                 return IRQ_NONE;
4764
4765         if (!is_s2io_card_up(sp))
4766                 return IRQ_NONE;
4767
4768         mac_control = &sp->mac_control;
4769         config = &sp->config;
4770
4771         /*
4772          * Identify the cause for interrupt and call the appropriate
4773          * interrupt handler. Causes for the interrupt could be;
4774          * 1. Rx of packet.
4775          * 2. Tx complete.
4776          * 3. Link down.
4777          */
4778         reason = readq(&bar0->general_int_status);
4779
4780         if (unlikely(reason == S2IO_MINUS_ONE) ) {
4781                 /* Nothing much can be done. Get out */
4782                 return IRQ_HANDLED;
4783         }
4784
4785         if (reason & (GEN_INTR_RXTRAFFIC |
4786                 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4787         {
4788                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4789
4790                 if (config->napi) {
4791                         if (reason & GEN_INTR_RXTRAFFIC) {
4792                                 napi_schedule(&sp->napi);
4793                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4794                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4795                                 readl(&bar0->rx_traffic_int);
4796                         }
4797                 } else {
4798                         /*
4799                          * rx_traffic_int reg is an R1 register, writing all 1's
4800                          * will ensure that the actual interrupt causing bit
4801                          * get's cleared and hence a read can be avoided.
4802                          */
4803                         if (reason & GEN_INTR_RXTRAFFIC)
4804                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4805
4806                         for (i = 0; i < config->rx_ring_num; i++)
4807                                 rx_intr_handler(&mac_control->rings[i], 0);
4808                 }
4809
4810                 /*
4811                  * tx_traffic_int reg is an R1 register, writing all 1's
4812                  * will ensure that the actual interrupt causing bit get's
4813                  * cleared and hence a read can be avoided.
4814                  */
4815                 if (reason & GEN_INTR_TXTRAFFIC)
4816                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4817
4818                 for (i = 0; i < config->tx_fifo_num; i++)
4819                         tx_intr_handler(&mac_control->fifos[i]);
4820
4821                 if (reason & GEN_INTR_TXPIC)
4822                         s2io_txpic_intr_handle(sp);
4823
4824                 /*
4825                  * Reallocate the buffers from the interrupt handler itself.
4826                  */
4827                 if (!config->napi) {
4828                         for (i = 0; i < config->rx_ring_num; i++)
4829                                 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
4830                 }
4831                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4832                 readl(&bar0->general_int_status);
4833
4834                 return IRQ_HANDLED;
4835
4836         }
4837         else if (!reason) {
4838                 /* The interrupt was not raised by us */
4839                 return IRQ_NONE;
4840         }
4841
4842         return IRQ_HANDLED;
4843 }
4844
4845 /**
4846  * s2io_updt_stats -
4847  */
4848 static void s2io_updt_stats(struct s2io_nic *sp)
4849 {
4850         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4851         u64 val64;
4852         int cnt = 0;
4853
4854         if (is_s2io_card_up(sp)) {
4855                 /* Apprx 30us on a 133 MHz bus */
4856                 val64 = SET_UPDT_CLICKS(10) |
4857                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4858                 writeq(val64, &bar0->stat_cfg);
4859                 do {
4860                         udelay(100);
4861                         val64 = readq(&bar0->stat_cfg);
4862                         if (!(val64 & s2BIT(0)))
4863                                 break;
4864                         cnt++;
4865                         if (cnt == 5)
4866                                 break; /* Updt failed */
4867                 } while(1);
4868         }
4869 }
4870
4871 /**
4872  *  s2io_get_stats - Updates the device statistics structure.
4873  *  @dev : pointer to the device structure.
4874  *  Description:
4875  *  This function updates the device statistics structure in the s2io_nic
4876  *  structure and returns a pointer to the same.
4877  *  Return value:
4878  *  pointer to the updated net_device_stats structure.
4879  */
4880
4881 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4882 {
4883         struct s2io_nic *sp = netdev_priv(dev);
4884         struct mac_info *mac_control;
4885         struct config_param *config;
4886         int i;
4887
4888
4889         mac_control = &sp->mac_control;
4890         config = &sp->config;
4891
4892         /* Configure Stats for immediate updt */
4893         s2io_updt_stats(sp);
4894
4895         /* Using sp->stats as a staging area, because reset (due to mtu
4896            change, for example) will clear some hardware counters */
4897         dev->stats.tx_packets +=
4898                 le32_to_cpu(mac_control->stats_info->tmac_frms) - 
4899                 sp->stats.tx_packets;
4900         sp->stats.tx_packets =
4901                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4902         dev->stats.tx_errors +=
4903                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4904                 sp->stats.tx_errors;
4905         sp->stats.tx_errors =
4906                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4907         dev->stats.rx_errors +=
4908                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4909                 sp->stats.rx_errors;
4910         sp->stats.rx_errors =
4911                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4912         dev->stats.multicast =
4913                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) - 
4914                 sp->stats.multicast;
4915         sp->stats.multicast =
4916                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4917         dev->stats.rx_length_errors =
4918                 le64_to_cpu(mac_control->stats_info->rmac_long_frms) - 
4919                 sp->stats.rx_length_errors;
4920         sp->stats.rx_length_errors =
4921                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4922
4923         /* collect per-ring rx_packets and rx_bytes */
4924         dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4925         for (i = 0; i < config->rx_ring_num; i++) {
4926                 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4927                 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4928         }
4929
4930         return (&dev->stats);
4931 }
4932
4933 /**
4934  *  s2io_set_multicast - entry point for multicast address enable/disable.
4935  *  @dev : pointer to the device structure
4936  *  Description:
4937  *  This function is a driver entry point which gets called by the kernel
4938  *  whenever multicast addresses must be enabled/disabled. This also gets
4939  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4940  *  determine, if multicast address must be enabled or if promiscuous mode
4941  *  is to be disabled etc.
4942  *  Return value:
4943  *  void.
4944  */
4945
4946 static void s2io_set_multicast(struct net_device *dev)
4947 {
4948         int i, j, prev_cnt;
4949         struct dev_mc_list *mclist;
4950         struct s2io_nic *sp = netdev_priv(dev);
4951         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4952         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4953             0xfeffffffffffULL;
4954         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4955         void __iomem *add;
4956         struct config_param *config = &sp->config;
4957
4958         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4959                 /*  Enable all Multicast addresses */
4960                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4961                        &bar0->rmac_addr_data0_mem);
4962                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4963                        &bar0->rmac_addr_data1_mem);
4964                 val64 = RMAC_ADDR_CMD_MEM_WE |
4965                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4966                     RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4967                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4968                 /* Wait till command completes */
4969                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4970                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4971                                         S2IO_BIT_RESET);
4972
4973                 sp->m_cast_flg = 1;
4974                 sp->all_multi_pos = config->max_mc_addr - 1;
4975         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4976                 /*  Disable all Multicast addresses */
4977                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4978                        &bar0->rmac_addr_data0_mem);
4979                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4980                        &bar0->rmac_addr_data1_mem);
4981                 val64 = RMAC_ADDR_CMD_MEM_WE |
4982                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4983                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4984                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4985                 /* Wait till command completes */
4986                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4987                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4988                                         S2IO_BIT_RESET);
4989
4990                 sp->m_cast_flg = 0;
4991                 sp->all_multi_pos = 0;
4992         }
4993
4994         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4995                 /*  Put the NIC into promiscuous mode */
4996                 add = &bar0->mac_cfg;
4997                 val64 = readq(&bar0->mac_cfg);
4998                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4999
5000                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5001                 writel((u32) val64, add);
5002                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5003                 writel((u32) (val64 >> 32), (add + 4));
5004
5005                 if (vlan_tag_strip != 1) {
5006                         val64 = readq(&bar0->rx_pa_cfg);
5007                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5008                         writeq(val64, &bar0->rx_pa_cfg);
5009                         sp->vlan_strip_flag = 0;
5010                 }
5011
5012                 val64 = readq(&bar0->mac_cfg);
5013                 sp->promisc_flg = 1;
5014                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5015                           dev->name);
5016         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5017                 /*  Remove the NIC from promiscuous mode */
5018                 add = &bar0->mac_cfg;
5019                 val64 = readq(&bar0->mac_cfg);
5020                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5021
5022                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5023                 writel((u32) val64, add);
5024                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5025                 writel((u32) (val64 >> 32), (add + 4));
5026
5027                 if (vlan_tag_strip != 0) {
5028                         val64 = readq(&bar0->rx_pa_cfg);
5029                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5030                         writeq(val64, &bar0->rx_pa_cfg);
5031                         sp->vlan_strip_flag = 1;
5032                 }
5033
5034                 val64 = readq(&bar0->mac_cfg);
5035                 sp->promisc_flg = 0;
5036                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5037                           dev->name);
5038         }
5039
5040         /*  Update individual M_CAST address list */
5041         if ((!sp->m_cast_flg) && dev->mc_count) {
5042                 if (dev->mc_count >
5043                     (config->max_mc_addr - config->max_mac_addr)) {
5044                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5045                                   dev->name);
5046                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
5047                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5048                         return;
5049                 }
5050
5051                 prev_cnt = sp->mc_addr_count;
5052                 sp->mc_addr_count = dev->mc_count;
5053
5054                 /* Clear out the previous list of Mc in the H/W. */
5055                 for (i = 0; i < prev_cnt; i++) {
5056                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5057                                &bar0->rmac_addr_data0_mem);
5058                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5059                                 &bar0->rmac_addr_data1_mem);
5060                         val64 = RMAC_ADDR_CMD_MEM_WE |
5061                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5062                             RMAC_ADDR_CMD_MEM_OFFSET
5063                             (config->mc_start_offset + i);
5064                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5065
5066                         /* Wait for command completes */
5067                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5068                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5069                                         S2IO_BIT_RESET)) {
5070                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
5071                                           dev->name);
5072                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5073                                 return;
5074                         }
5075                 }
5076
5077                 /* Create the new Rx filter list and update the same in H/W. */
5078                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5079                      i++, mclist = mclist->next) {
5080                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5081                                ETH_ALEN);
5082                         mac_addr = 0;
5083                         for (j = 0; j < ETH_ALEN; j++) {
5084                                 mac_addr |= mclist->dmi_addr[j];
5085                                 mac_addr <<= 8;
5086                         }
5087                         mac_addr >>= 8;
5088                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5089                                &bar0->rmac_addr_data0_mem);
5090                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5091                                 &bar0->rmac_addr_data1_mem);
5092                         val64 = RMAC_ADDR_CMD_MEM_WE |
5093                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5094                             RMAC_ADDR_CMD_MEM_OFFSET
5095                             (i + config->mc_start_offset);
5096                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5097
5098                         /* Wait for command completes */
5099                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5100                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5101                                         S2IO_BIT_RESET)) {
5102                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
5103                                           dev->name);
5104                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5105                                 return;
5106                         }
5107                 }
5108         }
5109 }
5110
5111 /* read from CAM unicast & multicast addresses and store it in
5112  * def_mac_addr structure
5113  */
5114 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5115 {
5116         int offset;
5117         u64 mac_addr = 0x0;
5118         struct config_param *config = &sp->config;
5119
5120         /* store unicast & multicast mac addresses */
5121         for (offset = 0; offset < config->max_mc_addr; offset++) {
5122                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5123                 /* if read fails disable the entry */
5124                 if (mac_addr == FAILURE)
5125                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5126                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5127         }
5128 }
5129
5130 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5131 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5132 {
5133         int offset;
5134         struct config_param *config = &sp->config;
5135         /* restore unicast mac address */
5136         for (offset = 0; offset < config->max_mac_addr; offset++)
5137                 do_s2io_prog_unicast(sp->dev,
5138                         sp->def_mac_addr[offset].mac_addr);
5139
5140         /* restore multicast mac address */
5141         for (offset = config->mc_start_offset;
5142                 offset < config->max_mc_addr; offset++)
5143                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5144 }
5145
5146 /* add a multicast MAC address to CAM */
5147 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5148 {
5149         int i;
5150         u64 mac_addr = 0;
5151         struct config_param *config = &sp->config;
5152
5153         for (i = 0; i < ETH_ALEN; i++) {
5154                 mac_addr <<= 8;
5155                 mac_addr |= addr[i];
5156         }
5157         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5158                 return SUCCESS;
5159
5160         /* check if the multicast mac already preset in CAM */
5161         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5162                 u64 tmp64;
5163                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5164                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5165                         break;
5166
5167                 if (tmp64 == mac_addr)
5168                         return SUCCESS;
5169         }
5170         if (i == config->max_mc_addr) {
5171                 DBG_PRINT(ERR_DBG,
5172                         "CAM full no space left for multicast MAC\n");
5173                 return FAILURE;
5174         }
5175         /* Update the internal structure with this new mac address */
5176         do_s2io_copy_mac_addr(sp, i, mac_addr);
5177
5178         return (do_s2io_add_mac(sp, mac_addr, i));
5179 }
5180
5181 /* add MAC address to CAM */
5182 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5183 {
5184         u64 val64;
5185         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5186
5187         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5188                 &bar0->rmac_addr_data0_mem);
5189
5190         val64 =
5191                 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5192                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5193         writeq(val64, &bar0->rmac_addr_cmd_mem);
5194
5195         /* Wait till command completes */
5196         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5197                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5198                 S2IO_BIT_RESET)) {
5199                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5200                 return FAILURE;
5201         }
5202         return SUCCESS;
5203 }
5204 /* deletes a specified unicast/multicast mac entry from CAM */
5205 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5206 {
5207         int offset;
5208         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5209         struct config_param *config = &sp->config;
5210
5211         for (offset = 1;
5212                 offset < config->max_mc_addr; offset++) {
5213                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5214                 if (tmp64 == addr) {
5215                         /* disable the entry by writing  0xffffffffffffULL */
5216                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5217                                 return FAILURE;
5218                         /* store the new mac list from CAM */
5219                         do_s2io_store_unicast_mc(sp);
5220                         return SUCCESS;
5221                 }
5222         }
5223         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5224                         (unsigned long long)addr);
5225         return FAILURE;
5226 }
5227
5228 /* read mac entries from CAM */
5229 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5230 {
5231         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5232         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5233
5234         /* read mac addr */
5235         val64 =
5236                 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5237                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5238         writeq(val64, &bar0->rmac_addr_cmd_mem);
5239
5240         /* Wait till command completes */
5241         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5242                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5243                 S2IO_BIT_RESET)) {
5244                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5245                 return FAILURE;
5246         }
5247         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5248         return (tmp64 >> 16);
5249 }
5250
5251 /**
5252  * s2io_set_mac_addr driver entry point
5253  */
5254
5255 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5256 {
5257         struct sockaddr *addr = p;
5258
5259         if (!is_valid_ether_addr(addr->sa_data))
5260                 return -EINVAL;
5261
5262         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5263
5264         /* store the MAC address in CAM */
5265         return (do_s2io_prog_unicast(dev, dev->dev_addr));
5266 }
5267 /**
5268  *  do_s2io_prog_unicast - Programs the Xframe mac address
5269  *  @dev : pointer to the device structure.
5270  *  @addr: a uchar pointer to the new mac address which is to be set.
5271  *  Description : This procedure will program the Xframe to receive
5272  *  frames with new Mac Address
5273  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5274  *  as defined in errno.h file on failure.
5275  */
5276
5277 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5278 {
5279         struct s2io_nic *sp = netdev_priv(dev);
5280         register u64 mac_addr = 0, perm_addr = 0;
5281         int i;
5282         u64 tmp64;
5283         struct config_param *config = &sp->config;
5284
5285         /*
5286         * Set the new MAC address as the new unicast filter and reflect this
5287         * change on the device address registered with the OS. It will be
5288         * at offset 0.
5289         */
5290         for (i = 0; i < ETH_ALEN; i++) {
5291                 mac_addr <<= 8;
5292                 mac_addr |= addr[i];
5293                 perm_addr <<= 8;
5294                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5295         }
5296
5297         /* check if the dev_addr is different than perm_addr */
5298         if (mac_addr == perm_addr)
5299                 return SUCCESS;
5300
5301         /* check if the mac already preset in CAM */
5302         for (i = 1; i < config->max_mac_addr; i++) {
5303                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5304                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5305                         break;
5306
5307                 if (tmp64 == mac_addr) {
5308                         DBG_PRINT(INFO_DBG,
5309                         "MAC addr:0x%llx already present in CAM\n",
5310                         (unsigned long long)mac_addr);
5311                         return SUCCESS;
5312                 }
5313         }
5314         if (i == config->max_mac_addr) {
5315                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5316                 return FAILURE;
5317         }
5318         /* Update the internal structure with this new mac address */
5319         do_s2io_copy_mac_addr(sp, i, mac_addr);
5320         return (do_s2io_add_mac(sp, mac_addr, i));
5321 }
5322
5323 /**
5324  * s2io_ethtool_sset - Sets different link parameters.
5325  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5326  * @info: pointer to the structure with parameters given by ethtool to set
5327  * link information.
5328  * Description:
5329  * The function sets different link parameters provided by the user onto
5330  * the NIC.
5331  * Return value:
5332  * 0 on success.
5333 */
5334
5335 static int s2io_ethtool_sset(struct net_device *dev,
5336                              struct ethtool_cmd *info)
5337 {
5338         struct s2io_nic *sp = netdev_priv(dev);
5339         if ((info->autoneg == AUTONEG_ENABLE) ||
5340             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5341                 return -EINVAL;
5342         else {
5343                 s2io_close(sp->dev);
5344                 s2io_open(sp->dev);
5345         }
5346
5347         return 0;
5348 }
5349
5350 /**
5351  * s2io_ethtol_gset - Return link specific information.
5352  * @sp : private member of the device structure, pointer to the
5353  *      s2io_nic structure.
5354  * @info : pointer to the structure with parameters given by ethtool
5355  * to return link information.
5356  * Description:
5357  * Returns link specific information like speed, duplex etc.. to ethtool.
5358  * Return value :
5359  * return 0 on success.
5360  */
5361
5362 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5363 {
5364         struct s2io_nic *sp = netdev_priv(dev);
5365         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5366         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5367         info->port = PORT_FIBRE;
5368
5369         /* info->transceiver */
5370         info->transceiver = XCVR_EXTERNAL;
5371
5372         if (netif_carrier_ok(sp->dev)) {
5373                 info->speed = 10000;
5374                 info->duplex = DUPLEX_FULL;
5375         } else {
5376                 info->speed = -1;
5377                 info->duplex = -1;
5378         }
5379
5380         info->autoneg = AUTONEG_DISABLE;
5381         return 0;
5382 }
5383
5384 /**
5385  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5386  * @sp : private member of the device structure, which is a pointer to the
5387  * s2io_nic structure.
5388  * @info : pointer to the structure with parameters given by ethtool to
5389  * return driver information.
5390  * Description:
5391  * Returns driver specefic information like name, version etc.. to ethtool.
5392  * Return value:
5393  *  void
5394  */
5395
5396 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5397                                   struct ethtool_drvinfo *info)
5398 {
5399         struct s2io_nic *sp = netdev_priv(dev);
5400
5401         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5402         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5403         strncpy(info->fw_version, "", sizeof(info->fw_version));
5404         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5405         info->regdump_len = XENA_REG_SPACE;
5406         info->eedump_len = XENA_EEPROM_SPACE;
5407 }
5408
5409 /**
5410  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5411  *  @sp: private member of the device structure, which is a pointer to the
5412  *  s2io_nic structure.
5413  *  @regs : pointer to the structure with parameters given by ethtool for
5414  *  dumping the registers.
5415  *  @reg_space: The input argumnet into which all the registers are dumped.
5416  *  Description:
5417  *  Dumps the entire register space of xFrame NIC into the user given
5418  *  buffer area.
5419  * Return value :
5420  * void .
5421 */
5422
5423 static void s2io_ethtool_gregs(struct net_device *dev,
5424                                struct ethtool_regs *regs, void *space)
5425 {
5426         int i;
5427         u64 reg;
5428         u8 *reg_space = (u8 *) space;
5429         struct s2io_nic *sp = netdev_priv(dev);
5430
5431         regs->len = XENA_REG_SPACE;
5432         regs->version = sp->pdev->subsystem_device;
5433
5434         for (i = 0; i < regs->len; i += 8) {
5435                 reg = readq(sp->bar0 + i);
5436                 memcpy((reg_space + i), &reg, 8);
5437         }
5438 }
5439
5440 /**
5441  *  s2io_phy_id  - timer function that alternates adapter LED.
5442  *  @data : address of the private member of the device structure, which
5443  *  is a pointer to the s2io_nic structure, provided as an u32.
5444  * Description: This is actually the timer function that alternates the
5445  * adapter LED bit of the adapter control bit to set/reset every time on
5446  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5447  *  once every second.
5448 */
5449 static void s2io_phy_id(unsigned long data)
5450 {
5451         struct s2io_nic *sp = (struct s2io_nic *) data;
5452         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5453         u64 val64 = 0;
5454         u16 subid;
5455
5456         subid = sp->pdev->subsystem_device;
5457         if ((sp->device_type == XFRAME_II_DEVICE) ||
5458                    ((subid & 0xFF) >= 0x07)) {
5459                 val64 = readq(&bar0->gpio_control);
5460                 val64 ^= GPIO_CTRL_GPIO_0;
5461                 writeq(val64, &bar0->gpio_control);
5462         } else {
5463                 val64 = readq(&bar0->adapter_control);
5464                 val64 ^= ADAPTER_LED_ON;
5465                 writeq(val64, &bar0->adapter_control);
5466         }
5467
5468         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5469 }
5470
5471 /**
5472  * s2io_ethtool_idnic - To physically identify the nic on the system.
5473  * @sp : private member of the device structure, which is a pointer to the
5474  * s2io_nic structure.
5475  * @id : pointer to the structure with identification parameters given by
5476  * ethtool.
5477  * Description: Used to physically identify the NIC on the system.
5478  * The Link LED will blink for a time specified by the user for
5479  * identification.
5480  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5481  * identification is possible only if it's link is up.
5482  * Return value:
5483  * int , returns 0 on success
5484  */
5485
5486 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5487 {
5488         u64 val64 = 0, last_gpio_ctrl_val;
5489         struct s2io_nic *sp = netdev_priv(dev);
5490         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5491         u16 subid;
5492
5493         subid = sp->pdev->subsystem_device;
5494         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5495         if ((sp->device_type == XFRAME_I_DEVICE) &&
5496                 ((subid & 0xFF) < 0x07)) {
5497                 val64 = readq(&bar0->adapter_control);
5498                 if (!(val64 & ADAPTER_CNTL_EN)) {
5499                         printk(KERN_ERR
5500                                "Adapter Link down, cannot blink LED\n");
5501                         return -EFAULT;
5502                 }
5503         }
5504         if (sp->id_timer.function == NULL) {
5505                 init_timer(&sp->id_timer);
5506                 sp->id_timer.function = s2io_phy_id;
5507                 sp->id_timer.data = (unsigned long) sp;
5508         }
5509         mod_timer(&sp->id_timer, jiffies);
5510         if (data)
5511                 msleep_interruptible(data * HZ);
5512         else
5513                 msleep_interruptible(MAX_FLICKER_TIME);
5514         del_timer_sync(&sp->id_timer);
5515
5516         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5517                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5518                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5519         }
5520
5521         return 0;
5522 }
5523
5524 static void s2io_ethtool_gringparam(struct net_device *dev,
5525                                     struct ethtool_ringparam *ering)
5526 {
5527         struct s2io_nic *sp = netdev_priv(dev);
5528         int i,tx_desc_count=0,rx_desc_count=0;
5529
5530         if (sp->rxd_mode == RXD_MODE_1)
5531                 ering->rx_max_pending = MAX_RX_DESC_1;
5532         else if (sp->rxd_mode == RXD_MODE_3B)
5533                 ering->rx_max_pending = MAX_RX_DESC_2;
5534
5535         ering->tx_max_pending = MAX_TX_DESC;
5536         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5537                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5538
5539         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5540         ering->tx_pending = tx_desc_count;
5541         rx_desc_count = 0;
5542         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5543                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5544
5545         ering->rx_pending = rx_desc_count;
5546
5547         ering->rx_mini_max_pending = 0;
5548         ering->rx_mini_pending = 0;
5549         if(sp->rxd_mode == RXD_MODE_1)
5550                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5551         else if (sp->rxd_mode == RXD_MODE_3B)
5552                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5553         ering->rx_jumbo_pending = rx_desc_count;
5554 }
5555
5556 /**
5557  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5558  * @sp : private member of the device structure, which is a pointer to the
5559  *      s2io_nic structure.
5560  * @ep : pointer to the structure with pause parameters given by ethtool.
5561  * Description:
5562  * Returns the Pause frame generation and reception capability of the NIC.
5563  * Return value:
5564  *  void
5565  */
5566 static void s2io_ethtool_getpause_data(struct net_device *dev,
5567                                        struct ethtool_pauseparam *ep)
5568 {
5569         u64 val64;
5570         struct s2io_nic *sp = netdev_priv(dev);
5571         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5572
5573         val64 = readq(&bar0->rmac_pause_cfg);
5574         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5575                 ep->tx_pause = true;
5576         if (val64 & RMAC_PAUSE_RX_ENABLE)
5577                 ep->rx_pause = true;
5578         ep->autoneg = false;
5579 }
5580
5581 /**
5582  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5583  * @sp : private member of the device structure, which is a pointer to the
5584  *      s2io_nic structure.
5585  * @ep : pointer to the structure with pause parameters given by ethtool.
5586  * Description:
5587  * It can be used to set or reset Pause frame generation or reception
5588  * support of the NIC.
5589  * Return value:
5590  * int, returns 0 on Success
5591  */
5592
5593 static int s2io_ethtool_setpause_data(struct net_device *dev,
5594                                struct ethtool_pauseparam *ep)
5595 {
5596         u64 val64;
5597         struct s2io_nic *sp = netdev_priv(dev);
5598         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5599
5600         val64 = readq(&bar0->rmac_pause_cfg);
5601         if (ep->tx_pause)
5602                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5603         else
5604                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5605         if (ep->rx_pause)
5606                 val64 |= RMAC_PAUSE_RX_ENABLE;
5607         else
5608                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5609         writeq(val64, &bar0->rmac_pause_cfg);
5610         return 0;
5611 }
5612
5613 /**
5614  * read_eeprom - reads 4 bytes of data from user given offset.
5615  * @sp : private member of the device structure, which is a pointer to the
5616  *      s2io_nic structure.
5617  * @off : offset at which the data must be written
5618  * @data : Its an output parameter where the data read at the given
5619  *      offset is stored.
5620  * Description:
5621  * Will read 4 bytes of data from the user given offset and return the
5622  * read data.
5623  * NOTE: Will allow to read only part of the EEPROM visible through the
5624  *   I2C bus.
5625  * Return value:
5626  *  -1 on failure and 0 on success.
5627  */
5628
5629 #define S2IO_DEV_ID             5
5630 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5631 {
5632         int ret = -1;
5633         u32 exit_cnt = 0;
5634         u64 val64;
5635         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5636
5637         if (sp->device_type == XFRAME_I_DEVICE) {
5638                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5639                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5640                     I2C_CONTROL_CNTL_START;
5641                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5642
5643                 while (exit_cnt < 5) {
5644                         val64 = readq(&bar0->i2c_control);
5645                         if (I2C_CONTROL_CNTL_END(val64)) {
5646                                 *data = I2C_CONTROL_GET_DATA(val64);
5647                                 ret = 0;
5648                                 break;
5649                         }
5650                         msleep(50);
5651                         exit_cnt++;
5652                 }
5653         }
5654
5655         if (sp->device_type == XFRAME_II_DEVICE) {
5656                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5657                         SPI_CONTROL_BYTECNT(0x3) |
5658                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5659                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5660                 val64 |= SPI_CONTROL_REQ;
5661                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5662                 while (exit_cnt < 5) {
5663                         val64 = readq(&bar0->spi_control);
5664                         if (val64 & SPI_CONTROL_NACK) {
5665                                 ret = 1;
5666                                 break;
5667                         } else if (val64 & SPI_CONTROL_DONE) {
5668                                 *data = readq(&bar0->spi_data);
5669                                 *data &= 0xffffff;
5670                                 ret = 0;
5671                                 break;
5672                         }
5673                         msleep(50);
5674                         exit_cnt++;
5675                 }
5676         }
5677         return ret;
5678 }
5679
5680 /**
5681  *  write_eeprom - actually writes the relevant part of the data value.
5682  *  @sp : private member of the device structure, which is a pointer to the
5683  *       s2io_nic structure.
5684  *  @off : offset at which the data must be written
5685  *  @data : The data that is to be written
5686  *  @cnt : Number of bytes of the data that are actually to be written into
5687  *  the Eeprom. (max of 3)
5688  * Description:
5689  *  Actually writes the relevant part of the data value into the Eeprom
5690  *  through the I2C bus.
5691  * Return value:
5692  *  0 on success, -1 on failure.
5693  */
5694
5695 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5696 {
5697         int exit_cnt = 0, ret = -1;
5698         u64 val64;
5699         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5700
5701         if (sp->device_type == XFRAME_I_DEVICE) {
5702                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5703                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5704                     I2C_CONTROL_CNTL_START;
5705                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5706
5707                 while (exit_cnt < 5) {
5708                         val64 = readq(&bar0->i2c_control);
5709                         if (I2C_CONTROL_CNTL_END(val64)) {
5710                                 if (!(val64 & I2C_CONTROL_NACK))
5711                                         ret = 0;
5712                                 break;
5713                         }
5714                         msleep(50);
5715                         exit_cnt++;
5716                 }
5717         }
5718
5719         if (sp->device_type == XFRAME_II_DEVICE) {
5720                 int write_cnt = (cnt == 8) ? 0 : cnt;
5721                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5722
5723                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5724                         SPI_CONTROL_BYTECNT(write_cnt) |
5725                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5726                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5727                 val64 |= SPI_CONTROL_REQ;
5728                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5729                 while (exit_cnt < 5) {
5730                         val64 = readq(&bar0->spi_control);
5731                         if (val64 & SPI_CONTROL_NACK) {
5732                                 ret = 1;
5733                                 break;
5734                         } else if (val64 & SPI_CONTROL_DONE) {
5735                                 ret = 0;
5736                                 break;
5737                         }
5738                         msleep(50);
5739                         exit_cnt++;
5740                 }
5741         }
5742         return ret;
5743 }
5744 static void s2io_vpd_read(struct s2io_nic *nic)
5745 {
5746         u8 *vpd_data;
5747         u8 data;
5748         int i=0, cnt, fail = 0;
5749         int vpd_addr = 0x80;
5750
5751         if (nic->device_type == XFRAME_II_DEVICE) {
5752                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5753                 vpd_addr = 0x80;
5754         }
5755         else {
5756                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5757                 vpd_addr = 0x50;
5758         }
5759         strcpy(nic->serial_num, "NOT AVAILABLE");
5760
5761         vpd_data = kmalloc(256, GFP_KERNEL);
5762         if (!vpd_data) {
5763                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5764                 return;
5765         }
5766         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5767
5768         for (i = 0; i < 256; i +=4 ) {
5769                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5770                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5771                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5772                 for (cnt = 0; cnt <5; cnt++) {
5773                         msleep(2);
5774                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5775                         if (data == 0x80)
5776                                 break;
5777                 }
5778                 if (cnt >= 5) {
5779                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5780                         fail = 1;
5781                         break;
5782                 }
5783                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5784                                       (u32 *)&vpd_data[i]);
5785         }
5786
5787         if(!fail) {
5788                 /* read serial number of adapter */
5789                 for (cnt = 0; cnt < 256; cnt++) {
5790                 if ((vpd_data[cnt] == 'S') &&
5791                         (vpd_data[cnt+1] == 'N') &&
5792                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5793                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5794                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5795                                         vpd_data[cnt+2]);
5796                                 break;
5797                         }
5798                 }
5799         }
5800
5801         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5802                 memset(nic->product_name, 0, vpd_data[1]);
5803                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5804         }
5805         kfree(vpd_data);
5806         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5807 }
5808
5809 /**
5810  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5811  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5812  *  @eeprom : pointer to the user level structure provided by ethtool,
5813  *  containing all relevant information.
5814  *  @data_buf : user defined value to be written into Eeprom.
5815  *  Description: Reads the values stored in the Eeprom at given offset
5816  *  for a given length. Stores these values int the input argument data
5817  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5818  *  Return value:
5819  *  int  0 on success
5820  */
5821
5822 static int s2io_ethtool_geeprom(struct net_device *dev,
5823                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5824 {
5825         u32 i, valid;
5826         u64 data;
5827         struct s2io_nic *sp = netdev_priv(dev);
5828
5829         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5830
5831         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5832                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5833
5834         for (i = 0; i < eeprom->len; i += 4) {
5835                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5836                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5837                         return -EFAULT;
5838                 }
5839                 valid = INV(data);
5840                 memcpy((data_buf + i), &valid, 4);
5841         }
5842         return 0;
5843 }
5844
5845 /**
5846  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5847  *  @sp : private member of the device structure, which is a pointer to the
5848  *  s2io_nic structure.
5849  *  @eeprom : pointer to the user level structure provided by ethtool,
5850  *  containing all relevant information.
5851  *  @data_buf ; user defined value to be written into Eeprom.
5852  *  Description:
5853  *  Tries to write the user provided value in the Eeprom, at the offset
5854  *  given by the user.
5855  *  Return value:
5856  *  0 on success, -EFAULT on failure.
5857  */
5858
5859 static int s2io_ethtool_seeprom(struct net_device *dev,
5860                                 struct ethtool_eeprom *eeprom,
5861                                 u8 * data_buf)
5862 {
5863         int len = eeprom->len, cnt = 0;
5864         u64 valid = 0, data;
5865         struct s2io_nic *sp = netdev_priv(dev);
5866
5867         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5868                 DBG_PRINT(ERR_DBG,
5869                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5870                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5871                           eeprom->magic);
5872                 return -EFAULT;
5873         }
5874
5875         while (len) {
5876                 data = (u32) data_buf[cnt] & 0x000000FF;
5877                 if (data) {
5878                         valid = (u32) (data << 24);
5879                 } else
5880                         valid = data;
5881
5882                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5883                         DBG_PRINT(ERR_DBG,
5884                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5885                         DBG_PRINT(ERR_DBG,
5886                                   "write into the specified offset\n");
5887                         return -EFAULT;
5888                 }
5889                 cnt++;
5890                 len--;
5891         }
5892
5893         return 0;
5894 }
5895
5896 /**
5897  * s2io_register_test - reads and writes into all clock domains.
5898  * @sp : private member of the device structure, which is a pointer to the
5899  * s2io_nic structure.
5900  * @data : variable that returns the result of each of the test conducted b
5901  * by the driver.
5902  * Description:
5903  * Read and write into all clock domains. The NIC has 3 clock domains,
5904  * see that registers in all the three regions are accessible.
5905  * Return value:
5906  * 0 on success.
5907  */
5908
5909 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5910 {
5911         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5912         u64 val64 = 0, exp_val;
5913         int fail = 0;
5914
5915         val64 = readq(&bar0->pif_rd_swapper_fb);
5916         if (val64 != 0x123456789abcdefULL) {
5917                 fail = 1;
5918                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5919         }
5920
5921         val64 = readq(&bar0->rmac_pause_cfg);
5922         if (val64 != 0xc000ffff00000000ULL) {
5923                 fail = 1;
5924                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5925         }
5926
5927         val64 = readq(&bar0->rx_queue_cfg);
5928         if (sp->device_type == XFRAME_II_DEVICE)
5929                 exp_val = 0x0404040404040404ULL;
5930         else
5931                 exp_val = 0x0808080808080808ULL;
5932         if (val64 != exp_val) {
5933                 fail = 1;
5934                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5935         }
5936
5937         val64 = readq(&bar0->xgxs_efifo_cfg);
5938         if (val64 != 0x000000001923141EULL) {
5939                 fail = 1;
5940                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5941         }
5942
5943         val64 = 0x5A5A5A5A5A5A5A5AULL;
5944         writeq(val64, &bar0->xmsi_data);
5945         val64 = readq(&bar0->xmsi_data);
5946         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5947                 fail = 1;
5948                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5949         }
5950
5951         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5952         writeq(val64, &bar0->xmsi_data);
5953         val64 = readq(&bar0->xmsi_data);
5954         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5955                 fail = 1;
5956                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5957         }
5958
5959         *data = fail;
5960         return fail;
5961 }
5962
5963 /**
5964  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5965  * @sp : private member of the device structure, which is a pointer to the
5966  * s2io_nic structure.
5967  * @data:variable that returns the result of each of the test conducted by
5968  * the driver.
5969  * Description:
5970  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5971  * register.
5972  * Return value:
5973  * 0 on success.
5974  */
5975
5976 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5977 {
5978         int fail = 0;
5979         u64 ret_data, org_4F0, org_7F0;
5980         u8 saved_4F0 = 0, saved_7F0 = 0;
5981         struct net_device *dev = sp->dev;
5982
5983         /* Test Write Error at offset 0 */
5984         /* Note that SPI interface allows write access to all areas
5985          * of EEPROM. Hence doing all negative testing only for Xframe I.
5986          */
5987         if (sp->device_type == XFRAME_I_DEVICE)
5988                 if (!write_eeprom(sp, 0, 0, 3))
5989                         fail = 1;
5990
5991         /* Save current values at offsets 0x4F0 and 0x7F0 */
5992         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5993                 saved_4F0 = 1;
5994         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5995                 saved_7F0 = 1;
5996
5997         /* Test Write at offset 4f0 */
5998         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5999                 fail = 1;
6000         if (read_eeprom(sp, 0x4F0, &ret_data))
6001                 fail = 1;
6002
6003         if (ret_data != 0x012345) {
6004                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6005                         "Data written %llx Data read %llx\n",
6006                         dev->name, (unsigned long long)0x12345,
6007                         (unsigned long long)ret_data);
6008                 fail = 1;
6009         }
6010
6011         /* Reset the EEPROM data go FFFF */
6012         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6013
6014         /* Test Write Request Error at offset 0x7c */
6015         if (sp->device_type == XFRAME_I_DEVICE)
6016                 if (!write_eeprom(sp, 0x07C, 0, 3))
6017                         fail = 1;
6018
6019         /* Test Write Request at offset 0x7f0 */
6020         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6021                 fail = 1;
6022         if (read_eeprom(sp, 0x7F0, &ret_data))
6023                 fail = 1;
6024
6025         if (ret_data != 0x012345) {
6026                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6027                         "Data written %llx Data read %llx\n",
6028                         dev->name, (unsigned long long)0x12345,
6029                         (unsigned long long)ret_data);
6030                 fail = 1;
6031         }
6032
6033         /* Reset the EEPROM data go FFFF */
6034         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6035
6036         if (sp->device_type == XFRAME_I_DEVICE) {
6037                 /* Test Write Error at offset 0x80 */
6038                 if (!write_eeprom(sp, 0x080, 0, 3))
6039                         fail = 1;
6040
6041                 /* Test Write Error at offset 0xfc */
6042                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6043                         fail = 1;
6044
6045                 /* Test Write Error at offset 0x100 */
6046                 if (!write_eeprom(sp, 0x100, 0, 3))
6047                         fail = 1;
6048
6049                 /* Test Write Error at offset 4ec */
6050                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6051                         fail = 1;
6052         }
6053
6054         /* Restore values at offsets 0x4F0 and 0x7F0 */
6055         if (saved_4F0)
6056                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6057         if (saved_7F0)
6058                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6059
6060         *data = fail;
6061         return fail;
6062 }
6063
6064 /**
6065  * s2io_bist_test - invokes the MemBist test of the card .
6066  * @sp : private member of the device structure, which is a pointer to the
6067  * s2io_nic structure.
6068  * @data:variable that returns the result of each of the test conducted by
6069  * the driver.
6070  * Description:
6071  * This invokes the MemBist test of the card. We give around
6072  * 2 secs time for the Test to complete. If it's still not complete
6073  * within this peiod, we consider that the test failed.
6074  * Return value:
6075  * 0 on success and -1 on failure.
6076  */
6077
6078 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6079 {
6080         u8 bist = 0;
6081         int cnt = 0, ret = -1;
6082
6083         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6084         bist |= PCI_BIST_START;
6085         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6086
6087         while (cnt < 20) {
6088                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6089                 if (!(bist & PCI_BIST_START)) {
6090                         *data = (bist & PCI_BIST_CODE_MASK);
6091                         ret = 0;
6092                         break;
6093                 }
6094                 msleep(100);
6095                 cnt++;
6096         }
6097
6098         return ret;
6099 }
6100
6101 /**
6102  * s2io-link_test - verifies the link state of the nic
6103  * @sp ; private member of the device structure, which is a pointer to the
6104  * s2io_nic structure.
6105  * @data: variable that returns the result of each of the test conducted by
6106  * the driver.
6107  * Description:
6108  * The function verifies the link state of the NIC and updates the input
6109  * argument 'data' appropriately.
6110  * Return value:
6111  * 0 on success.
6112  */
6113
6114 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6115 {
6116         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6117         u64 val64;
6118
6119         val64 = readq(&bar0->adapter_status);
6120         if(!(LINK_IS_UP(val64)))
6121                 *data = 1;
6122         else
6123                 *data = 0;
6124
6125         return *data;
6126 }
6127
6128 /**
6129  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6130  * @sp - private member of the device structure, which is a pointer to the
6131  * s2io_nic structure.
6132  * @data - variable that returns the result of each of the test
6133  * conducted by the driver.
6134  * Description:
6135  *  This is one of the offline test that tests the read and write
6136  *  access to the RldRam chip on the NIC.
6137  * Return value:
6138  *  0 on success.
6139  */
6140
6141 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6142 {
6143         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6144         u64 val64;
6145         int cnt, iteration = 0, test_fail = 0;
6146
6147         val64 = readq(&bar0->adapter_control);
6148         val64 &= ~ADAPTER_ECC_EN;
6149         writeq(val64, &bar0->adapter_control);
6150
6151         val64 = readq(&bar0->mc_rldram_test_ctrl);
6152         val64 |= MC_RLDRAM_TEST_MODE;
6153         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6154
6155         val64 = readq(&bar0->mc_rldram_mrs);
6156         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6157         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6158
6159         val64 |= MC_RLDRAM_MRS_ENABLE;
6160         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6161
6162         while (iteration < 2) {
6163                 val64 = 0x55555555aaaa0000ULL;
6164                 if (iteration == 1) {
6165                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6166                 }
6167                 writeq(val64, &bar0->mc_rldram_test_d0);
6168
6169                 val64 = 0xaaaa5a5555550000ULL;
6170                 if (iteration == 1) {
6171                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6172                 }
6173                 writeq(val64, &bar0->mc_rldram_test_d1);
6174
6175                 val64 = 0x55aaaaaaaa5a0000ULL;
6176                 if (iteration == 1) {
6177                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6178                 }
6179                 writeq(val64, &bar0->mc_rldram_test_d2);
6180
6181                 val64 = (u64) (0x0000003ffffe0100ULL);
6182                 writeq(val64, &bar0->mc_rldram_test_add);
6183
6184                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6185                         MC_RLDRAM_TEST_GO;
6186                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6187
6188                 for (cnt = 0; cnt < 5; cnt++) {
6189                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6190                         if (val64 & MC_RLDRAM_TEST_DONE)
6191                                 break;
6192                         msleep(200);
6193                 }
6194
6195                 if (cnt == 5)
6196                         break;
6197
6198                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6199                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6200
6201                 for (cnt = 0; cnt < 5; cnt++) {
6202                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6203                         if (val64 & MC_RLDRAM_TEST_DONE)
6204                                 break;
6205                         msleep(500);
6206                 }
6207
6208                 if (cnt == 5)
6209                         break;
6210
6211                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6212                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6213                         test_fail = 1;
6214
6215                 iteration++;
6216         }
6217
6218         *data = test_fail;
6219
6220         /* Bring the adapter out of test mode */
6221         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6222
6223         return test_fail;
6224 }
6225
6226 /**
6227  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6228  *  @sp : private member of the device structure, which is a pointer to the
6229  *  s2io_nic structure.
6230  *  @ethtest : pointer to a ethtool command specific structure that will be
6231  *  returned to the user.
6232  *  @data : variable that returns the result of each of the test
6233  * conducted by the driver.
6234  * Description:
6235  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6236  *  the health of the card.
6237  * Return value:
6238  *  void
6239  */
6240
6241 static void s2io_ethtool_test(struct net_device *dev,
6242                               struct ethtool_test *ethtest,
6243                               uint64_t * data)
6244 {
6245         struct s2io_nic *sp = netdev_priv(dev);
6246         int orig_state = netif_running(sp->dev);
6247
6248         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6249                 /* Offline Tests. */
6250                 if (orig_state)
6251                         s2io_close(sp->dev);
6252
6253                 if (s2io_register_test(sp, &data[0]))
6254                         ethtest->flags |= ETH_TEST_FL_FAILED;
6255
6256                 s2io_reset(sp);
6257
6258                 if (s2io_rldram_test(sp, &data[3]))
6259                         ethtest->flags |= ETH_TEST_FL_FAILED;
6260
6261                 s2io_reset(sp);
6262
6263                 if (s2io_eeprom_test(sp, &data[1]))
6264                         ethtest->flags |= ETH_TEST_FL_FAILED;
6265
6266                 if (s2io_bist_test(sp, &data[4]))
6267                         ethtest->flags |= ETH_TEST_FL_FAILED;
6268
6269                 if (orig_state)
6270                         s2io_open(sp->dev);
6271
6272                 data[2] = 0;
6273         } else {
6274                 /* Online Tests. */
6275                 if (!orig_state) {
6276                         DBG_PRINT(ERR_DBG,
6277                                   "%s: is not up, cannot run test\n",
6278                                   dev->name);
6279                         data[0] = -1;
6280                         data[1] = -1;
6281                         data[2] = -1;
6282                         data[3] = -1;
6283                         data[4] = -1;
6284                 }
6285
6286                 if (s2io_link_test(sp, &data[2]))
6287                         ethtest->flags |= ETH_TEST_FL_FAILED;
6288
6289                 data[0] = 0;
6290                 data[1] = 0;
6291                 data[3] = 0;
6292                 data[4] = 0;
6293         }
6294 }
6295
6296 static void s2io_get_ethtool_stats(struct net_device *dev,
6297                                    struct ethtool_stats *estats,
6298                                    u64 * tmp_stats)
6299 {
6300         int i = 0, k;
6301         struct s2io_nic *sp = netdev_priv(dev);
6302         struct stat_block *stat_info = sp->mac_control.stats_info;
6303
6304         s2io_updt_stats(sp);
6305         tmp_stats[i++] =
6306                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
6307                 le32_to_cpu(stat_info->tmac_frms);
6308         tmp_stats[i++] =
6309                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6310                 le32_to_cpu(stat_info->tmac_data_octets);
6311         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6312         tmp_stats[i++] =
6313                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6314                 le32_to_cpu(stat_info->tmac_mcst_frms);
6315         tmp_stats[i++] =
6316                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6317                 le32_to_cpu(stat_info->tmac_bcst_frms);
6318         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6319         tmp_stats[i++] =
6320                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6321                 le32_to_cpu(stat_info->tmac_ttl_octets);
6322         tmp_stats[i++] =
6323                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6324                 le32_to_cpu(stat_info->tmac_ucst_frms);
6325         tmp_stats[i++] =
6326                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6327                 le32_to_cpu(stat_info->tmac_nucst_frms);
6328         tmp_stats[i++] =
6329                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6330                 le32_to_cpu(stat_info->tmac_any_err_frms);
6331         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6332         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6333         tmp_stats[i++] =
6334                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6335                 le32_to_cpu(stat_info->tmac_vld_ip);
6336         tmp_stats[i++] =
6337                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6338                 le32_to_cpu(stat_info->tmac_drop_ip);
6339         tmp_stats[i++] =
6340                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6341                 le32_to_cpu(stat_info->tmac_icmp);
6342         tmp_stats[i++] =
6343                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6344                 le32_to_cpu(stat_info->tmac_rst_tcp);
6345         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6346         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6347                 le32_to_cpu(stat_info->tmac_udp);
6348         tmp_stats[i++] =
6349                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6350                 le32_to_cpu(stat_info->rmac_vld_frms);
6351         tmp_stats[i++] =
6352                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6353                 le32_to_cpu(stat_info->rmac_data_octets);
6354         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6355         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6356         tmp_stats[i++] =
6357                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6358                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6359         tmp_stats[i++] =
6360                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6361                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6362         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6363         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6364         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6365         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6366         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6367         tmp_stats[i++] =
6368                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6369                 le32_to_cpu(stat_info->rmac_ttl_octets);
6370         tmp_stats[i++] =
6371                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6372                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6373         tmp_stats[i++] =
6374                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6375                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6376         tmp_stats[i++] =
6377                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6378                 le32_to_cpu(stat_info->rmac_discarded_frms);
6379         tmp_stats[i++] =
6380                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6381                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6382         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6383         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6384         tmp_stats[i++] =
6385                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6386                 le32_to_cpu(stat_info->rmac_usized_frms);
6387         tmp_stats[i++] =
6388                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6389                 le32_to_cpu(stat_info->rmac_osized_frms);
6390         tmp_stats[i++] =
6391                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6392                 le32_to_cpu(stat_info->rmac_frag_frms);
6393         tmp_stats[i++] =
6394                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6395                 le32_to_cpu(stat_info->rmac_jabber_frms);
6396         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6397         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6398         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6399         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6400         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6401         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6402         tmp_stats[i++] =
6403                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6404                 le32_to_cpu(stat_info->rmac_ip);
6405         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6406         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6407         tmp_stats[i++] =
6408                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6409                 le32_to_cpu(stat_info->rmac_drop_ip);
6410         tmp_stats[i++] =
6411                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6412                 le32_to_cpu(stat_info->rmac_icmp);
6413         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6414         tmp_stats[i++] =
6415                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6416                 le32_to_cpu(stat_info->rmac_udp);
6417         tmp_stats[i++] =
6418                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6419                 le32_to_cpu(stat_info->rmac_err_drp_udp);
6420         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6421         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6422         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6423         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6424         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6425         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6426         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6427         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6428         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6429         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6430         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6431         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6432         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6433         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6434         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6435         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6436         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6437         tmp_stats[i++] =
6438                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6439                 le32_to_cpu(stat_info->rmac_pause_cnt);
6440         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6441         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6442         tmp_stats[i++] =
6443                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6444                 le32_to_cpu(stat_info->rmac_accepted_ip);
6445         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6446         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6447         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6448         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6449         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6450         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6451         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6452         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6453         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6454         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6455         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6456         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6457         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6458         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6459         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6460         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6461         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6462         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6463         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6464
6465         /* Enhanced statistics exist only for Hercules */
6466         if(sp->device_type == XFRAME_II_DEVICE) {
6467                 tmp_stats[i++] =
6468                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6469                 tmp_stats[i++] =
6470                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6471                 tmp_stats[i++] =
6472                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6473                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6474                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6475                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6476                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6477                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6478                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6479                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6480                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6481                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6482                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6483                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6484                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6485                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6486         }
6487
6488         tmp_stats[i++] = 0;
6489         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6490         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6491         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6492         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6493         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6494         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6495         for (k = 0; k < MAX_RX_RINGS; k++)
6496                 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6497         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6498         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6499         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6500         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6501         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6502         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6503         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6504         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6505         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6506         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6507         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6508         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6509         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6510         tmp_stats[i++] = stat_info->sw_stat.sending_both;
6511         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6512         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6513         if (stat_info->sw_stat.num_aggregations) {
6514                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6515                 int count = 0;
6516                 /*
6517                  * Since 64-bit divide does not work on all platforms,
6518                  * do repeated subtraction.
6519                  */
6520                 while (tmp >= stat_info->sw_stat.num_aggregations) {
6521                         tmp -= stat_info->sw_stat.num_aggregations;
6522                         count++;
6523                 }
6524                 tmp_stats[i++] = count;
6525         }
6526         else
6527                 tmp_stats[i++] = 0;
6528         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6529         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6530         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6531         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6532         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6533         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6534         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6535         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6536         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6537
6538         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6539         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6540         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6541         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6542         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6543
6544         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6545         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6546         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6547         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6548         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6549         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6550         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6551         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6552         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6553         tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6554         tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6555         tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6556         tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6557         tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6558         tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6559         tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6560         tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6561         tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6562         tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6563         tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6564         tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6565         tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6566         tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6567         tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6568         tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6569         tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6570 }
6571
6572 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6573 {
6574         return (XENA_REG_SPACE);
6575 }
6576
6577
6578 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6579 {
6580         struct s2io_nic *sp = netdev_priv(dev);
6581
6582         return (sp->rx_csum);
6583 }
6584
6585 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6586 {
6587         struct s2io_nic *sp = netdev_priv(dev);
6588
6589         if (data)
6590                 sp->rx_csum = 1;
6591         else
6592                 sp->rx_csum = 0;
6593
6594         return 0;
6595 }
6596
6597 static int s2io_get_eeprom_len(struct net_device *dev)
6598 {
6599         return (XENA_EEPROM_SPACE);
6600 }
6601
6602 static int s2io_get_sset_count(struct net_device *dev, int sset)
6603 {
6604         struct s2io_nic *sp = netdev_priv(dev);
6605
6606         switch (sset) {
6607         case ETH_SS_TEST:
6608                 return S2IO_TEST_LEN;
6609         case ETH_SS_STATS:
6610                 switch(sp->device_type) {
6611                 case XFRAME_I_DEVICE:
6612                         return XFRAME_I_STAT_LEN;
6613                 case XFRAME_II_DEVICE:
6614                         return XFRAME_II_STAT_LEN;
6615                 default:
6616                         return 0;
6617                 }
6618         default:
6619                 return -EOPNOTSUPP;
6620         }
6621 }
6622
6623 static void s2io_ethtool_get_strings(struct net_device *dev,
6624                                      u32 stringset, u8 * data)
6625 {
6626         int stat_size = 0;
6627         struct s2io_nic *sp = netdev_priv(dev);
6628
6629         switch (stringset) {
6630         case ETH_SS_TEST:
6631                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6632                 break;
6633         case ETH_SS_STATS:
6634                 stat_size = sizeof(ethtool_xena_stats_keys);
6635                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6636                 if(sp->device_type == XFRAME_II_DEVICE) {
6637                         memcpy(data + stat_size,
6638                                 &ethtool_enhanced_stats_keys,
6639                                 sizeof(ethtool_enhanced_stats_keys));
6640                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6641                 }
6642
6643                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6644                         sizeof(ethtool_driver_stats_keys));
6645         }
6646 }
6647
6648 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6649 {
6650         if (data)
6651                 dev->features |= NETIF_F_IP_CSUM;
6652         else
6653                 dev->features &= ~NETIF_F_IP_CSUM;
6654
6655         return 0;
6656 }
6657
6658 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6659 {
6660         return (dev->features & NETIF_F_TSO) != 0;
6661 }
6662 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6663 {
6664         if (data)
6665                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6666         else
6667                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6668
6669         return 0;
6670 }
6671
6672 static const struct ethtool_ops netdev_ethtool_ops = {
6673         .get_settings = s2io_ethtool_gset,
6674         .set_settings = s2io_ethtool_sset,
6675         .get_drvinfo = s2io_ethtool_gdrvinfo,
6676         .get_regs_len = s2io_ethtool_get_regs_len,
6677         .get_regs = s2io_ethtool_gregs,
6678         .get_link = ethtool_op_get_link,
6679         .get_eeprom_len = s2io_get_eeprom_len,
6680         .get_eeprom = s2io_ethtool_geeprom,
6681         .set_eeprom = s2io_ethtool_seeprom,
6682         .get_ringparam = s2io_ethtool_gringparam,
6683         .get_pauseparam = s2io_ethtool_getpause_data,
6684         .set_pauseparam = s2io_ethtool_setpause_data,
6685         .get_rx_csum = s2io_ethtool_get_rx_csum,
6686         .set_rx_csum = s2io_ethtool_set_rx_csum,
6687         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6688         .set_sg = ethtool_op_set_sg,
6689         .get_tso = s2io_ethtool_op_get_tso,
6690         .set_tso = s2io_ethtool_op_set_tso,
6691         .set_ufo = ethtool_op_set_ufo,
6692         .self_test = s2io_ethtool_test,
6693         .get_strings = s2io_ethtool_get_strings,
6694         .phys_id = s2io_ethtool_idnic,
6695         .get_ethtool_stats = s2io_get_ethtool_stats,
6696         .get_sset_count = s2io_get_sset_count,
6697 };
6698
6699 /**
6700  *  s2io_ioctl - Entry point for the Ioctl
6701  *  @dev :  Device pointer.
6702  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6703  *  a proprietary structure used to pass information to the driver.
6704  *  @cmd :  This is used to distinguish between the different commands that
6705  *  can be passed to the IOCTL functions.
6706  *  Description:
6707  *  Currently there are no special functionality supported in IOCTL, hence
6708  *  function always return EOPNOTSUPPORTED
6709  */
6710
6711 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6712 {
6713         return -EOPNOTSUPP;
6714 }
6715
6716 /**
6717  *  s2io_change_mtu - entry point to change MTU size for the device.
6718  *   @dev : device pointer.
6719  *   @new_mtu : the new MTU size for the device.
6720  *   Description: A driver entry point to change MTU size for the device.
6721  *   Before changing the MTU the device must be stopped.
6722  *  Return value:
6723  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6724  *   file on failure.
6725  */
6726
6727 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6728 {
6729         struct s2io_nic *sp = netdev_priv(dev);
6730         int ret = 0;
6731
6732         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6733                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6734                           dev->name);
6735                 return -EPERM;
6736         }
6737
6738         dev->mtu = new_mtu;
6739         if (netif_running(dev)) {
6740                 s2io_stop_all_tx_queue(sp);
6741                 s2io_card_down(sp);
6742                 ret = s2io_card_up(sp);
6743                 if (ret) {
6744                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6745                                   __func__);
6746                         return ret;
6747                 }
6748                 s2io_wake_all_tx_queue(sp);
6749         } else { /* Device is down */
6750                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6751                 u64 val64 = new_mtu;
6752
6753                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6754         }
6755
6756         return ret;
6757 }
6758
6759 /**
6760  * s2io_set_link - Set the LInk status
6761  * @data: long pointer to device private structue
6762  * Description: Sets the link status for the adapter
6763  */
6764
6765 static void s2io_set_link(struct work_struct *work)
6766 {
6767         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6768         struct net_device *dev = nic->dev;
6769         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6770         register u64 val64;
6771         u16 subid;
6772
6773         rtnl_lock();
6774
6775         if (!netif_running(dev))
6776                 goto out_unlock;
6777
6778         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6779                 /* The card is being reset, no point doing anything */
6780                 goto out_unlock;
6781         }
6782
6783         subid = nic->pdev->subsystem_device;
6784         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6785                 /*
6786                  * Allow a small delay for the NICs self initiated
6787                  * cleanup to complete.
6788                  */
6789                 msleep(100);
6790         }
6791
6792         val64 = readq(&bar0->adapter_status);
6793         if (LINK_IS_UP(val64)) {
6794                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6795                         if (verify_xena_quiescence(nic)) {
6796                                 val64 = readq(&bar0->adapter_control);
6797                                 val64 |= ADAPTER_CNTL_EN;
6798                                 writeq(val64, &bar0->adapter_control);
6799                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6800                                         nic->device_type, subid)) {
6801                                         val64 = readq(&bar0->gpio_control);
6802                                         val64 |= GPIO_CTRL_GPIO_0;
6803                                         writeq(val64, &bar0->gpio_control);
6804                                         val64 = readq(&bar0->gpio_control);
6805                                 } else {
6806                                         val64 |= ADAPTER_LED_ON;
6807                                         writeq(val64, &bar0->adapter_control);
6808                                 }
6809                                 nic->device_enabled_once = true;
6810                         } else {
6811                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6812                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6813                                 s2io_stop_all_tx_queue(nic);
6814                         }
6815                 }
6816                 val64 = readq(&bar0->adapter_control);
6817                 val64 |= ADAPTER_LED_ON;
6818                 writeq(val64, &bar0->adapter_control);
6819                 s2io_link(nic, LINK_UP);
6820         } else {
6821                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6822                                                       subid)) {
6823                         val64 = readq(&bar0->gpio_control);
6824                         val64 &= ~GPIO_CTRL_GPIO_0;
6825                         writeq(val64, &bar0->gpio_control);
6826                         val64 = readq(&bar0->gpio_control);
6827                 }
6828                 /* turn off LED */
6829                 val64 = readq(&bar0->adapter_control);
6830                 val64 = val64 &(~ADAPTER_LED_ON);
6831                 writeq(val64, &bar0->adapter_control);
6832                 s2io_link(nic, LINK_DOWN);
6833         }
6834         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6835
6836 out_unlock:
6837         rtnl_unlock();
6838 }
6839
6840 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6841                                 struct buffAdd *ba,
6842                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6843                                 u64 *temp2, int size)
6844 {
6845         struct net_device *dev = sp->dev;
6846         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6847
6848         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6849                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6850                 /* allocate skb */
6851                 if (*skb) {
6852                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6853                         /*
6854                          * As Rx frame are not going to be processed,
6855                          * using same mapped address for the Rxd
6856                          * buffer pointer
6857                          */
6858                         rxdp1->Buffer0_ptr = *temp0;
6859                 } else {
6860                         *skb = dev_alloc_skb(size);
6861                         if (!(*skb)) {
6862                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6863                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6864                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6865                                 sp->mac_control.stats_info->sw_stat. \
6866                                         mem_alloc_fail_cnt++;
6867                                 return -ENOMEM ;
6868                         }
6869                         sp->mac_control.stats_info->sw_stat.mem_allocated
6870                                 += (*skb)->truesize;
6871                         /* storing the mapped addr in a temp variable
6872                          * such it will be used for next rxd whose
6873                          * Host Control is NULL
6874                          */
6875                         rxdp1->Buffer0_ptr = *temp0 =
6876                                 pci_map_single( sp->pdev, (*skb)->data,
6877                                         size - NET_IP_ALIGN,
6878                                         PCI_DMA_FROMDEVICE);
6879                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6880                                 goto memalloc_failed;
6881                         rxdp->Host_Control = (unsigned long) (*skb);
6882                 }
6883         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6884                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6885                 /* Two buffer Mode */
6886                 if (*skb) {
6887                         rxdp3->Buffer2_ptr = *temp2;
6888                         rxdp3->Buffer0_ptr = *temp0;
6889                         rxdp3->Buffer1_ptr = *temp1;
6890                 } else {
6891                         *skb = dev_alloc_skb(size);
6892                         if (!(*skb)) {
6893                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6894                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6895                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6896                                 sp->mac_control.stats_info->sw_stat. \
6897                                         mem_alloc_fail_cnt++;
6898                                 return -ENOMEM;
6899                         }
6900                         sp->mac_control.stats_info->sw_stat.mem_allocated
6901                                 += (*skb)->truesize;
6902                         rxdp3->Buffer2_ptr = *temp2 =
6903                                 pci_map_single(sp->pdev, (*skb)->data,
6904                                                dev->mtu + 4,
6905                                                PCI_DMA_FROMDEVICE);
6906                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6907                                 goto memalloc_failed;
6908                         rxdp3->Buffer0_ptr = *temp0 =
6909                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6910                                                 PCI_DMA_FROMDEVICE);
6911                         if (pci_dma_mapping_error(sp->pdev,
6912                                                 rxdp3->Buffer0_ptr)) {
6913                                 pci_unmap_single (sp->pdev,
6914                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6915                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6916                                 goto memalloc_failed;
6917                         }
6918                         rxdp->Host_Control = (unsigned long) (*skb);
6919
6920                         /* Buffer-1 will be dummy buffer not used */
6921                         rxdp3->Buffer1_ptr = *temp1 =
6922                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6923                                                 PCI_DMA_FROMDEVICE);
6924                         if (pci_dma_mapping_error(sp->pdev,
6925                                                 rxdp3->Buffer1_ptr)) {
6926                                 pci_unmap_single (sp->pdev,
6927                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6928                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6929                                 pci_unmap_single (sp->pdev,
6930                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6931                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6932                                 goto memalloc_failed;
6933                         }
6934                 }
6935         }
6936         return 0;
6937         memalloc_failed:
6938                 stats->pci_map_fail_cnt++;
6939                 stats->mem_freed += (*skb)->truesize;
6940                 dev_kfree_skb(*skb);
6941                 return -ENOMEM;
6942 }
6943
6944 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6945                                 int size)
6946 {
6947         struct net_device *dev = sp->dev;
6948         if (sp->rxd_mode == RXD_MODE_1) {
6949                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6950         } else if (sp->rxd_mode == RXD_MODE_3B) {
6951                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6952                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6953                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6954         }
6955 }
6956
6957 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6958 {
6959         int i, j, k, blk_cnt = 0, size;
6960         struct mac_info * mac_control = &sp->mac_control;
6961         struct config_param *config = &sp->config;
6962         struct net_device *dev = sp->dev;
6963         struct RxD_t *rxdp = NULL;
6964         struct sk_buff *skb = NULL;
6965         struct buffAdd *ba = NULL;
6966         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6967
6968         /* Calculate the size based on ring mode */
6969         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6970                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6971         if (sp->rxd_mode == RXD_MODE_1)
6972                 size += NET_IP_ALIGN;
6973         else if (sp->rxd_mode == RXD_MODE_3B)
6974                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6975
6976         for (i = 0; i < config->rx_ring_num; i++) {
6977                 blk_cnt = config->rx_cfg[i].num_rxd /
6978                         (rxd_count[sp->rxd_mode] +1);
6979
6980                 for (j = 0; j < blk_cnt; j++) {
6981                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6982                                 rxdp = mac_control->rings[i].
6983                                         rx_blocks[j].rxds[k].virt_addr;
6984                                 if(sp->rxd_mode == RXD_MODE_3B)
6985                                         ba = &mac_control->rings[i].ba[j][k];
6986                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6987                                                        &skb,(u64 *)&temp0_64,
6988                                                        (u64 *)&temp1_64,
6989                                                        (u64 *)&temp2_64,
6990                                                         size) == -ENOMEM) {
6991                                         return 0;
6992                                 }
6993
6994                                 set_rxd_buffer_size(sp, rxdp, size);
6995                                 wmb();
6996                                 /* flip the Ownership bit to Hardware */
6997                                 rxdp->Control_1 |= RXD_OWN_XENA;
6998                         }
6999                 }
7000         }
7001         return 0;
7002
7003 }
7004
7005 static int s2io_add_isr(struct s2io_nic * sp)
7006 {
7007         int ret = 0;
7008         struct net_device *dev = sp->dev;
7009         int err = 0;
7010
7011         if (sp->config.intr_type == MSI_X)
7012                 ret = s2io_enable_msi_x(sp);
7013         if (ret) {
7014                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7015                 sp->config.intr_type = INTA;
7016         }
7017
7018         /* Store the values of the MSIX table in the struct s2io_nic structure */
7019         store_xmsi_data(sp);
7020
7021         /* After proper initialization of H/W, register ISR */
7022         if (sp->config.intr_type == MSI_X) {
7023                 int i, msix_rx_cnt = 0;
7024
7025                 for (i = 0; i < sp->num_entries; i++) {
7026                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7027                                 if (sp->s2io_entries[i].type ==
7028                                         MSIX_RING_TYPE) {
7029                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7030                                                 dev->name, i);
7031                                         err = request_irq(sp->entries[i].vector,
7032                                                 s2io_msix_ring_handle, 0,
7033                                                 sp->desc[i],
7034                                                 sp->s2io_entries[i].arg);
7035                                 } else if (sp->s2io_entries[i].type ==
7036                                         MSIX_ALARM_TYPE) {
7037                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7038                                         dev->name, i);
7039                                         err = request_irq(sp->entries[i].vector,
7040                                                 s2io_msix_fifo_handle, 0,
7041                                                 sp->desc[i],
7042                                                 sp->s2io_entries[i].arg);
7043
7044                                 }
7045                                 /* if either data or addr is zero print it. */
7046                                 if (!(sp->msix_info[i].addr &&
7047                                         sp->msix_info[i].data)) {
7048                                         DBG_PRINT(ERR_DBG,
7049                                                 "%s @Addr:0x%llx Data:0x%llx\n",
7050                                                 sp->desc[i],
7051                                                 (unsigned long long)
7052                                                 sp->msix_info[i].addr,
7053                                                 (unsigned long long)
7054                                                 ntohl(sp->msix_info[i].data));
7055                                 } else
7056                                         msix_rx_cnt++;
7057                                 if (err) {
7058                                         remove_msix_isr(sp);
7059
7060                                         DBG_PRINT(ERR_DBG,
7061                                                 "%s:MSI-X-%d registration "
7062                                                 "failed\n", dev->name, i);
7063
7064                                         DBG_PRINT(ERR_DBG,
7065                                                 "%s: Defaulting to INTA\n",
7066                                                 dev->name);
7067                                         sp->config.intr_type = INTA;
7068                                         break;
7069                                 }
7070                                 sp->s2io_entries[i].in_use =
7071                                         MSIX_REGISTERED_SUCCESS;
7072                         }
7073                 }
7074                 if (!err) {
7075                         printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7076                                 --msix_rx_cnt);
7077                         DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7078                                                 " through alarm vector\n");
7079                 }
7080         }
7081         if (sp->config.intr_type == INTA) {
7082                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7083                                 sp->name, dev);
7084                 if (err) {
7085                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7086                                   dev->name);
7087                         return -1;
7088                 }
7089         }
7090         return 0;
7091 }
7092 static void s2io_rem_isr(struct s2io_nic * sp)
7093 {
7094         if (sp->config.intr_type == MSI_X)
7095                 remove_msix_isr(sp);
7096         else
7097                 remove_inta_isr(sp);
7098 }
7099
7100 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7101 {
7102         int cnt = 0;
7103         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7104         register u64 val64 = 0;
7105         struct config_param *config;
7106         config = &sp->config;
7107
7108         if (!is_s2io_card_up(sp))
7109                 return;
7110
7111         del_timer_sync(&sp->alarm_timer);
7112         /* If s2io_set_link task is executing, wait till it completes. */
7113         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7114                 msleep(50);
7115         }
7116         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7117
7118         /* Disable napi */
7119         if (sp->config.napi) {
7120                 int off = 0;
7121                 if (config->intr_type ==  MSI_X) {
7122                         for (; off < sp->config.rx_ring_num; off++)
7123                                 napi_disable(&sp->mac_control.rings[off].napi);
7124                         }
7125                 else
7126                         napi_disable(&sp->napi);
7127         }
7128
7129         /* disable Tx and Rx traffic on the NIC */
7130         if (do_io)
7131                 stop_nic(sp);
7132
7133         s2io_rem_isr(sp);
7134
7135         /* stop the tx queue, indicate link down */
7136         s2io_link(sp, LINK_DOWN);
7137
7138         /* Check if the device is Quiescent and then Reset the NIC */
7139         while(do_io) {
7140                 /* As per the HW requirement we need to replenish the
7141                  * receive buffer to avoid the ring bump. Since there is
7142                  * no intention of processing the Rx frame at this pointwe are
7143                  * just settting the ownership bit of rxd in Each Rx
7144                  * ring to HW and set the appropriate buffer size
7145                  * based on the ring mode
7146                  */
7147                 rxd_owner_bit_reset(sp);
7148
7149                 val64 = readq(&bar0->adapter_status);
7150                 if (verify_xena_quiescence(sp)) {
7151                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7152                         break;
7153                 }
7154
7155                 msleep(50);
7156                 cnt++;
7157                 if (cnt == 10) {
7158                         DBG_PRINT(ERR_DBG,
7159                                   "s2io_close:Device not Quiescent ");
7160                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7161                                   (unsigned long long) val64);
7162                         break;
7163                 }
7164         }
7165         if (do_io)
7166                 s2io_reset(sp);
7167
7168         /* Free all Tx buffers */
7169         free_tx_buffers(sp);
7170
7171         /* Free all Rx buffers */
7172         free_rx_buffers(sp);
7173
7174         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7175 }
7176
7177 static void s2io_card_down(struct s2io_nic * sp)
7178 {
7179         do_s2io_card_down(sp, 1);
7180 }
7181
7182 static int s2io_card_up(struct s2io_nic * sp)
7183 {
7184         int i, ret = 0;
7185         struct mac_info *mac_control;
7186         struct config_param *config;
7187         struct net_device *dev = (struct net_device *) sp->dev;
7188         u16 interruptible;
7189
7190         /* Initialize the H/W I/O registers */
7191         ret = init_nic(sp);
7192         if (ret != 0) {
7193                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7194                           dev->name);
7195                 if (ret != -EIO)
7196                         s2io_reset(sp);
7197                 return ret;
7198         }
7199
7200         /*
7201          * Initializing the Rx buffers. For now we are considering only 1
7202          * Rx ring and initializing buffers into 30 Rx blocks
7203          */
7204         mac_control = &sp->mac_control;
7205         config = &sp->config;
7206
7207         for (i = 0; i < config->rx_ring_num; i++) {
7208                 mac_control->rings[i].mtu = dev->mtu;
7209                 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
7210                 if (ret) {
7211                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7212                                   dev->name);
7213                         s2io_reset(sp);
7214                         free_rx_buffers(sp);
7215                         return -ENOMEM;
7216                 }
7217                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7218                           mac_control->rings[i].rx_bufs_left);
7219         }
7220
7221         /* Initialise napi */
7222         if (config->napi) {
7223                 if (config->intr_type ==  MSI_X) {
7224                         for (i = 0; i < sp->config.rx_ring_num; i++)
7225                                 napi_enable(&sp->mac_control.rings[i].napi);
7226                 } else {
7227                         napi_enable(&sp->napi);
7228                 }
7229         }
7230
7231         /* Maintain the state prior to the open */
7232         if (sp->promisc_flg)
7233                 sp->promisc_flg = 0;
7234         if (sp->m_cast_flg) {
7235                 sp->m_cast_flg = 0;
7236                 sp->all_multi_pos= 0;
7237         }
7238
7239         /* Setting its receive mode */
7240         s2io_set_multicast(dev);
7241
7242         if (sp->lro) {
7243                 /* Initialize max aggregatable pkts per session based on MTU */
7244                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7245                 /* Check if we can use(if specified) user provided value */
7246                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7247                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7248         }
7249
7250         /* Enable Rx Traffic and interrupts on the NIC */
7251         if (start_nic(sp)) {
7252                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7253                 s2io_reset(sp);
7254                 free_rx_buffers(sp);
7255                 return -ENODEV;
7256         }
7257
7258         /* Add interrupt service routine */
7259         if (s2io_add_isr(sp) != 0) {
7260                 if (sp->config.intr_type == MSI_X)
7261                         s2io_rem_isr(sp);
7262                 s2io_reset(sp);
7263                 free_rx_buffers(sp);
7264                 return -ENODEV;
7265         }
7266
7267         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7268
7269         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7270
7271         /*  Enable select interrupts */
7272         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7273         if (sp->config.intr_type != INTA) {
7274                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7275                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7276         } else {
7277                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7278                 interruptible |= TX_PIC_INTR;
7279                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7280         }
7281
7282         return 0;
7283 }
7284
7285 /**
7286  * s2io_restart_nic - Resets the NIC.
7287  * @data : long pointer to the device private structure
7288  * Description:
7289  * This function is scheduled to be run by the s2io_tx_watchdog
7290  * function after 0.5 secs to reset the NIC. The idea is to reduce
7291  * the run time of the watch dog routine which is run holding a
7292  * spin lock.
7293  */
7294
7295 static void s2io_restart_nic(struct work_struct *work)
7296 {
7297         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7298         struct net_device *dev = sp->dev;
7299
7300         rtnl_lock();
7301
7302         if (!netif_running(dev))
7303                 goto out_unlock;
7304
7305         s2io_card_down(sp);
7306         if (s2io_card_up(sp)) {
7307                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7308                           dev->name);
7309         }
7310         s2io_wake_all_tx_queue(sp);
7311         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7312                   dev->name);
7313 out_unlock:
7314         rtnl_unlock();
7315 }
7316
7317 /**
7318  *  s2io_tx_watchdog - Watchdog for transmit side.
7319  *  @dev : Pointer to net device structure
7320  *  Description:
7321  *  This function is triggered if the Tx Queue is stopped
7322  *  for a pre-defined amount of time when the Interface is still up.
7323  *  If the Interface is jammed in such a situation, the hardware is
7324  *  reset (by s2io_close) and restarted again (by s2io_open) to
7325  *  overcome any problem that might have been caused in the hardware.
7326  *  Return value:
7327  *  void
7328  */
7329
7330 static void s2io_tx_watchdog(struct net_device *dev)
7331 {
7332         struct s2io_nic *sp = netdev_priv(dev);
7333
7334         if (netif_carrier_ok(dev)) {
7335                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7336                 schedule_work(&sp->rst_timer_task);
7337                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7338         }
7339 }
7340
7341 /**
7342  *   rx_osm_handler - To perform some OS related operations on SKB.
7343  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7344  *   @skb : the socket buffer pointer.
7345  *   @len : length of the packet
7346  *   @cksum : FCS checksum of the frame.
7347  *   @ring_no : the ring from which this RxD was extracted.
7348  *   Description:
7349  *   This function is called by the Rx interrupt serivce routine to perform
7350  *   some OS related operations on the SKB before passing it to the upper
7351  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7352  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7353  *   to the upper layer. If the checksum is wrong, it increments the Rx
7354  *   packet error count, frees the SKB and returns error.
7355  *   Return value:
7356  *   SUCCESS on success and -1 on failure.
7357  */
7358 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7359 {
7360         struct s2io_nic *sp = ring_data->nic;
7361         struct net_device *dev = (struct net_device *) ring_data->dev;
7362         struct sk_buff *skb = (struct sk_buff *)
7363                 ((unsigned long) rxdp->Host_Control);
7364         int ring_no = ring_data->ring_no;
7365         u16 l3_csum, l4_csum;
7366         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7367         struct lro *uninitialized_var(lro);
7368         u8 err_mask;
7369
7370         skb->dev = dev;
7371
7372         if (err) {
7373                 /* Check for parity error */
7374                 if (err & 0x1) {
7375                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7376                 }
7377                 err_mask = err >> 48;
7378                 switch(err_mask) {
7379                         case 1:
7380                                 sp->mac_control.stats_info->sw_stat.
7381                                 rx_parity_err_cnt++;
7382                         break;
7383
7384                         case 2:
7385                                 sp->mac_control.stats_info->sw_stat.
7386                                 rx_abort_cnt++;
7387                         break;
7388
7389                         case 3:
7390                                 sp->mac_control.stats_info->sw_stat.
7391                                 rx_parity_abort_cnt++;
7392                         break;
7393
7394                         case 4:
7395                                 sp->mac_control.stats_info->sw_stat.
7396                                 rx_rda_fail_cnt++;
7397                         break;
7398
7399                         case 5:
7400                                 sp->mac_control.stats_info->sw_stat.
7401                                 rx_unkn_prot_cnt++;
7402                         break;
7403
7404                         case 6:
7405                                 sp->mac_control.stats_info->sw_stat.
7406                                 rx_fcs_err_cnt++;
7407                         break;
7408
7409                         case 7:
7410                                 sp->mac_control.stats_info->sw_stat.
7411                                 rx_buf_size_err_cnt++;
7412                         break;
7413
7414                         case 8:
7415                                 sp->mac_control.stats_info->sw_stat.
7416                                 rx_rxd_corrupt_cnt++;
7417                         break;
7418
7419                         case 15:
7420                                 sp->mac_control.stats_info->sw_stat.
7421                                 rx_unkn_err_cnt++;
7422                         break;
7423                 }
7424                 /*
7425                 * Drop the packet if bad transfer code. Exception being
7426                 * 0x5, which could be due to unsupported IPv6 extension header.
7427                 * In this case, we let stack handle the packet.
7428                 * Note that in this case, since checksum will be incorrect,
7429                 * stack will validate the same.
7430                 */
7431                 if (err_mask != 0x5) {
7432                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7433                                 dev->name, err_mask);
7434                         dev->stats.rx_crc_errors++;
7435                         sp->mac_control.stats_info->sw_stat.mem_freed
7436                                 += skb->truesize;
7437                         dev_kfree_skb(skb);
7438                         ring_data->rx_bufs_left -= 1;
7439                         rxdp->Host_Control = 0;
7440                         return 0;
7441                 }
7442         }
7443
7444         /* Updating statistics */
7445         ring_data->rx_packets++;
7446         rxdp->Host_Control = 0;
7447         if (sp->rxd_mode == RXD_MODE_1) {
7448                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7449
7450                 ring_data->rx_bytes += len;
7451                 skb_put(skb, len);
7452
7453         } else if (sp->rxd_mode == RXD_MODE_3B) {
7454                 int get_block = ring_data->rx_curr_get_info.block_index;
7455                 int get_off = ring_data->rx_curr_get_info.offset;
7456                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7457                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7458                 unsigned char *buff = skb_push(skb, buf0_len);
7459
7460                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7461                 ring_data->rx_bytes += buf0_len + buf2_len;
7462                 memcpy(buff, ba->ba_0, buf0_len);
7463                 skb_put(skb, buf2_len);
7464         }
7465
7466         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7467             (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7468             (sp->rx_csum)) {
7469                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7470                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7471                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7472                         /*
7473                          * NIC verifies if the Checksum of the received
7474                          * frame is Ok or not and accordingly returns
7475                          * a flag in the RxD.
7476                          */
7477                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7478                         if (ring_data->lro) {
7479                                 u32 tcp_len;
7480                                 u8 *tcp;
7481                                 int ret = 0;
7482
7483                                 ret = s2io_club_tcp_session(ring_data,
7484                                         skb->data, &tcp, &tcp_len, &lro,
7485                                         rxdp, sp);
7486                                 switch (ret) {
7487                                         case 3: /* Begin anew */
7488                                                 lro->parent = skb;
7489                                                 goto aggregate;
7490                                         case 1: /* Aggregate */
7491                                         {
7492                                                 lro_append_pkt(sp, lro,
7493                                                         skb, tcp_len);
7494                                                 goto aggregate;
7495                                         }
7496                                         case 4: /* Flush session */
7497                                         {
7498                                                 lro_append_pkt(sp, lro,
7499                                                         skb, tcp_len);
7500                                                 queue_rx_frame(lro->parent,
7501                                                         lro->vlan_tag);
7502                                                 clear_lro_session(lro);
7503                                                 sp->mac_control.stats_info->
7504                                                     sw_stat.flush_max_pkts++;
7505                                                 goto aggregate;
7506                                         }
7507                                         case 2: /* Flush both */
7508                                                 lro->parent->data_len =
7509                                                         lro->frags_len;
7510                                                 sp->mac_control.stats_info->
7511                                                      sw_stat.sending_both++;
7512                                                 queue_rx_frame(lro->parent,
7513                                                         lro->vlan_tag);
7514                                                 clear_lro_session(lro);
7515                                                 goto send_up;
7516                                         case 0: /* sessions exceeded */
7517                                         case -1: /* non-TCP or not
7518                                                   * L2 aggregatable
7519                                                   */
7520                                         case 5: /*
7521                                                  * First pkt in session not
7522                                                  * L3/L4 aggregatable
7523                                                  */
7524                                                 break;
7525                                         default:
7526                                                 DBG_PRINT(ERR_DBG,
7527                                                         "%s: Samadhana!!\n",
7528                                                          __func__);
7529                                                 BUG();
7530                                 }
7531                         }
7532                 } else {
7533                         /*
7534                          * Packet with erroneous checksum, let the
7535                          * upper layers deal with it.
7536                          */
7537                         skb->ip_summed = CHECKSUM_NONE;
7538                 }
7539         } else
7540                 skb->ip_summed = CHECKSUM_NONE;
7541
7542         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7543 send_up:
7544         skb_record_rx_queue(skb, ring_no);
7545         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7546 aggregate:
7547         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7548         return SUCCESS;
7549 }
7550
7551 /**
7552  *  s2io_link - stops/starts the Tx queue.
7553  *  @sp : private member of the device structure, which is a pointer to the
7554  *  s2io_nic structure.
7555  *  @link : inidicates whether link is UP/DOWN.
7556  *  Description:
7557  *  This function stops/starts the Tx queue depending on whether the link
7558  *  status of the NIC is is down or up. This is called by the Alarm
7559  *  interrupt handler whenever a link change interrupt comes up.
7560  *  Return value:
7561  *  void.
7562  */
7563
7564 static void s2io_link(struct s2io_nic * sp, int link)
7565 {
7566         struct net_device *dev = (struct net_device *) sp->dev;
7567
7568         if (link != sp->last_link_state) {
7569                 init_tti(sp, link);
7570                 if (link == LINK_DOWN) {
7571                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7572                         s2io_stop_all_tx_queue(sp);
7573                         netif_carrier_off(dev);
7574                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7575                         sp->mac_control.stats_info->sw_stat.link_up_time =
7576                                 jiffies - sp->start_time;
7577                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7578                 } else {
7579                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7580                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7581                         sp->mac_control.stats_info->sw_stat.link_down_time =
7582                                 jiffies - sp->start_time;
7583                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7584                         netif_carrier_on(dev);
7585                         s2io_wake_all_tx_queue(sp);
7586                 }
7587         }
7588         sp->last_link_state = link;
7589         sp->start_time = jiffies;
7590 }
7591
7592 /**
7593  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7594  *  @sp : private member of the device structure, which is a pointer to the
7595  *  s2io_nic structure.
7596  *  Description:
7597  *  This function initializes a few of the PCI and PCI-X configuration registers
7598  *  with recommended values.
7599  *  Return value:
7600  *  void
7601  */
7602
7603 static void s2io_init_pci(struct s2io_nic * sp)
7604 {
7605         u16 pci_cmd = 0, pcix_cmd = 0;
7606
7607         /* Enable Data Parity Error Recovery in PCI-X command register. */
7608         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7609                              &(pcix_cmd));
7610         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7611                               (pcix_cmd | 1));
7612         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7613                              &(pcix_cmd));
7614
7615         /* Set the PErr Response bit in PCI command register. */
7616         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7617         pci_write_config_word(sp->pdev, PCI_COMMAND,
7618                               (pci_cmd | PCI_COMMAND_PARITY));
7619         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7620 }
7621
7622 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7623         u8 *dev_multiq)
7624 {
7625         if ((tx_fifo_num > MAX_TX_FIFOS) ||
7626                 (tx_fifo_num < 1)) {
7627                 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7628                         "(%d) not supported\n", tx_fifo_num);
7629
7630                 if (tx_fifo_num < 1)
7631                         tx_fifo_num = 1;
7632                 else
7633                         tx_fifo_num = MAX_TX_FIFOS;
7634
7635                 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7636                 DBG_PRINT(ERR_DBG, "tx fifos\n");
7637         }
7638
7639         if (multiq)
7640                 *dev_multiq = multiq;
7641
7642         if (tx_steering_type && (1 == tx_fifo_num)) {
7643                 if (tx_steering_type != TX_DEFAULT_STEERING)
7644                         DBG_PRINT(ERR_DBG,
7645                                 "s2io: Tx steering is not supported with "
7646                                 "one fifo. Disabling Tx steering.\n");
7647                 tx_steering_type = NO_STEERING;
7648         }
7649
7650         if ((tx_steering_type < NO_STEERING) ||
7651                 (tx_steering_type > TX_DEFAULT_STEERING)) {
7652                 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7653                          "supported\n");
7654                 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7655                 tx_steering_type = NO_STEERING;
7656         }
7657
7658         if (rx_ring_num > MAX_RX_RINGS) {
7659                 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7660                          "supported\n");
7661                 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7662                         MAX_RX_RINGS);
7663                 rx_ring_num = MAX_RX_RINGS;
7664         }
7665
7666         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7667                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7668                           "Defaulting to INTA\n");
7669                 *dev_intr_type = INTA;
7670         }
7671
7672         if ((*dev_intr_type == MSI_X) &&
7673                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7674                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7675                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7676                                         "Defaulting to INTA\n");
7677                 *dev_intr_type = INTA;
7678         }
7679
7680         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7681                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7682                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7683                 rx_ring_mode = 1;
7684         }
7685         return SUCCESS;
7686 }
7687
7688 /**
7689  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7690  * or Traffic class respectively.
7691  * @nic: device private variable
7692  * Description: The function configures the receive steering to
7693  * desired receive ring.
7694  * Return Value:  SUCCESS on success and
7695  * '-1' on failure (endian settings incorrect).
7696  */
7697 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7698 {
7699         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7700         register u64 val64 = 0;
7701
7702         if (ds_codepoint > 63)
7703                 return FAILURE;
7704
7705         val64 = RTS_DS_MEM_DATA(ring);
7706         writeq(val64, &bar0->rts_ds_mem_data);
7707
7708         val64 = RTS_DS_MEM_CTRL_WE |
7709                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7710                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7711
7712         writeq(val64, &bar0->rts_ds_mem_ctrl);
7713
7714         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7715                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7716                                 S2IO_BIT_RESET);
7717 }
7718
7719 static const struct net_device_ops s2io_netdev_ops = {
7720         .ndo_open               = s2io_open,
7721         .ndo_stop               = s2io_close,
7722         .ndo_get_stats          = s2io_get_stats,
7723         .ndo_start_xmit         = s2io_xmit,
7724         .ndo_validate_addr      = eth_validate_addr,
7725         .ndo_set_multicast_list = s2io_set_multicast,
7726         .ndo_do_ioctl           = s2io_ioctl,
7727         .ndo_set_mac_address    = s2io_set_mac_addr,
7728         .ndo_change_mtu         = s2io_change_mtu,
7729         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7730         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7731         .ndo_tx_timeout         = s2io_tx_watchdog,
7732 #ifdef CONFIG_NET_POLL_CONTROLLER
7733         .ndo_poll_controller    = s2io_netpoll,
7734 #endif
7735 };
7736
7737 /**
7738  *  s2io_init_nic - Initialization of the adapter .
7739  *  @pdev : structure containing the PCI related information of the device.
7740  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7741  *  Description:
7742  *  The function initializes an adapter identified by the pci_dec structure.
7743  *  All OS related initialization including memory and device structure and
7744  *  initlaization of the device private variable is done. Also the swapper
7745  *  control register is initialized to enable read and write into the I/O
7746  *  registers of the device.
7747  *  Return value:
7748  *  returns 0 on success and negative on failure.
7749  */
7750
7751 static int __devinit
7752 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7753 {
7754         struct s2io_nic *sp;
7755         struct net_device *dev;
7756         int i, j, ret;
7757         int dma_flag = false;
7758         u32 mac_up, mac_down;
7759         u64 val64 = 0, tmp64 = 0;
7760         struct XENA_dev_config __iomem *bar0 = NULL;
7761         u16 subid;
7762         struct mac_info *mac_control;
7763         struct config_param *config;
7764         int mode;
7765         u8 dev_intr_type = intr_type;
7766         u8 dev_multiq = 0;
7767
7768         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7769         if (ret)
7770                 return ret;
7771
7772         if ((ret = pci_enable_device(pdev))) {
7773                 DBG_PRINT(ERR_DBG,
7774                           "s2io_init_nic: pci_enable_device failed\n");
7775                 return ret;
7776         }
7777
7778         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7779                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7780                 dma_flag = true;
7781                 if (pci_set_consistent_dma_mask
7782                     (pdev, DMA_BIT_MASK(64))) {
7783                         DBG_PRINT(ERR_DBG,
7784                                   "Unable to obtain 64bit DMA for \
7785                                         consistent allocations\n");
7786                         pci_disable_device(pdev);
7787                         return -ENOMEM;
7788                 }
7789         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7790                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7791         } else {
7792                 pci_disable_device(pdev);
7793                 return -ENOMEM;
7794         }
7795         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7796                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
7797                 pci_disable_device(pdev);
7798                 return -ENODEV;
7799         }
7800         if (dev_multiq)
7801                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7802         else
7803                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7804         if (dev == NULL) {
7805                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7806                 pci_disable_device(pdev);
7807                 pci_release_regions(pdev);
7808                 return -ENODEV;
7809         }
7810
7811         pci_set_master(pdev);
7812         pci_set_drvdata(pdev, dev);
7813         SET_NETDEV_DEV(dev, &pdev->dev);
7814
7815         /*  Private member variable initialized to s2io NIC structure */
7816         sp = netdev_priv(dev);
7817         memset(sp, 0, sizeof(struct s2io_nic));
7818         sp->dev = dev;
7819         sp->pdev = pdev;
7820         sp->high_dma_flag = dma_flag;
7821         sp->device_enabled_once = false;
7822         if (rx_ring_mode == 1)
7823                 sp->rxd_mode = RXD_MODE_1;
7824         if (rx_ring_mode == 2)
7825                 sp->rxd_mode = RXD_MODE_3B;
7826
7827         sp->config.intr_type = dev_intr_type;
7828
7829         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7830                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7831                 sp->device_type = XFRAME_II_DEVICE;
7832         else
7833                 sp->device_type = XFRAME_I_DEVICE;
7834
7835         sp->lro = lro_enable;
7836
7837         /* Initialize some PCI/PCI-X fields of the NIC. */
7838         s2io_init_pci(sp);
7839
7840         /*
7841          * Setting the device configuration parameters.
7842          * Most of these parameters can be specified by the user during
7843          * module insertion as they are module loadable parameters. If
7844          * these parameters are not not specified during load time, they
7845          * are initialized with default values.
7846          */
7847         mac_control = &sp->mac_control;
7848         config = &sp->config;
7849
7850         config->napi = napi;
7851         config->tx_steering_type = tx_steering_type;
7852
7853         /* Tx side parameters. */
7854         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7855                 config->tx_fifo_num = MAX_TX_FIFOS;
7856         else
7857                 config->tx_fifo_num = tx_fifo_num;
7858
7859         /* Initialize the fifos used for tx steering */
7860         if (config->tx_fifo_num < 5) {
7861                         if (config->tx_fifo_num  == 1)
7862                                 sp->total_tcp_fifos = 1;
7863                         else
7864                                 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7865                         sp->udp_fifo_idx = config->tx_fifo_num - 1;
7866                         sp->total_udp_fifos = 1;
7867                         sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7868         } else {
7869                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7870                                                 FIFO_OTHER_MAX_NUM);
7871                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7872                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7873                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7874         }
7875
7876         config->multiq = dev_multiq;
7877         for (i = 0; i < config->tx_fifo_num; i++) {
7878                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7879                 config->tx_cfg[i].fifo_priority = i;
7880         }
7881
7882         /* mapping the QoS priority to the configured fifos */
7883         for (i = 0; i < MAX_TX_FIFOS; i++)
7884                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7885
7886         /* map the hashing selector table to the configured fifos */
7887         for (i = 0; i < config->tx_fifo_num; i++)
7888                 sp->fifo_selector[i] = fifo_selector[i];
7889
7890
7891         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7892         for (i = 0; i < config->tx_fifo_num; i++) {
7893                 config->tx_cfg[i].f_no_snoop =
7894                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7895                 if (config->tx_cfg[i].fifo_len < 65) {
7896                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7897                         break;
7898                 }
7899         }
7900         /* + 2 because one Txd for skb->data and one Txd for UFO */
7901         config->max_txds = MAX_SKB_FRAGS + 2;
7902
7903         /* Rx side parameters. */
7904         config->rx_ring_num = rx_ring_num;
7905         for (i = 0; i < config->rx_ring_num; i++) {
7906                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7907                     (rxd_count[sp->rxd_mode] + 1);
7908                 config->rx_cfg[i].ring_priority = i;
7909                 mac_control->rings[i].rx_bufs_left = 0;
7910                 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7911                 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7912                 mac_control->rings[i].pdev = sp->pdev;
7913                 mac_control->rings[i].dev = sp->dev;
7914         }
7915
7916         for (i = 0; i < rx_ring_num; i++) {
7917                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7918                 config->rx_cfg[i].f_no_snoop =
7919                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7920         }
7921
7922         /*  Setting Mac Control parameters */
7923         mac_control->rmac_pause_time = rmac_pause_time;
7924         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7925         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7926
7927
7928         /*  initialize the shared memory used by the NIC and the host */
7929         if (init_shared_mem(sp)) {
7930                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7931                           dev->name);
7932                 ret = -ENOMEM;
7933                 goto mem_alloc_failed;
7934         }
7935
7936         sp->bar0 = pci_ioremap_bar(pdev, 0);
7937         if (!sp->bar0) {
7938                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7939                           dev->name);
7940                 ret = -ENOMEM;
7941                 goto bar0_remap_failed;
7942         }
7943
7944         sp->bar1 = pci_ioremap_bar(pdev, 2);
7945         if (!sp->bar1) {
7946                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7947                           dev->name);
7948                 ret = -ENOMEM;
7949                 goto bar1_remap_failed;
7950         }
7951
7952         dev->irq = pdev->irq;
7953         dev->base_addr = (unsigned long) sp->bar0;
7954
7955         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7956         for (j = 0; j < MAX_TX_FIFOS; j++) {
7957                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7958                     (sp->bar1 + (j * 0x00020000));
7959         }
7960
7961         /*  Driver entry points */
7962         dev->netdev_ops = &s2io_netdev_ops;
7963         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7964         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7965
7966         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7967         if (sp->high_dma_flag == true)
7968                 dev->features |= NETIF_F_HIGHDMA;
7969         dev->features |= NETIF_F_TSO;
7970         dev->features |= NETIF_F_TSO6;
7971         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7972                 dev->features |= NETIF_F_UFO;
7973                 dev->features |= NETIF_F_HW_CSUM;
7974         }
7975         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7976         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7977         INIT_WORK(&sp->set_link_task, s2io_set_link);
7978
7979         pci_save_state(sp->pdev);
7980
7981         /* Setting swapper control on the NIC, for proper reset operation */
7982         if (s2io_set_swapper(sp)) {
7983                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7984                           dev->name);
7985                 ret = -EAGAIN;
7986                 goto set_swap_failed;
7987         }
7988
7989         /* Verify if the Herc works on the slot its placed into */
7990         if (sp->device_type & XFRAME_II_DEVICE) {
7991                 mode = s2io_verify_pci_mode(sp);
7992                 if (mode < 0) {
7993                         DBG_PRINT(ERR_DBG, "%s: ", __func__);
7994                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7995                         ret = -EBADSLT;
7996                         goto set_swap_failed;
7997                 }
7998         }
7999
8000         if (sp->config.intr_type == MSI_X) {
8001                 sp->num_entries = config->rx_ring_num + 1;
8002                 ret = s2io_enable_msi_x(sp);
8003
8004                 if (!ret) {
8005                         ret = s2io_test_msi(sp);
8006                         /* rollback MSI-X, will re-enable during add_isr() */
8007                         remove_msix_isr(sp);
8008                 }
8009                 if (ret) {
8010
8011                         DBG_PRINT(ERR_DBG,
8012                           "s2io: MSI-X requested but failed to enable\n");
8013                         sp->config.intr_type = INTA;
8014                 }
8015         }
8016
8017         if (config->intr_type ==  MSI_X) {
8018                 for (i = 0; i < config->rx_ring_num ; i++)
8019                         netif_napi_add(dev, &mac_control->rings[i].napi,
8020                                 s2io_poll_msix, 64);
8021         } else {
8022                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8023         }
8024
8025         /* Not needed for Herc */
8026         if (sp->device_type & XFRAME_I_DEVICE) {
8027                 /*
8028                  * Fix for all "FFs" MAC address problems observed on
8029                  * Alpha platforms
8030                  */
8031                 fix_mac_address(sp);
8032                 s2io_reset(sp);
8033         }
8034
8035         /*
8036          * MAC address initialization.
8037          * For now only one mac address will be read and used.
8038          */
8039         bar0 = sp->bar0;
8040         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8041             RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8042         writeq(val64, &bar0->rmac_addr_cmd_mem);
8043         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8044                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8045         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8046         mac_down = (u32) tmp64;
8047         mac_up = (u32) (tmp64 >> 32);
8048
8049         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8050         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8051         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8052         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8053         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8054         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8055
8056         /*  Set the factory defined MAC address initially   */
8057         dev->addr_len = ETH_ALEN;
8058         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8059         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8060
8061         /* initialize number of multicast & unicast MAC entries variables */
8062         if (sp->device_type == XFRAME_I_DEVICE) {
8063                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8064                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8065                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8066         } else if (sp->device_type == XFRAME_II_DEVICE) {
8067                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8068                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8069                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8070         }
8071
8072         /* store mac addresses from CAM to s2io_nic structure */
8073         do_s2io_store_unicast_mc(sp);
8074
8075         /* Configure MSIX vector for number of rings configured plus one */
8076         if ((sp->device_type == XFRAME_II_DEVICE) &&
8077                 (config->intr_type == MSI_X))
8078                 sp->num_entries = config->rx_ring_num + 1;
8079
8080          /* Store the values of the MSIX table in the s2io_nic structure */
8081         store_xmsi_data(sp);
8082         /* reset Nic and bring it to known state */
8083         s2io_reset(sp);
8084
8085         /*
8086          * Initialize link state flags
8087          * and the card state parameter
8088          */
8089         sp->state = 0;
8090
8091         /* Initialize spinlocks */
8092         for (i = 0; i < sp->config.tx_fifo_num; i++)
8093                 spin_lock_init(&mac_control->fifos[i].tx_lock);
8094
8095         /*
8096          * SXE-002: Configure link and activity LED to init state
8097          * on driver load.
8098          */
8099         subid = sp->pdev->subsystem_device;
8100         if ((subid & 0xFF) >= 0x07) {
8101                 val64 = readq(&bar0->gpio_control);
8102                 val64 |= 0x0000800000000000ULL;
8103                 writeq(val64, &bar0->gpio_control);
8104                 val64 = 0x0411040400000000ULL;
8105                 writeq(val64, (void __iomem *) bar0 + 0x2700);
8106                 val64 = readq(&bar0->gpio_control);
8107         }
8108
8109         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8110
8111         if (register_netdev(dev)) {
8112                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8113                 ret = -ENODEV;
8114                 goto register_failed;
8115         }
8116         s2io_vpd_read(sp);
8117         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8118         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8119                   sp->product_name, pdev->revision);
8120         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8121                   s2io_driver_version);
8122         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
8123         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8124         if (sp->device_type & XFRAME_II_DEVICE) {
8125                 mode = s2io_print_pci_mode(sp);
8126                 if (mode < 0) {
8127                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8128                         ret = -EBADSLT;
8129                         unregister_netdev(dev);
8130                         goto set_swap_failed;
8131                 }
8132         }
8133         switch(sp->rxd_mode) {
8134                 case RXD_MODE_1:
8135                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8136                                                 dev->name);
8137                     break;
8138                 case RXD_MODE_3B:
8139                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8140                                                 dev->name);
8141                     break;
8142         }
8143
8144         switch (sp->config.napi) {
8145         case 0:
8146                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8147                 break;
8148         case 1:
8149                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8150                 break;
8151         }
8152
8153         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8154                 sp->config.tx_fifo_num);
8155
8156         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8157                   sp->config.rx_ring_num);
8158
8159         switch(sp->config.intr_type) {
8160                 case INTA:
8161                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8162                     break;
8163                 case MSI_X:
8164                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8165                     break;
8166         }
8167         if (sp->config.multiq) {
8168                 for (i = 0; i < sp->config.tx_fifo_num; i++)
8169                         mac_control->fifos[i].multiq = config->multiq;
8170                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8171                         dev->name);
8172         } else
8173                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8174                         dev->name);
8175
8176         switch (sp->config.tx_steering_type) {
8177         case NO_STEERING:
8178                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8179                         " transmit\n", dev->name);
8180                         break;
8181         case TX_PRIORITY_STEERING:
8182                 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8183                         " transmit\n", dev->name);
8184                 break;
8185         case TX_DEFAULT_STEERING:
8186                 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8187                         " transmit\n", dev->name);
8188         }
8189
8190         if (sp->lro)
8191                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8192                           dev->name);
8193         if (ufo)
8194                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8195                                         " enabled\n", dev->name);
8196         /* Initialize device name */
8197         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8198
8199         if (vlan_tag_strip)
8200                 sp->vlan_strip_flag = 1;
8201         else
8202                 sp->vlan_strip_flag = 0;
8203
8204         /*
8205          * Make Link state as off at this point, when the Link change
8206          * interrupt comes the state will be automatically changed to
8207          * the right state.
8208          */
8209         netif_carrier_off(dev);
8210
8211         return 0;
8212
8213       register_failed:
8214       set_swap_failed:
8215         iounmap(sp->bar1);
8216       bar1_remap_failed:
8217         iounmap(sp->bar0);
8218       bar0_remap_failed:
8219       mem_alloc_failed:
8220         free_shared_mem(sp);
8221         pci_disable_device(pdev);
8222         pci_release_regions(pdev);
8223         pci_set_drvdata(pdev, NULL);
8224         free_netdev(dev);
8225
8226         return ret;
8227 }
8228
8229 /**
8230  * s2io_rem_nic - Free the PCI device
8231  * @pdev: structure containing the PCI related information of the device.
8232  * Description: This function is called by the Pci subsystem to release a
8233  * PCI device and free up all resource held up by the device. This could
8234  * be in response to a Hot plug event or when the driver is to be removed
8235  * from memory.
8236  */
8237
8238 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8239 {
8240         struct net_device *dev =
8241             (struct net_device *) pci_get_drvdata(pdev);
8242         struct s2io_nic *sp;
8243
8244         if (dev == NULL) {
8245                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8246                 return;
8247         }
8248
8249         flush_scheduled_work();
8250
8251         sp = netdev_priv(dev);
8252         unregister_netdev(dev);
8253
8254         free_shared_mem(sp);
8255         iounmap(sp->bar0);
8256         iounmap(sp->bar1);
8257         pci_release_regions(pdev);
8258         pci_set_drvdata(pdev, NULL);
8259         free_netdev(dev);
8260         pci_disable_device(pdev);
8261 }
8262
8263 /**
8264  * s2io_starter - Entry point for the driver
8265  * Description: This function is the entry point for the driver. It verifies
8266  * the module loadable parameters and initializes PCI configuration space.
8267  */
8268
8269 static int __init s2io_starter(void)
8270 {
8271         return pci_register_driver(&s2io_driver);
8272 }
8273
8274 /**
8275  * s2io_closer - Cleanup routine for the driver
8276  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8277  */
8278
8279 static __exit void s2io_closer(void)
8280 {
8281         pci_unregister_driver(&s2io_driver);
8282         DBG_PRINT(INIT_DBG, "cleanup done\n");
8283 }
8284
8285 module_init(s2io_starter);
8286 module_exit(s2io_closer);
8287
8288 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8289                 struct tcphdr **tcp, struct RxD_t *rxdp,
8290                 struct s2io_nic *sp)
8291 {
8292         int ip_off;
8293         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8294
8295         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8296                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8297                           __func__);
8298                 return -1;
8299         }
8300
8301         /* Checking for DIX type or DIX type with VLAN */
8302         if ((l2_type == 0)
8303                 || (l2_type == 4)) {
8304                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8305                 /*
8306                  * If vlan stripping is disabled and the frame is VLAN tagged,
8307                  * shift the offset by the VLAN header size bytes.
8308                  */
8309                 if ((!sp->vlan_strip_flag) &&
8310                         (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8311                         ip_off += HEADER_VLAN_SIZE;
8312         } else {
8313                 /* LLC, SNAP etc are considered non-mergeable */
8314                 return -1;
8315         }
8316
8317         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8318         ip_len = (u8)((*ip)->ihl);
8319         ip_len <<= 2;
8320         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8321
8322         return 0;
8323 }
8324
8325 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8326                                   struct tcphdr *tcp)
8327 {
8328         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8329         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8330            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8331                 return -1;
8332         return 0;
8333 }
8334
8335 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8336 {
8337         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8338 }
8339
8340 static void initiate_new_session(struct lro *lro, u8 *l2h,
8341         struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8342 {
8343         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8344         lro->l2h = l2h;
8345         lro->iph = ip;
8346         lro->tcph = tcp;
8347         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8348         lro->tcp_ack = tcp->ack_seq;
8349         lro->sg_num = 1;
8350         lro->total_len = ntohs(ip->tot_len);
8351         lro->frags_len = 0;
8352         lro->vlan_tag = vlan_tag;
8353         /*
8354          * check if we saw TCP timestamp. Other consistency checks have
8355          * already been done.
8356          */
8357         if (tcp->doff == 8) {
8358                 __be32 *ptr;
8359                 ptr = (__be32 *)(tcp+1);
8360                 lro->saw_ts = 1;
8361                 lro->cur_tsval = ntohl(*(ptr+1));
8362                 lro->cur_tsecr = *(ptr+2);
8363         }
8364         lro->in_use = 1;
8365 }
8366
8367 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8368 {
8369         struct iphdr *ip = lro->iph;
8370         struct tcphdr *tcp = lro->tcph;
8371         __sum16 nchk;
8372         struct stat_block *statinfo = sp->mac_control.stats_info;
8373         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8374
8375         /* Update L3 header */
8376         ip->tot_len = htons(lro->total_len);
8377         ip->check = 0;
8378         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8379         ip->check = nchk;
8380
8381         /* Update L4 header */
8382         tcp->ack_seq = lro->tcp_ack;
8383         tcp->window = lro->window;
8384
8385         /* Update tsecr field if this session has timestamps enabled */
8386         if (lro->saw_ts) {
8387                 __be32 *ptr = (__be32 *)(tcp + 1);
8388                 *(ptr+2) = lro->cur_tsecr;
8389         }
8390
8391         /* Update counters required for calculation of
8392          * average no. of packets aggregated.
8393          */
8394         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8395         statinfo->sw_stat.num_aggregations++;
8396 }
8397
8398 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8399                 struct tcphdr *tcp, u32 l4_pyld)
8400 {
8401         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8402         lro->total_len += l4_pyld;
8403         lro->frags_len += l4_pyld;
8404         lro->tcp_next_seq += l4_pyld;
8405         lro->sg_num++;
8406
8407         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8408         lro->tcp_ack = tcp->ack_seq;
8409         lro->window = tcp->window;
8410
8411         if (lro->saw_ts) {
8412                 __be32 *ptr;
8413                 /* Update tsecr and tsval from this packet */
8414                 ptr = (__be32 *)(tcp+1);
8415                 lro->cur_tsval = ntohl(*(ptr+1));
8416                 lro->cur_tsecr = *(ptr + 2);
8417         }
8418 }
8419
8420 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8421                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8422 {
8423         u8 *ptr;
8424
8425         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8426
8427         if (!tcp_pyld_len) {
8428                 /* Runt frame or a pure ack */
8429                 return -1;
8430         }
8431
8432         if (ip->ihl != 5) /* IP has options */
8433                 return -1;
8434
8435         /* If we see CE codepoint in IP header, packet is not mergeable */
8436         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8437                 return -1;
8438
8439         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8440         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8441                                     tcp->ece || tcp->cwr || !tcp->ack) {
8442                 /*
8443                  * Currently recognize only the ack control word and
8444                  * any other control field being set would result in
8445                  * flushing the LRO session
8446                  */
8447                 return -1;
8448         }
8449
8450         /*
8451          * Allow only one TCP timestamp option. Don't aggregate if
8452          * any other options are detected.
8453          */
8454         if (tcp->doff != 5 && tcp->doff != 8)
8455                 return -1;
8456
8457         if (tcp->doff == 8) {
8458                 ptr = (u8 *)(tcp + 1);
8459                 while (*ptr == TCPOPT_NOP)
8460                         ptr++;
8461                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8462                         return -1;
8463
8464                 /* Ensure timestamp value increases monotonically */
8465                 if (l_lro)
8466                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8467                                 return -1;
8468
8469                 /* timestamp echo reply should be non-zero */
8470                 if (*((__be32 *)(ptr+6)) == 0)
8471                         return -1;
8472         }
8473
8474         return 0;
8475 }
8476
8477 static int
8478 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8479         u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8480         struct s2io_nic *sp)
8481 {
8482         struct iphdr *ip;
8483         struct tcphdr *tcph;
8484         int ret = 0, i;
8485         u16 vlan_tag = 0;
8486
8487         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8488                                          rxdp, sp))) {
8489                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8490                           ip->saddr, ip->daddr);
8491         } else
8492                 return ret;
8493
8494         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8495         tcph = (struct tcphdr *)*tcp;
8496         *tcp_len = get_l4_pyld_length(ip, tcph);
8497         for (i=0; i<MAX_LRO_SESSIONS; i++) {
8498                 struct lro *l_lro = &ring_data->lro0_n[i];
8499                 if (l_lro->in_use) {
8500                         if (check_for_socket_match(l_lro, ip, tcph))
8501                                 continue;
8502                         /* Sock pair matched */
8503                         *lro = l_lro;
8504
8505                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8506                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8507                                           "0x%x, actual 0x%x\n", __func__,
8508                                           (*lro)->tcp_next_seq,
8509                                           ntohl(tcph->seq));
8510
8511                                 sp->mac_control.stats_info->
8512                                    sw_stat.outof_sequence_pkts++;
8513                                 ret = 2;
8514                                 break;
8515                         }
8516
8517                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8518                                 ret = 1; /* Aggregate */
8519                         else
8520                                 ret = 2; /* Flush both */
8521                         break;
8522                 }
8523         }
8524
8525         if (ret == 0) {
8526                 /* Before searching for available LRO objects,
8527                  * check if the pkt is L3/L4 aggregatable. If not
8528                  * don't create new LRO session. Just send this
8529                  * packet up.
8530                  */
8531                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8532                         return 5;
8533                 }
8534
8535                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8536                         struct lro *l_lro = &ring_data->lro0_n[i];
8537                         if (!(l_lro->in_use)) {
8538                                 *lro = l_lro;
8539                                 ret = 3; /* Begin anew */
8540                                 break;
8541                         }
8542                 }
8543         }
8544
8545         if (ret == 0) { /* sessions exceeded */
8546                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8547                           __func__);
8548                 *lro = NULL;
8549                 return ret;
8550         }
8551
8552         switch (ret) {
8553                 case 3:
8554                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8555                                                                 vlan_tag);
8556                         break;
8557                 case 2:
8558                         update_L3L4_header(sp, *lro);
8559                         break;
8560                 case 1:
8561                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8562                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8563                                 update_L3L4_header(sp, *lro);
8564                                 ret = 4; /* Flush the LRO */
8565                         }
8566                         break;
8567                 default:
8568                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8569                                 __func__);
8570                         break;
8571         }
8572
8573         return ret;
8574 }
8575
8576 static void clear_lro_session(struct lro *lro)
8577 {
8578         static u16 lro_struct_size = sizeof(struct lro);
8579
8580         memset(lro, 0, lro_struct_size);
8581 }
8582
8583 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8584 {
8585         struct net_device *dev = skb->dev;
8586         struct s2io_nic *sp = netdev_priv(dev);
8587
8588         skb->protocol = eth_type_trans(skb, dev);
8589         if (sp->vlgrp && vlan_tag
8590                 && (sp->vlan_strip_flag)) {
8591                 /* Queueing the vlan frame to the upper layer */
8592                 if (sp->config.napi)
8593                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8594                 else
8595                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8596         } else {
8597                 if (sp->config.napi)
8598                         netif_receive_skb(skb);
8599                 else
8600                         netif_rx(skb);
8601         }
8602 }
8603
8604 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8605                            struct sk_buff *skb,
8606                            u32 tcp_len)
8607 {
8608         struct sk_buff *first = lro->parent;
8609
8610         first->len += tcp_len;
8611         first->data_len = lro->frags_len;
8612         skb_pull(skb, (skb->len - tcp_len));
8613         if (skb_shinfo(first)->frag_list)
8614                 lro->last_frag->next = skb;
8615         else
8616                 skb_shinfo(first)->frag_list = skb;
8617         first->truesize += skb->truesize;
8618         lro->last_frag = skb;
8619         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8620         return;
8621 }
8622
8623 /**
8624  * s2io_io_error_detected - called when PCI error is detected
8625  * @pdev: Pointer to PCI device
8626  * @state: The current pci connection state
8627  *
8628  * This function is called after a PCI bus error affecting
8629  * this device has been detected.
8630  */
8631 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8632                                                pci_channel_state_t state)
8633 {
8634         struct net_device *netdev = pci_get_drvdata(pdev);
8635         struct s2io_nic *sp = netdev_priv(netdev);
8636
8637         netif_device_detach(netdev);
8638
8639         if (netif_running(netdev)) {
8640                 /* Bring down the card, while avoiding PCI I/O */
8641                 do_s2io_card_down(sp, 0);
8642         }
8643         pci_disable_device(pdev);
8644
8645         return PCI_ERS_RESULT_NEED_RESET;
8646 }
8647
8648 /**
8649  * s2io_io_slot_reset - called after the pci bus has been reset.
8650  * @pdev: Pointer to PCI device
8651  *
8652  * Restart the card from scratch, as if from a cold-boot.
8653  * At this point, the card has exprienced a hard reset,
8654  * followed by fixups by BIOS, and has its config space
8655  * set up identically to what it was at cold boot.
8656  */
8657 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8658 {
8659         struct net_device *netdev = pci_get_drvdata(pdev);
8660         struct s2io_nic *sp = netdev_priv(netdev);
8661
8662         if (pci_enable_device(pdev)) {
8663                 printk(KERN_ERR "s2io: "
8664                        "Cannot re-enable PCI device after reset.\n");
8665                 return PCI_ERS_RESULT_DISCONNECT;
8666         }
8667
8668         pci_set_master(pdev);
8669         s2io_reset(sp);
8670
8671         return PCI_ERS_RESULT_RECOVERED;
8672 }
8673
8674 /**
8675  * s2io_io_resume - called when traffic can start flowing again.
8676  * @pdev: Pointer to PCI device
8677  *
8678  * This callback is called when the error recovery driver tells
8679  * us that its OK to resume normal operation.
8680  */
8681 static void s2io_io_resume(struct pci_dev *pdev)
8682 {
8683         struct net_device *netdev = pci_get_drvdata(pdev);
8684         struct s2io_nic *sp = netdev_priv(netdev);
8685
8686         if (netif_running(netdev)) {
8687                 if (s2io_card_up(sp)) {
8688                         printk(KERN_ERR "s2io: "
8689                                "Can't bring device back up after reset.\n");
8690                         return;
8691                 }
8692
8693                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8694                         s2io_card_down(sp);
8695                         printk(KERN_ERR "s2io: "
8696                                "Can't resetore mac addr after reset.\n");
8697                         return;
8698                 }
8699         }
8700
8701         netif_device_attach(netdev);
8702         netif_tx_wake_all_queues(netdev);
8703 }