2 * Driver for DBRI sound chip found on Sparcs.
3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
11 * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12 * on Sun SPARCstation 10, 20, LX and Voyager models.
14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15 * data time multiplexer with ISDN support (aka T7259)
16 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
19 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
20 * Sparc Technology Business (courtesy of Sun Support)
21 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22 * available from the Lucent (formarly AT&T microelectronics) home
24 * - http://www.freesoft.org/Linux/DBRI/
25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26 * Interfaces: CHI, Audio In & Out, 2 bits parallel
27 * Documentation: from the Crystal Semiconductor home page.
29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30 * memory and a serial device (long pipes, nr 0-15) or between two serial
31 * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
32 * device (short pipes).
33 * A timeslot defines the bit-offset and nr of bits read from a serial device.
34 * The timeslots are linked to 6 circular lists, one for each direction for
35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36 * (the second one is a monitor/tee pipe, valid only for serial input).
38 * The mmcodec is connected via the CHI bus and needs the data & some
39 * parameters (volume, output selection) timemultiplexed in 8 byte
40 * chunks. It also has a control mode, which serves for audio format setting.
42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43 * the same CHI bus, so I thought perhaps it is possible to use the onboard
44 * & the speakerbox codec simultanously, giving 2 (not very independent :-)
45 * audio devices. But the SUN HW group decided against it, at least on my
46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
49 * I've tried to stick to the following function naming conventions:
51 * cs4215_* CS4215 codec specific stuff
52 * dbri_* DBRI high-level stuff
53 * other DBRI low-level stuff
56 #include <sound/driver.h>
57 #include <linux/interrupt.h>
58 #include <linux/delay.h>
60 #include <sound/core.h>
61 #include <sound/pcm.h>
62 #include <sound/pcm_params.h>
63 #include <sound/info.h>
64 #include <sound/control.h>
65 #include <sound/initval.h>
70 #include <asm/atomic.h>
72 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
73 MODULE_DESCRIPTION("Sun DBRI");
74 MODULE_LICENSE("GPL");
75 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
77 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
78 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
79 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
81 module_param_array(index, int, NULL, 0444);
82 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
83 module_param_array(id, charp, NULL, 0444);
84 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
85 module_param_array(enable, bool, NULL, 0444);
86 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
97 static int dbri_debug;
98 module_param(dbri_debug, int, 0644);
99 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
102 static char *cmds[] = {
103 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
104 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
107 #define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
110 #define dprintk(a, x...) do { } while (0)
112 #endif /* DBRI_DEBUG */
114 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
118 /***************************************************************************
119 CS4215 specific definitions and structures
120 ****************************************************************************/
123 __u8 data[4]; /* Data mode: Time slots 5-8 */
124 __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
126 __u8 offset; /* Bit offset from frame sync to time slot 1 */
127 volatile __u32 status;
128 volatile __u32 version;
129 __u8 precision; /* In bits, either 8 or 16 */
130 __u8 channels; /* 1 or 2 */
137 /* Time Slot 1, Status register */
138 #define CS4215_CLB (1<<2) /* Control Latch Bit */
139 #define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
140 /* 0: line: 2.8V, speaker 8V */
141 #define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
142 #define CS4215_RSRVD_1 (1<<5)
144 /* Time Slot 2, Data Format Register */
145 #define CS4215_DFR_LINEAR16 0
146 #define CS4215_DFR_ULAW 1
147 #define CS4215_DFR_ALAW 2
148 #define CS4215_DFR_LINEAR8 3
149 #define CS4215_DFR_STEREO (1<<2)
155 { 8000, (1 << 4), (0 << 3) },
156 { 16000, (1 << 4), (1 << 3) },
157 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
158 { 32000, (1 << 4), (3 << 3) },
159 /* { NA, (1 << 4), (4 << 3) }, */
160 /* { NA, (1 << 4), (5 << 3) }, */
161 { 48000, (1 << 4), (6 << 3) },
162 { 9600, (1 << 4), (7 << 3) },
163 { 5512, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
164 { 11025, (2 << 4), (1 << 3) },
165 { 18900, (2 << 4), (2 << 3) },
166 { 22050, (2 << 4), (3 << 3) },
167 { 37800, (2 << 4), (4 << 3) },
168 { 44100, (2 << 4), (5 << 3) },
169 { 33075, (2 << 4), (6 << 3) },
170 { 6615, (2 << 4), (7 << 3) },
174 #define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
176 #define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
178 /* Time Slot 3, Serial Port Control register */
179 #define CS4215_XEN (1<<0) /* 0: Enable serial output */
180 #define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
181 #define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
182 #define CS4215_BSEL_128 (1<<2)
183 #define CS4215_BSEL_256 (2<<2)
184 #define CS4215_MCK_MAST (0<<4) /* Master clock */
185 #define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
186 #define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
187 #define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
188 #define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
190 /* Time Slot 4, Test Register */
191 #define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
192 #define CS4215_ENL (1<<1) /* Enable Loopback Testing */
194 /* Time Slot 5, Parallel Port Register */
195 /* Read only here and the same as the in data mode */
197 /* Time Slot 6, Reserved */
199 /* Time Slot 7, Version Register */
200 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
202 /* Time Slot 8, Reserved */
207 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
209 /* Time Slot 5, Output Setting */
210 #define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
211 #define CS4215_LE (1<<6) /* Line Out Enable */
212 #define CS4215_HE (1<<7) /* Headphone Enable */
214 /* Time Slot 6, Output Setting */
215 #define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
216 #define CS4215_SE (1<<6) /* Speaker Enable */
217 #define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
219 /* Time Slot 7, Input Setting */
220 #define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
221 #define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
222 #define CS4215_OVR (1<<5) /* 1: Overrange condition occurred */
223 #define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
224 #define CS4215_PIO1 (1<<7)
226 /* Time Slot 8, Input Setting */
227 #define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
228 #define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
230 /***************************************************************************
231 DBRI specific definitions and structures
232 ****************************************************************************/
234 /* DBRI main registers */
235 #define REG0 0x00UL /* Status and Control */
236 #define REG1 0x04UL /* Mode and Interrupt */
237 #define REG2 0x08UL /* Parallel IO */
238 #define REG3 0x0cUL /* Test */
239 #define REG8 0x20UL /* Command Queue Pointer */
240 #define REG9 0x24UL /* Interrupt Queue Pointer */
242 #define DBRI_NO_CMDS 64
243 #define DBRI_INT_BLK 64
244 #define DBRI_NO_DESCS 64
245 #define DBRI_NO_PIPES 32
246 #define DBRI_MAX_PIPE (DBRI_NO_PIPES - 1)
250 #define DBRI_NO_STREAMS 2
252 /* One transmit/receive descriptor */
253 /* When ba != 0 descriptor is used */
255 volatile __u32 word1;
256 __u32 ba; /* Transmit/Receive Buffer Address */
257 __u32 nda; /* Next Descriptor Address */
258 volatile __u32 word4;
261 /* This structure is in a DMA region where it can accessed by both
262 * the CPU and the DBRI
265 s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
266 volatile s32 intr[DBRI_INT_BLK]; /* Interrupt field */
267 struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
270 #define dbri_dma_off(member, elem) \
271 ((u32)(unsigned long) \
272 (&(((struct dbri_dma *)0)->member[elem])))
274 enum in_or_out { PIPEinput, PIPEoutput };
277 u32 sdp; /* SDP command word */
278 int nextpipe; /* Next pipe in linked list */
279 int length; /* Length of timeslot (bits) */
280 int first_desc; /* Index of first descriptor */
281 int desc; /* Index of active descriptor */
282 volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
285 /* Per stream (playback or record) information */
286 struct dbri_streaminfo {
287 struct snd_pcm_substream *substream;
288 u32 dvma_buffer; /* Device view of Alsa DMA buffer */
289 int size; /* Size of DMA buffer */
290 size_t offset; /* offset in user buffer */
291 int pipe; /* Data pipe used */
292 int left_gain; /* mixer elements */
296 /* This structure holds the information for both chips (DBRI & CS4215) */
298 struct snd_card *card; /* ALSA card */
300 int regs_size, irq; /* Needed for unload */
301 struct sbus_dev *sdev; /* SBUS device info */
304 struct dbri_dma *dma; /* Pointer to our DMA block */
305 u32 dma_dvma; /* DBRI visible DMA address */
307 void __iomem *regs; /* dbri HW regs */
308 int dbri_irqp; /* intr queue pointer */
310 struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
311 int next_desc[DBRI_NO_DESCS]; /* Index of next desc, or -1 */
312 spinlock_t cmdlock; /* Protects cmd queue accesses */
313 s32 *cmdptr; /* Pointer to the last queued cmd */
317 struct cs4215 mm; /* mmcodec special info */
318 /* per stream (playback/record) info */
319 struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
321 struct snd_dbri *next;
324 #define DBRI_MAX_VOLUME 63 /* Output volume */
325 #define DBRI_MAX_GAIN 15 /* Input gain */
327 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328 #define D_P (1<<15) /* Program command & queue pointer valid */
329 #define D_G (1<<14) /* Allow 4-Word SBus Burst */
330 #define D_S (1<<13) /* Allow 16-Word SBus Burst */
331 #define D_E (1<<12) /* Allow 8-Word SBus Burst */
332 #define D_X (1<<7) /* Sanity Timer Disable */
333 #define D_T (1<<6) /* Permit activation of the TE interface */
334 #define D_N (1<<5) /* Permit activation of the NT interface */
335 #define D_C (1<<4) /* Permit activation of the CHI interface */
336 #define D_F (1<<3) /* Force Sanity Timer Time-Out */
337 #define D_D (1<<2) /* Disable Master Mode */
338 #define D_H (1<<1) /* Halt for Analysis */
339 #define D_R (1<<0) /* Soft Reset */
341 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342 #define D_LITTLE_END (1<<8) /* Byte Order */
343 #define D_BIG_END (0<<8) /* Byte Order */
344 #define D_MRR (1<<4) /* Multiple Error Ack on SBus (readonly) */
345 #define D_MLE (1<<3) /* Multiple Late Error on SBus (readonly) */
346 #define D_LBG (1<<2) /* Lost Bus Grant on SBus (readonly) */
347 #define D_MBE (1<<1) /* Burst Error on SBus (readonly) */
348 #define D_IR (1<<0) /* Interrupt Indicator (readonly) */
350 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351 #define D_ENPIO3 (1<<7) /* Enable Pin 3 */
352 #define D_ENPIO2 (1<<6) /* Enable Pin 2 */
353 #define D_ENPIO1 (1<<5) /* Enable Pin 1 */
354 #define D_ENPIO0 (1<<4) /* Enable Pin 0 */
355 #define D_ENPIO (0xf0) /* Enable all the pins */
356 #define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
357 #define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
358 #define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
359 #define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
361 /* DBRI Commands (Page 20) */
362 #define D_WAIT 0x0 /* Stop execution */
363 #define D_PAUSE 0x1 /* Flush long pipes */
364 #define D_JUMP 0x2 /* New command queue */
365 #define D_IIQ 0x3 /* Initialize Interrupt Queue */
366 #define D_REX 0x4 /* Report command execution via interrupt */
367 #define D_SDP 0x5 /* Setup Data Pipe */
368 #define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
369 #define D_DTS 0x7 /* Define Time Slot */
370 #define D_SSP 0x8 /* Set short Data Pipe */
371 #define D_CHI 0x9 /* Set CHI Global Mode */
372 #define D_NT 0xa /* NT Command */
373 #define D_TE 0xb /* TE Command */
374 #define D_CDEC 0xc /* Codec setup */
375 #define D_TEST 0xd /* No comment */
376 #define D_CDM 0xe /* CHI Data mode command */
378 /* Special bits for some commands */
379 #define D_PIPE(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
381 /* Setup Data Pipe */
383 #define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value rcvd */
384 #define D_SDP_CHANGE (2<<18) /* Report any changes */
385 #define D_SDP_EVERY (3<<18) /* Report any changes */
386 #define D_SDP_EOL (1<<17) /* EOL interrupt enable */
387 #define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
390 #define D_SDP_MEM (0<<13) /* To/from memory */
391 #define D_SDP_HDLC (2<<13)
392 #define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
393 #define D_SDP_SER (4<<13) /* Serial to serial */
394 #define D_SDP_FIXED (6<<13) /* Short only */
395 #define D_SDP_MODE(v) ((v)&(7<<13))
397 #define D_SDP_TO_SER (1<<12) /* Direction */
398 #define D_SDP_FROM_SER (0<<12) /* Direction */
399 #define D_SDP_MSB (1<<11) /* Bit order within Byte */
400 #define D_SDP_LSB (0<<11) /* Bit order within Byte */
401 #define D_SDP_P (1<<10) /* Pointer Valid */
402 #define D_SDP_A (1<<8) /* Abort */
403 #define D_SDP_C (1<<7) /* Clear */
405 /* Define Time Slot */
406 #define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
407 #define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
408 #define D_DTS_INS (1<<15) /* Insert Time Slot */
409 #define D_DTS_DEL (0<<15) /* Delete Time Slot */
410 #define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
411 #define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
413 /* Time Slot defines */
414 #define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
415 #define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
416 #define D_TS_DI (1<<13) /* Data Invert */
417 #define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
418 #define D_TS_MONITOR (2<<10) /* Monitor pipe */
419 #define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
420 #define D_TS_ANCHOR (7<<10) /* Starting short pipes */
421 #define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
422 #define D_TS_NEXT(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
424 /* Concentration Highway Interface Modes */
425 #define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
426 #define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
427 #define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
428 #define D_CHI_OD (1<<13) /* Open Drain Enable */
429 #define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
430 #define D_CHI_FD (1<<11) /* Frame Drive */
431 #define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
433 /* NT: These are here for completeness */
434 #define D_NT_FBIT (1<<17) /* Frame Bit */
435 #define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
436 #define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
437 #define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
438 #define D_NT_ISNT (1<<13) /* Configfure interface as NT */
439 #define D_NT_FT (1<<12) /* Fixed Timing */
440 #define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
441 #define D_NT_IFA (1<<10) /* Inhibit Final Activation */
442 #define D_NT_ACT (1<<9) /* Activate Interface */
443 #define D_NT_MFE (1<<8) /* Multiframe Enable */
444 #define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
445 #define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
446 #define D_NT_FACT (1<<1) /* Force Activation */
447 #define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
450 #define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
451 #define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
452 #define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
455 #define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
456 #define D_TEST_SIZE(v) ((v)<<11) /* */
457 #define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
458 #define D_TEST_PROC 0x6 /* MicroProcessor test */
459 #define D_TEST_SER 0x7 /* Serial-Controller test */
460 #define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
461 #define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
462 #define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
463 #define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
464 #define D_TEST_DUMP 0xe /* ROM Dump */
467 #define D_CDM_THI (1<<8) /* Transmit Data on CHIDR Pin */
468 #define D_CDM_RHI (1<<7) /* Receive Data on CHIDX Pin */
469 #define D_CDM_RCE (1<<6) /* Receive on Rising Edge of CHICK */
470 #define D_CDM_XCE (1<<2) /* Transmit Data on Rising Edge of CHICK */
471 #define D_CDM_XEN (1<<1) /* Transmit Highway Enable */
472 #define D_CDM_REN (1<<0) /* Receive Highway Enable */
475 #define D_INTR_BRDY 1 /* Buffer Ready for processing */
476 #define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
477 #define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
478 #define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
479 #define D_INTR_EOL 5 /* End of List */
480 #define D_INTR_CMDI 6 /* Command has bean read */
481 #define D_INTR_XCMP 8 /* Transmission of frame complete */
482 #define D_INTR_SBRI 9 /* BRI status change info */
483 #define D_INTR_FXDT 10 /* Fixed data change */
484 #define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
485 #define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
486 #define D_INTR_DBYT 12 /* Dropped by frame slip */
487 #define D_INTR_RBYT 13 /* Repeated by frame slip */
488 #define D_INTR_LINT 14 /* Lost Interrupt */
489 #define D_INTR_UNDR 15 /* DMA underrun */
493 #define D_INTR_CHI 36
494 #define D_INTR_CMD 38
496 #define D_INTR_GETCHAN(v) (((v)>>24) & 0x3f)
497 #define D_INTR_GETCODE(v) (((v)>>20) & 0xf)
498 #define D_INTR_GETCMD(v) (((v)>>16) & 0xf)
499 #define D_INTR_GETVAL(v) ((v) & 0xffff)
500 #define D_INTR_GETRVAL(v) ((v) & 0xfffff)
502 #define D_P_0 0 /* TE receive anchor */
503 #define D_P_1 1 /* TE transmit anchor */
504 #define D_P_2 2 /* NT transmit anchor */
505 #define D_P_3 3 /* NT receive anchor */
506 #define D_P_4 4 /* CHI send data */
507 #define D_P_5 5 /* CHI receive data */
508 #define D_P_6 6 /* */
509 #define D_P_7 7 /* */
510 #define D_P_8 8 /* */
511 #define D_P_9 9 /* */
512 #define D_P_10 10 /* */
513 #define D_P_11 11 /* */
514 #define D_P_12 12 /* */
515 #define D_P_13 13 /* */
516 #define D_P_14 14 /* */
517 #define D_P_15 15 /* */
518 #define D_P_16 16 /* CHI anchor pipe */
519 #define D_P_17 17 /* CHI send */
520 #define D_P_18 18 /* CHI receive */
521 #define D_P_19 19 /* CHI receive */
522 #define D_P_20 20 /* CHI receive */
523 #define D_P_21 21 /* */
524 #define D_P_22 22 /* */
525 #define D_P_23 23 /* */
526 #define D_P_24 24 /* */
527 #define D_P_25 25 /* */
528 #define D_P_26 26 /* */
529 #define D_P_27 27 /* */
530 #define D_P_28 28 /* */
531 #define D_P_29 29 /* */
532 #define D_P_30 30 /* */
533 #define D_P_31 31 /* */
535 /* Transmit descriptor defines */
536 #define DBRI_TD_F (1<<31) /* End of Frame */
537 #define DBRI_TD_D (1<<30) /* Do not append CRC */
538 #define DBRI_TD_CNT(v) ((v)<<16) /* Number of valid bytes in the buffer */
539 #define DBRI_TD_B (1<<15) /* Final interrupt */
540 #define DBRI_TD_M (1<<14) /* Marker interrupt */
541 #define DBRI_TD_I (1<<13) /* Transmit Idle Characters */
542 #define DBRI_TD_FCNT(v) (v) /* Flag Count */
543 #define DBRI_TD_UNR (1<<3) /* Underrun: transmitter is out of data */
544 #define DBRI_TD_ABT (1<<2) /* Abort: frame aborted */
545 #define DBRI_TD_TBC (1<<0) /* Transmit buffer Complete */
546 #define DBRI_TD_STATUS(v) ((v)&0xff) /* Transmit status */
547 /* Maximum buffer size per TD: almost 8Kb */
548 #define DBRI_TD_MAXCNT ((1 << 13) - 4)
550 /* Receive descriptor defines */
551 #define DBRI_RD_F (1<<31) /* End of Frame */
552 #define DBRI_RD_C (1<<30) /* Completed buffer */
553 #define DBRI_RD_B (1<<15) /* Final interrupt */
554 #define DBRI_RD_M (1<<14) /* Marker interrupt */
555 #define DBRI_RD_BCNT(v) (v) /* Buffer size */
556 #define DBRI_RD_CRC (1<<7) /* 0: CRC is correct */
557 #define DBRI_RD_BBC (1<<6) /* 1: Bad Byte received */
558 #define DBRI_RD_ABT (1<<5) /* Abort: frame aborted */
559 #define DBRI_RD_OVRN (1<<3) /* Overrun: data lost */
560 #define DBRI_RD_STATUS(v) ((v)&0xff) /* Receive status */
561 #define DBRI_RD_CNT(v) (((v)>>16)&0x1fff) /* Valid bytes in the buffer */
563 /* stream_info[] access */
564 /* Translate the ALSA direction into the array index */
565 #define DBRI_STREAMNO(substream) \
566 (substream->stream == \
567 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
569 /* Return a pointer to dbri_streaminfo */
570 #define DBRI_STREAM(dbri, substream) &dbri->stream_info[DBRI_STREAMNO(substream)]
572 static struct snd_dbri *dbri_list; /* All DBRI devices */
575 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
576 * So we have to reverse the bits. Note: not all bit lengths are supported
578 static __u32 reverse_bytes(__u32 b, int len)
582 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
584 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
586 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
588 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
590 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
595 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
602 ****************************************************************************
603 ************** DBRI initialization and command synchronization *************
604 ****************************************************************************
606 Commands are sent to the DBRI by building a list of them in memory,
607 then writing the address of the first list item to DBRI register 8.
608 The list is terminated with a WAIT command, which generates a
609 CPU interrupt to signal completion.
611 Since the DBRI can run in parallel with the CPU, several means of
612 synchronization present themselves. The method implemented here is only
613 use of the dbri_cmdwait() to wait for execution of batch of sent commands.
615 A circular command buffer is used here. A new command is being added
616 while another can be executed. The scheme works by adding two WAIT commands
617 after each sent batch of commands. When the next batch is prepared it is
618 added after the WAIT commands then the WAITs are replaced with single JUMP
619 command to the new batch. The the DBRI is forced to reread the last WAIT
620 command (replaced by the JUMP by then). If the DBRI is still executing
621 previous commands the request to reread the WAIT command is ignored.
623 Every time a routine wants to write commands to the DBRI, it must
624 first call dbri_cmdlock() and get pointer to a free space in
625 dbri->dma->cmd buffer. After this, the commands can be written to
626 the buffer, and dbri_cmdsend() is called with the final pointer value
627 to send them to the DBRI.
633 * Wait for the current command string to execute
635 static void dbri_cmdwait(struct snd_dbri *dbri)
637 int maxloops = MAXLOOPS;
640 /* Delay if previous commands are still being processed */
641 spin_lock_irqsave(&dbri->lock, flags);
642 while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
643 spin_unlock_irqrestore(&dbri->lock, flags);
644 msleep_interruptible(1);
645 spin_lock_irqsave(&dbri->lock, flags);
647 spin_unlock_irqrestore(&dbri->lock, flags);
650 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
652 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
653 MAXLOOPS - maxloops - 1);
657 * Lock the command queue and returns pointer to a space for len cmd words
658 * It locks the cmdlock spinlock.
660 static s32 *dbri_cmdlock(struct snd_dbri * dbri, int len)
662 /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
664 spin_lock(&dbri->cmdlock);
665 if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
666 return dbri->cmdptr + 2;
667 else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
668 return dbri->dma->cmd;
670 printk(KERN_ERR "DBRI: no space for commands.");
676 * Send prepared cmd string. It works by writting a JUMP cmd into
677 * the last WAIT cmd and force DBRI to reread the cmd.
678 * The JUMP cmd points to the new cmd string.
679 * It also releases the cmdlock spinlock.
681 * Lock must not be held before calling this.
683 static void dbri_cmdsend(struct snd_dbri * dbri, s32 * cmd,int len)
686 static int wait_id = 0;
689 wait_id &= 0xffff; /* restrict it to a 16 bit counter. */
690 *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
691 *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
693 /* Replace the last command with JUMP */
694 addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
695 *(dbri->cmdptr+1) = addr;
696 *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
699 if (cmd > dbri->cmdptr) {
702 for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
703 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
705 s32 *ptr = dbri->cmdptr;
707 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
709 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
710 for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++) {
711 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
716 /* Reread the last command */
717 tmp = sbus_readl(dbri->regs + REG0);
719 sbus_writel(tmp, dbri->regs + REG0);
722 spin_unlock(&dbri->cmdlock);
725 /* Lock must be held when calling this */
726 static void dbri_reset(struct snd_dbri * dbri)
731 dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
732 sbus_readl(dbri->regs + REG0),
733 sbus_readl(dbri->regs + REG2),
734 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
736 sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
737 for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
740 /* A brute approach - DBRI falls back to working burst size by itself
741 * On SS20 D_S does not work, so do not try so high. */
742 tmp = sbus_readl(dbri->regs + REG0);
745 sbus_writel(tmp, dbri->regs + REG0);
748 /* Lock must not be held before calling this */
749 static void dbri_initialize(struct snd_dbri * dbri)
756 spin_lock_irqsave(&dbri->lock, flags);
760 /* Initialize pipes */
761 for (n = 0; n < DBRI_NO_PIPES; n++)
762 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
764 spin_lock_init(&dbri->cmdlock);
766 * Initialize the interrupt ringbuffer.
768 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
769 dbri->dma->intr[0] = dma_addr;
772 * Set up the interrupt queue
774 spin_lock(&dbri->cmdlock);
775 cmd = dbri->cmdptr = dbri->dma->cmd;
776 *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
778 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
780 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
781 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
782 dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
783 sbus_writel(dma_addr, dbri->regs + REG8);
784 spin_unlock(&dbri->cmdlock);
786 spin_unlock_irqrestore(&dbri->lock, flags);
791 ****************************************************************************
792 ************************** DBRI data pipe management ***********************
793 ****************************************************************************
795 While DBRI control functions use the command and interrupt buffers, the
796 main data path takes the form of data pipes, which can be short (command
797 and interrupt driven), or long (attached to DMA buffers). These functions
798 provide a rudimentary means of setting up and managing the DBRI's pipes,
799 but the calling functions have to make sure they respect the pipes' linked
800 list ordering, among other things. The transmit and receive functions
801 here interface closely with the transmit and receive interrupt code.
804 static int pipe_active(struct snd_dbri * dbri, int pipe)
806 return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
809 /* reset_pipe(dbri, pipe)
811 * Called on an in-use pipe to clear anything being transmitted or received
812 * Lock must be held before calling this.
814 static void reset_pipe(struct snd_dbri * dbri, int pipe)
820 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
821 printk(KERN_ERR "DBRI: reset_pipe called with illegal pipe number\n");
825 sdp = dbri->pipes[pipe].sdp;
827 printk(KERN_ERR "DBRI: reset_pipe called on uninitialized pipe\n");
831 cmd = dbri_cmdlock(dbri, 3);
832 *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
834 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
835 dbri_cmdsend(dbri, cmd, 3);
837 desc = dbri->pipes[pipe].first_desc;
840 dbri->dma->desc[desc].nda = dbri->dma->desc[desc].ba = 0;
841 desc = dbri->next_desc[desc];
842 } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
844 dbri->pipes[pipe].desc = -1;
845 dbri->pipes[pipe].first_desc = -1;
849 * Lock must be held before calling this.
851 static void setup_pipe(struct snd_dbri * dbri, int pipe, int sdp)
853 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
854 printk(KERN_ERR "DBRI: setup_pipe called with illegal pipe number\n");
858 if ((sdp & 0xf800) != sdp) {
859 printk(KERN_ERR "DBRI: setup_pipe called with strange SDP value\n");
863 /* If this is a fixed receive pipe, arrange for an interrupt
864 * every time its data changes
866 if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
870 dbri->pipes[pipe].sdp = sdp;
871 dbri->pipes[pipe].desc = -1;
872 dbri->pipes[pipe].first_desc = -1;
874 reset_pipe(dbri, pipe);
878 * Lock must be held before calling this.
880 static void link_time_slot(struct snd_dbri * dbri, int pipe,
881 int prevpipe, int nextpipe,
882 int length, int cycle)
887 if (pipe < 0 || pipe > DBRI_MAX_PIPE
888 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
889 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
891 "DBRI: link_time_slot called with illegal pipe number\n");
895 if (dbri->pipes[pipe].sdp == 0
896 || dbri->pipes[prevpipe].sdp == 0
897 || dbri->pipes[nextpipe].sdp == 0) {
898 printk(KERN_ERR "DBRI: link_time_slot called on uninitialized pipe\n");
902 dbri->pipes[prevpipe].nextpipe = pipe;
903 dbri->pipes[pipe].nextpipe = nextpipe;
904 dbri->pipes[pipe].length = length;
906 cmd = dbri_cmdlock(dbri, 4);
908 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
909 /* Deal with CHI special case:
910 * "If transmission on edges 0 or 1 is desired, then cycle n
911 * (where n = # of bit times per frame...) must be used."
912 * - DBRI data sheet, page 11
914 if (prevpipe == 16 && cycle == 0)
915 cycle = dbri->chi_bpf;
917 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
918 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
921 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
923 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
924 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
926 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
929 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
931 dbri_cmdsend(dbri, cmd, 4);
936 * Lock must be held before calling this.
938 static void unlink_time_slot(struct snd_dbri * dbri, int pipe,
939 enum in_or_out direction, int prevpipe,
945 if (pipe < 0 || pipe > DBRI_MAX_PIPE
946 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
947 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
949 "DBRI: unlink_time_slot called with illegal pipe number\n");
953 cmd = dbri_cmdlock(dbri, 4);
955 if (direction == PIPEinput) {
956 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
957 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
958 *(cmd++) = D_TS_NEXT(nextpipe);
961 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
962 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
964 *(cmd++) = D_TS_NEXT(nextpipe);
966 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
968 dbri_cmdsend(dbri, cmd, 4);
972 /* xmit_fixed() / recv_fixed()
974 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
975 * expected to change much, and which we don't need to buffer.
976 * The DBRI only interrupts us when the data changes (receive pipes),
977 * or only changes the data when this function is called (transmit pipes).
978 * Only short pipes (numbers 16-31) can be used in fixed data mode.
980 * These function operate on a 32-bit field, no matter how large
981 * the actual time slot is. The interrupt handler takes care of bit
982 * ordering and alignment. An 8-bit time slot will always end up
983 * in the low-order 8 bits, filled either MSB-first or LSB-first,
984 * depending on the settings passed to setup_pipe().
986 * Lock must not be held before calling it.
988 static void xmit_fixed(struct snd_dbri * dbri, int pipe, unsigned int data)
993 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
994 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
998 if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
999 printk(KERN_ERR "DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
1003 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1004 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1008 if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1009 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
1013 /* DBRI short pipes always transmit LSB first */
1015 if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1016 data = reverse_bytes(data, dbri->pipes[pipe].length);
1018 cmd = dbri_cmdlock(dbri, 3);
1020 *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1022 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1024 spin_lock_irqsave(&dbri->lock, flags);
1025 dbri_cmdsend(dbri, cmd, 3);
1026 spin_unlock_irqrestore(&dbri->lock, flags);
1031 static void recv_fixed(struct snd_dbri * dbri, int pipe, volatile __u32 * ptr)
1033 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1034 printk(KERN_ERR "DBRI: recv_fixed called with illegal pipe number\n");
1038 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1039 printk(KERN_ERR "DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1043 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1044 printk(KERN_ERR "DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1048 dbri->pipes[pipe].recv_fixed_ptr = ptr;
1053 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1054 * with a DMA buffer.
1056 * Only pipe numbers 0-15 can be used in this mode.
1058 * This function takes a stream number pointing to a data buffer,
1059 * and work by building chains of descriptors which identify the
1060 * data buffers. Buffers too large for a single descriptor will
1061 * be spread across multiple descriptors.
1063 * All descriptors create a ring buffer.
1065 * Lock must be held before calling this.
1067 static int setup_descs(struct snd_dbri * dbri, int streamno, unsigned int period)
1069 struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1073 int first_desc = -1;
1076 if (info->pipe < 0 || info->pipe > 15) {
1077 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1081 if (dbri->pipes[info->pipe].sdp == 0) {
1082 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1087 dvma_buffer = info->dvma_buffer;
1090 if (streamno == DBRI_PLAY) {
1091 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1092 printk(KERN_ERR "DBRI: setup_descs: Called on receive pipe %d\n",
1097 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1099 "DBRI: setup_descs: Called on transmit pipe %d\n",
1103 /* Should be able to queue multiple buffers to receive on a pipe */
1104 if (pipe_active(dbri, info->pipe)) {
1105 printk(KERN_ERR "DBRI: recv_on_pipe: Called on active pipe %d\n",
1110 /* Make sure buffer size is multiple of four */
1114 /* Free descriptors if pipe has any */
1115 desc = dbri->pipes[info->pipe].first_desc;
1118 dbri->dma->desc[desc].nda = dbri->dma->desc[desc].ba = 0;
1119 desc = dbri->next_desc[desc];
1120 } while (desc != -1 && desc != dbri->pipes[info->pipe].first_desc);
1122 dbri->pipes[info->pipe].desc = -1;
1123 dbri->pipes[info->pipe].first_desc = -1;
1129 for (; desc < DBRI_NO_DESCS; desc++) {
1130 if (!dbri->dma->desc[desc].ba)
1133 if (desc == DBRI_NO_DESCS) {
1134 printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1138 if (len > DBRI_TD_MAXCNT)
1139 mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1146 dbri->next_desc[desc] = -1;
1147 dbri->dma->desc[desc].ba = dvma_buffer;
1148 dbri->dma->desc[desc].nda = 0;
1150 if (streamno == DBRI_PLAY) {
1151 dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1152 dbri->dma->desc[desc].word4 = 0;
1153 dbri->dma->desc[desc].word1 |=
1154 DBRI_TD_F | DBRI_TD_B;
1156 dbri->dma->desc[desc].word1 = 0;
1157 dbri->dma->desc[desc].word4 =
1158 DBRI_RD_B | DBRI_RD_BCNT(mylen);
1161 if (first_desc == -1)
1164 dbri->next_desc[last_desc] = desc;
1165 dbri->dma->desc[last_desc].nda =
1166 dbri->dma_dvma + dbri_dma_off(desc, desc);
1170 dvma_buffer += mylen;
1174 if (first_desc == -1 || last_desc == -1) {
1175 printk(KERN_ERR "DBRI: setup_descs: Not enough descriptors available\n");
1179 dbri->dma->desc[last_desc].nda =
1180 dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1181 dbri->next_desc[last_desc] = first_desc;
1182 dbri->pipes[info->pipe].first_desc = first_desc;
1183 dbri->pipes[info->pipe].desc = first_desc;
1186 for (desc = first_desc; desc != -1; ) {
1187 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1189 dbri->dma->desc[desc].word1,
1190 dbri->dma->desc[desc].ba,
1191 dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1192 desc = dbri->next_desc[desc];
1193 if ( desc == first_desc )
1201 ****************************************************************************
1202 ************************** DBRI - CHI interface ****************************
1203 ****************************************************************************
1205 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1206 multiplexed serial interface which the DBRI can operate in either master
1207 (give clock/frame sync) or slave (take clock/frame sync) mode.
1211 enum master_or_slave { CHImaster, CHIslave };
1214 * Lock must not be held before calling it.
1216 static void reset_chi(struct snd_dbri * dbri, enum master_or_slave master_or_slave,
1222 /* Set CHI Anchor: Pipe 16 */
1224 cmd = dbri_cmdlock(dbri, 4);
1225 val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1226 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1227 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1228 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1229 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1230 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1231 dbri_cmdsend(dbri, cmd, 4);
1233 dbri->pipes[16].sdp = 1;
1234 dbri->pipes[16].nextpipe = 16;
1236 cmd = dbri_cmdlock(dbri, 4);
1238 if (master_or_slave == CHIslave) {
1239 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1241 * CHICM = 0 (slave mode, 8 kHz frame rate)
1242 * IR = give immediate CHI status interrupt
1243 * EN = give CHI status interrupt upon change
1245 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1247 /* Setup DBRI for CHI Master - generate clock, FS
1249 * BPF = bits per 8 kHz frame
1250 * 12.288 MHz / CHICM_divisor = clock rate
1251 * FD = 1 - drive CHIFS on rising edge of CHICK
1253 int clockrate = bits_per_frame * 8;
1254 int divisor = 12288 / clockrate;
1256 if (divisor > 255 || divisor * clockrate != 12288)
1257 printk(KERN_ERR "DBRI: illegal bits_per_frame in setup_chi\n");
1259 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1260 | D_CHI_BPF(bits_per_frame));
1263 dbri->chi_bpf = bits_per_frame;
1267 * RCE = 0 - receive on falling edge of CHICK
1268 * XCE = 1 - transmit on rising edge of CHICK
1269 * XEN = 1 - enable transmitter
1270 * REN = 1 - enable receiver
1273 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1274 *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1275 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1277 dbri_cmdsend(dbri, cmd, 4);
1281 ****************************************************************************
1282 *********************** CS4215 audio codec management **********************
1283 ****************************************************************************
1285 In the standard SPARC audio configuration, the CS4215 codec is attached
1286 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1288 * Lock must not be held before calling it.
1291 static void cs4215_setup_pipes(struct snd_dbri * dbri)
1293 unsigned long flags;
1295 spin_lock_irqsave(&dbri->lock, flags);
1298 * Pipe 4: Send timeslots 1-4 (audio data)
1299 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1300 * Pipe 6: Receive timeslots 1-4 (audio data)
1301 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1302 * interrupt, and the rest of the data (slot 5 and 8) is
1303 * not relevant for us (only for doublechecking).
1306 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1307 * Pipe 18: Receive timeslot 1 (clb).
1308 * Pipe 19: Receive timeslot 7 (version).
1311 setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1312 setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1313 setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1314 setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1316 setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1317 setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1318 setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1319 spin_unlock_irqrestore(&dbri->lock, flags);
1324 static int cs4215_init_data(struct cs4215 *mm)
1327 * No action, memory resetting only.
1329 * Data Time Slot 5-8
1330 * Speaker,Line and Headphone enable. Gain set to the half.
1333 mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1334 mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1335 mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1336 mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1339 * Control Time Slot 1-4
1340 * 0: Default I/O voltage scale
1341 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1342 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1345 mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1346 mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1347 mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1352 mm->precision = 8; /* For ULAW */
1358 static void cs4215_setdata(struct snd_dbri * dbri, int muted)
1361 dbri->mm.data[0] |= 63;
1362 dbri->mm.data[1] |= 63;
1363 dbri->mm.data[2] &= ~15;
1364 dbri->mm.data[3] &= ~15;
1366 /* Start by setting the playback attenuation. */
1367 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1368 int left_gain = info->left_gain & 0x3f;
1369 int right_gain = info->right_gain & 0x3f;
1371 dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1372 dbri->mm.data[1] &= ~0x3f;
1373 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1374 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1376 /* Now set the recording gain. */
1377 info = &dbri->stream_info[DBRI_REC];
1378 left_gain = info->left_gain & 0xf;
1379 right_gain = info->right_gain & 0xf;
1380 dbri->mm.data[2] |= CS4215_LG(left_gain);
1381 dbri->mm.data[3] |= CS4215_RG(right_gain);
1384 xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1388 * Set the CS4215 to data mode.
1390 static void cs4215_open(struct snd_dbri * dbri)
1394 unsigned long flags;
1396 dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1397 dbri->mm.channels, dbri->mm.precision);
1399 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1400 * to make sure this takes. This avoids clicking noises.
1403 cs4215_setdata(dbri, 1);
1408 * Pipe 4: Send timeslots 1-4 (audio data)
1409 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1410 * Pipe 6: Receive timeslots 1-4 (audio data)
1411 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1412 * interrupt, and the rest of the data (slot 5 and 8) is
1413 * not relevant for us (only for doublechecking).
1415 * Just like in control mode, the time slots are all offset by eight
1416 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1417 * even if it's the CHI master. Don't ask me...
1419 spin_lock_irqsave(&dbri->lock, flags);
1420 tmp = sbus_readl(dbri->regs + REG0);
1421 tmp &= ~(D_C); /* Disable CHI */
1422 sbus_writel(tmp, dbri->regs + REG0);
1424 /* Switch CS4215 to data mode - set PIO3 to 1 */
1425 sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1426 (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1428 reset_chi(dbri, CHIslave, 128);
1430 /* Note: this next doesn't work for 8-bit stereo, because the two
1431 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1432 * (See CS4215 datasheet Fig 15)
1434 * DBRI non-contiguous mode would be required to make this work.
1436 data_width = dbri->mm.channels * dbri->mm.precision;
1438 link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1439 link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1440 link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1441 link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1443 /* FIXME: enable CHI after _setdata? */
1444 tmp = sbus_readl(dbri->regs + REG0);
1445 tmp |= D_C; /* Enable CHI */
1446 sbus_writel(tmp, dbri->regs + REG0);
1447 spin_unlock_irqrestore(&dbri->lock, flags);
1449 cs4215_setdata(dbri, 0);
1453 * Send the control information (i.e. audio format)
1455 static int cs4215_setctrl(struct snd_dbri * dbri)
1459 unsigned long flags;
1461 /* FIXME - let the CPU do something useful during these delays */
1463 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1464 * to make sure this takes. This avoids clicking noises.
1466 cs4215_setdata(dbri, 1);
1470 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1471 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1473 val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1474 sbus_writel(val, dbri->regs + REG2);
1475 dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1478 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1479 * operate as CHI master, supplying clocking and frame synchronization.
1481 * In Data mode, however, the CS4215 must be CHI master to insure
1482 * that its data stream is synchronous with its codec.
1484 * The upshot of all this? We start by putting the DBRI into master
1485 * mode, program the CS4215 in Control mode, then switch the CS4215
1486 * into Data mode and put the DBRI into slave mode. Various timing
1487 * requirements must be observed along the way.
1489 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1490 * others?), the addressing of the CS4215's time slots is
1491 * offset by eight bits, so we add eight to all the "cycle"
1492 * values in the Define Time Slot (DTS) commands. This is
1493 * done in hardware by a TI 248 that delays the DBRI->4215
1494 * frame sync signal by eight clock cycles. Anybody know why?
1496 spin_lock_irqsave(&dbri->lock, flags);
1497 tmp = sbus_readl(dbri->regs + REG0);
1498 tmp &= ~D_C; /* Disable CHI */
1499 sbus_writel(tmp, dbri->regs + REG0);
1501 reset_chi(dbri, CHImaster, 128);
1505 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1506 * Pipe 18: Receive timeslot 1 (clb).
1507 * Pipe 19: Receive timeslot 7 (version).
1510 link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1511 link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1512 link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1513 spin_unlock_irqrestore(&dbri->lock, flags);
1515 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1516 dbri->mm.ctrl[0] &= ~CS4215_CLB;
1517 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1519 spin_lock_irqsave(&dbri->lock, flags);
1520 tmp = sbus_readl(dbri->regs + REG0);
1521 tmp |= D_C; /* Enable CHI */
1522 sbus_writel(tmp, dbri->regs + REG0);
1523 spin_unlock_irqrestore(&dbri->lock, flags);
1525 for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1526 msleep_interruptible(1);
1529 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1534 /* Disable changes to our copy of the version number, as we are about
1535 * to leave control mode.
1537 recv_fixed(dbri, 19, NULL);
1539 /* Terminate CS4215 control mode - data sheet says
1540 * "Set CLB=1 and send two more frames of valid control info"
1542 dbri->mm.ctrl[0] |= CS4215_CLB;
1543 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1545 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1548 cs4215_setdata(dbri, 0);
1554 * Setup the codec with the sampling rate, audio format and number of
1556 * As part of the process we resend the settings for the data
1557 * timeslots as well.
1559 static int cs4215_prepare(struct snd_dbri * dbri, unsigned int rate,
1560 snd_pcm_format_t format, unsigned int channels)
1565 /* Lookup index for this rate */
1566 for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1567 if (CS4215_FREQ[freq_idx].freq == rate)
1570 if (CS4215_FREQ[freq_idx].freq != rate) {
1571 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1576 case SNDRV_PCM_FORMAT_MU_LAW:
1577 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1578 dbri->mm.precision = 8;
1580 case SNDRV_PCM_FORMAT_A_LAW:
1581 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1582 dbri->mm.precision = 8;
1584 case SNDRV_PCM_FORMAT_U8:
1585 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1586 dbri->mm.precision = 8;
1588 case SNDRV_PCM_FORMAT_S16_BE:
1589 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1590 dbri->mm.precision = 16;
1593 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1597 /* Add rate parameters */
1598 dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1599 dbri->mm.ctrl[2] = CS4215_XCLK |
1600 CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1602 dbri->mm.channels = channels;
1604 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1606 ret = cs4215_setctrl(dbri);
1608 cs4215_open(dbri); /* set codec to data mode */
1616 static int cs4215_init(struct snd_dbri * dbri)
1618 u32 reg2 = sbus_readl(dbri->regs + REG2);
1619 dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1621 /* Look for the cs4215 chips */
1622 if (reg2 & D_PIO2) {
1623 dprintk(D_MM, "Onboard CS4215 detected\n");
1624 dbri->mm.onboard = 1;
1626 if (reg2 & D_PIO0) {
1627 dprintk(D_MM, "Speakerbox detected\n");
1628 dbri->mm.onboard = 0;
1630 if (reg2 & D_PIO2) {
1631 printk(KERN_INFO "DBRI: Using speakerbox / "
1632 "ignoring onboard mmcodec.\n");
1633 sbus_writel(D_ENPIO2, dbri->regs + REG2);
1637 if (!(reg2 & (D_PIO0 | D_PIO2))) {
1638 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1642 cs4215_setup_pipes(dbri);
1643 cs4215_init_data(&dbri->mm);
1645 /* Enable capture of the status & version timeslots. */
1646 recv_fixed(dbri, 18, &dbri->mm.status);
1647 recv_fixed(dbri, 19, &dbri->mm.version);
1649 dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1650 if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1651 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1655 dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1661 ****************************************************************************
1662 *************************** DBRI interrupt handler *************************
1663 ****************************************************************************
1665 The DBRI communicates with the CPU mainly via a circular interrupt
1666 buffer. When an interrupt is signaled, the CPU walks through the
1667 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1668 Complicated interrupts are handled by dedicated functions (which
1669 appear first in this file). Any pending interrupts can be serviced by
1670 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1671 interrupts are disabled.
1677 * Starts transmiting the current TD's for recording/playing.
1678 * For playback, ALSA has filled the DMA memory with new data (we hope).
1680 static void xmit_descs(struct snd_dbri *dbri)
1682 struct dbri_streaminfo *info;
1684 unsigned long flags;
1688 return; /* Disabled */
1690 info = &dbri->stream_info[DBRI_REC];
1691 spin_lock_irqsave(&dbri->lock, flags);
1693 if (info->pipe >= 0) {
1694 first_td = dbri->pipes[info->pipe].first_desc;
1696 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1698 /* Stream could be closed by the time we run. */
1699 if (first_td >= 0) {
1700 cmd = dbri_cmdlock(dbri, 2);
1701 *(cmd++) = DBRI_CMD(D_SDP, 0,
1702 dbri->pipes[info->pipe].sdp
1703 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1704 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1705 dbri_cmdsend(dbri, cmd, 2);
1707 /* Reset our admin of the pipe. */
1708 dbri->pipes[info->pipe].desc = first_td;
1712 info = &dbri->stream_info[DBRI_PLAY];
1714 if (info->pipe >= 0) {
1715 first_td = dbri->pipes[info->pipe].first_desc;
1717 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1719 /* Stream could be closed by the time we run. */
1720 if (first_td >= 0) {
1721 cmd = dbri_cmdlock(dbri, 2);
1722 *(cmd++) = DBRI_CMD(D_SDP, 0,
1723 dbri->pipes[info->pipe].sdp
1724 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1725 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1726 dbri_cmdsend(dbri, cmd, 2);
1728 /* Reset our admin of the pipe. */
1729 dbri->pipes[info->pipe].desc = first_td;
1733 spin_unlock_irqrestore(&dbri->lock, flags);
1736 /* transmission_complete_intr()
1738 * Called by main interrupt handler when DBRI signals transmission complete
1739 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1741 * Walks through the pipe's list of transmit buffer descriptors and marks
1742 * them as available. Stops when the first descriptor is found without
1743 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1745 * The DMA buffers are not released. They form a ring buffer and
1746 * they are filled by ALSA while others are transmitted by DMA.
1750 static void transmission_complete_intr(struct snd_dbri * dbri, int pipe)
1752 struct dbri_streaminfo *info;
1756 info = &dbri->stream_info[DBRI_PLAY];
1758 td = dbri->pipes[pipe].desc;
1760 if (td >= DBRI_NO_DESCS) {
1761 printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1765 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1766 if (!(status & DBRI_TD_TBC)) {
1770 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1772 dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1773 info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1775 td = dbri->next_desc[td];
1776 dbri->pipes[pipe].desc = td;
1780 if (spin_is_locked(&dbri->lock)) {
1781 spin_unlock(&dbri->lock);
1782 snd_pcm_period_elapsed(info->substream);
1783 spin_lock(&dbri->lock);
1785 snd_pcm_period_elapsed(info->substream);
1788 static void reception_complete_intr(struct snd_dbri * dbri, int pipe)
1790 struct dbri_streaminfo *info;
1791 int rd = dbri->pipes[pipe].desc;
1794 if (rd < 0 || rd >= DBRI_NO_DESCS) {
1795 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1799 dbri->pipes[pipe].desc = dbri->next_desc[rd];
1800 status = dbri->dma->desc[rd].word1;
1801 dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1803 info = &dbri->stream_info[DBRI_REC];
1804 info->offset += DBRI_RD_CNT(status);
1806 /* FIXME: Check status */
1808 dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1809 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1812 if (spin_is_locked(&dbri->lock)) {
1813 spin_unlock(&dbri->lock);
1814 snd_pcm_period_elapsed(info->substream);
1815 spin_lock(&dbri->lock);
1817 snd_pcm_period_elapsed(info->substream);
1820 static void dbri_process_one_interrupt(struct snd_dbri * dbri, int x)
1822 int val = D_INTR_GETVAL(x);
1823 int channel = D_INTR_GETCHAN(x);
1824 int command = D_INTR_GETCMD(x);
1825 int code = D_INTR_GETCODE(x);
1827 int rval = D_INTR_GETRVAL(x);
1830 if (channel == D_INTR_CMD) {
1831 dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1832 cmds[command], val);
1834 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1835 channel, code, rval);
1840 if (command != D_WAIT)
1841 printk(KERN_ERR "DBRI: Command read interrupt\n");
1844 reception_complete_intr(dbri, channel);
1848 transmission_complete_intr(dbri, channel);
1851 /* UNDR - Transmission underrun
1852 * resend SDP command with clear pipe bit (C) set
1855 /* FIXME: do something useful in case of underrun */
1856 printk(KERN_ERR "DBRI: Underrun error\n");
1860 int td = dbri->pipes[pipe].desc;
1862 dbri->dma->desc[td].word4 = 0;
1863 cmd = dbri_cmdlock(dbri, NoGetLock);
1864 *(cmd++) = DBRI_CMD(D_SDP, 0,
1865 dbri->pipes[pipe].sdp
1866 | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1867 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1868 dbri_cmdsend(dbri, cmd);
1873 /* FXDT - Fixed data change */
1874 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1875 val = reverse_bytes(val, dbri->pipes[channel].length);
1877 if (dbri->pipes[channel].recv_fixed_ptr)
1878 *(dbri->pipes[channel].recv_fixed_ptr) = val;
1881 if (channel != D_INTR_CMD)
1883 "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1887 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1888 * buffer until it finds a zero word (indicating nothing more to do
1889 * right now). Non-zero words require processing and are handed off
1890 * to dbri_process_one_interrupt AFTER advancing the pointer.
1892 static void dbri_process_interrupt_buffer(struct snd_dbri * dbri)
1896 while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1897 dbri->dma->intr[dbri->dbri_irqp] = 0;
1899 if (dbri->dbri_irqp == DBRI_INT_BLK)
1900 dbri->dbri_irqp = 1;
1902 dbri_process_one_interrupt(dbri, x);
1906 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1907 struct pt_regs *regs)
1909 struct snd_dbri *dbri = dev_id;
1910 static int errcnt = 0;
1915 spin_lock(&dbri->lock);
1918 * Read it, so the interrupt goes away.
1920 x = sbus_readl(dbri->regs + REG1);
1922 if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1927 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1931 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1935 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1938 "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1940 /* Some of these SBus errors cause the chip's SBus circuitry
1941 * to be disabled, so just re-enable and try to keep going.
1943 * The only one I've seen is MRR, which will be triggered
1944 * if you let a transmit pipe underrun, then try to CDP it.
1946 * If these things persist, we reset the chip.
1948 if ((++errcnt) % 10 == 0) {
1949 dprintk(D_INT, "Interrupt errors exceeded.\n");
1952 tmp = sbus_readl(dbri->regs + REG0);
1954 sbus_writel(tmp, dbri->regs + REG0);
1958 dbri_process_interrupt_buffer(dbri);
1960 spin_unlock(&dbri->lock);
1965 /****************************************************************************
1967 ****************************************************************************/
1968 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1969 .info = (SNDRV_PCM_INFO_MMAP |
1970 SNDRV_PCM_INFO_INTERLEAVED |
1971 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1972 SNDRV_PCM_INFO_MMAP_VALID),
1973 .formats = SNDRV_PCM_FMTBIT_MU_LAW |
1974 SNDRV_PCM_FMTBIT_A_LAW |
1975 SNDRV_PCM_FMTBIT_U8 |
1976 SNDRV_PCM_FMTBIT_S16_BE,
1977 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1982 .buffer_bytes_max = (64 * 1024),
1983 .period_bytes_min = 1,
1984 .period_bytes_max = DBRI_TD_MAXCNT,
1986 .periods_max = 1024,
1989 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1990 struct snd_pcm_hw_rule *rule)
1992 struct snd_interval *c = hw_param_interval(params,
1993 SNDRV_PCM_HW_PARAM_CHANNELS);
1994 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
1995 struct snd_mask fmt;
1999 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2000 return snd_mask_refine(f, &fmt);
2005 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2006 struct snd_pcm_hw_rule *rule)
2008 struct snd_interval *c = hw_param_interval(params,
2009 SNDRV_PCM_HW_PARAM_CHANNELS);
2010 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2011 struct snd_interval ch;
2013 snd_interval_any(&ch);
2014 if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2015 ch.min = ch.max = 1;
2017 return snd_interval_refine(c, &ch);
2022 static int snd_dbri_open(struct snd_pcm_substream *substream)
2024 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2025 struct snd_pcm_runtime *runtime = substream->runtime;
2026 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2027 unsigned long flags;
2029 dprintk(D_USR, "open audio output.\n");
2030 runtime->hw = snd_dbri_pcm_hw;
2032 spin_lock_irqsave(&dbri->lock, flags);
2033 info->substream = substream;
2035 info->dvma_buffer = 0;
2037 spin_unlock_irqrestore(&dbri->lock, flags);
2039 snd_pcm_hw_rule_add(runtime,0,SNDRV_PCM_HW_PARAM_CHANNELS,
2040 snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2042 snd_pcm_hw_rule_add(runtime,0,SNDRV_PCM_HW_PARAM_FORMAT,
2043 snd_hw_rule_channels, NULL,
2044 SNDRV_PCM_HW_PARAM_CHANNELS,
2052 static int snd_dbri_close(struct snd_pcm_substream *substream)
2054 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2055 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2057 dprintk(D_USR, "close audio output.\n");
2058 info->substream = NULL;
2064 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2065 struct snd_pcm_hw_params *hw_params)
2067 struct snd_pcm_runtime *runtime = substream->runtime;
2068 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2069 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2073 /* set sampling rate, audio format and number of channels */
2074 ret = cs4215_prepare(dbri, params_rate(hw_params),
2075 params_format(hw_params),
2076 params_channels(hw_params));
2080 if ((ret = snd_pcm_lib_malloc_pages(substream,
2081 params_buffer_bytes(hw_params))) < 0) {
2082 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2086 /* hw_params can get called multiple times. Only map the DMA once.
2088 if (info->dvma_buffer == 0) {
2089 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2090 direction = SBUS_DMA_TODEVICE;
2092 direction = SBUS_DMA_FROMDEVICE;
2094 info->dvma_buffer = sbus_map_single(dbri->sdev,
2096 params_buffer_bytes(hw_params),
2100 direction = params_buffer_bytes(hw_params);
2101 dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2102 direction, info->dvma_buffer);
2106 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2108 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2109 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2112 dprintk(D_USR, "hw_free.\n");
2114 /* hw_free can get called multiple times. Only unmap the DMA once.
2116 if (info->dvma_buffer) {
2117 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2118 direction = SBUS_DMA_TODEVICE;
2120 direction = SBUS_DMA_FROMDEVICE;
2122 sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2123 substream->runtime->buffer_size, direction);
2124 info->dvma_buffer = 0;
2126 if (info->pipe != -1) {
2127 reset_pipe(dbri, info->pipe);
2131 return snd_pcm_lib_free_pages(substream);
2134 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2136 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2137 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2140 info->size = snd_pcm_lib_buffer_bytes(substream);
2141 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2142 info->pipe = 4; /* Send pipe */
2144 info->pipe = 6; /* Receive pipe */
2146 spin_lock_irq(&dbri->lock);
2149 /* Setup the all the transmit/receive desciptors to cover the
2152 ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2153 snd_pcm_lib_period_bytes(substream));
2155 spin_unlock_irq(&dbri->lock);
2157 dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2161 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2163 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2164 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2168 case SNDRV_PCM_TRIGGER_START:
2169 dprintk(D_USR, "start audio, period is %d bytes\n",
2170 (int)snd_pcm_lib_period_bytes(substream));
2171 /* Re-submit the TDs. */
2174 case SNDRV_PCM_TRIGGER_STOP:
2175 dprintk(D_USR, "stop audio.\n");
2176 reset_pipe(dbri, info->pipe);
2185 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2187 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2188 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2189 snd_pcm_uframes_t ret;
2191 ret = bytes_to_frames(substream->runtime, info->offset)
2192 % substream->runtime->buffer_size;
2193 dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2194 ret, substream->runtime->buffer_size);
2198 static struct snd_pcm_ops snd_dbri_ops = {
2199 .open = snd_dbri_open,
2200 .close = snd_dbri_close,
2201 .ioctl = snd_pcm_lib_ioctl,
2202 .hw_params = snd_dbri_hw_params,
2203 .hw_free = snd_dbri_hw_free,
2204 .prepare = snd_dbri_prepare,
2205 .trigger = snd_dbri_trigger,
2206 .pointer = snd_dbri_pointer,
2209 static int __devinit snd_dbri_pcm(struct snd_dbri * dbri)
2211 struct snd_pcm *pcm;
2214 if ((err = snd_pcm_new(dbri->card,
2215 /* ID */ "sun_dbri",
2217 /* playback count */ 1,
2218 /* capture count */ 1, &pcm)) < 0)
2220 snd_assert(pcm != NULL, return -EINVAL);
2222 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2223 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2225 pcm->private_data = dbri;
2226 pcm->info_flags = 0;
2227 strcpy(pcm->name, dbri->card->shortname);
2229 if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2230 SNDRV_DMA_TYPE_CONTINUOUS,
2231 snd_dma_continuous_data(GFP_KERNEL),
2232 64 * 1024, 64 * 1024)) < 0) {
2239 /*****************************************************************************
2241 *****************************************************************************/
2243 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2244 struct snd_ctl_elem_info *uinfo)
2246 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2248 uinfo->value.integer.min = 0;
2249 if (kcontrol->private_value == DBRI_PLAY) {
2250 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2252 uinfo->value.integer.max = DBRI_MAX_GAIN;
2257 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2258 struct snd_ctl_elem_value *ucontrol)
2260 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2261 struct dbri_streaminfo *info;
2262 snd_assert(dbri != NULL, return -EINVAL);
2263 info = &dbri->stream_info[kcontrol->private_value];
2264 snd_assert(info != NULL, return -EINVAL);
2266 ucontrol->value.integer.value[0] = info->left_gain;
2267 ucontrol->value.integer.value[1] = info->right_gain;
2271 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2272 struct snd_ctl_elem_value *ucontrol)
2274 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2275 struct dbri_streaminfo *info = &dbri->stream_info[kcontrol->private_value];
2278 if (info->left_gain != ucontrol->value.integer.value[0]) {
2279 info->left_gain = ucontrol->value.integer.value[0];
2282 if (info->right_gain != ucontrol->value.integer.value[1]) {
2283 info->right_gain = ucontrol->value.integer.value[1];
2287 /* First mute outputs, and wait 1/8000 sec (125 us)
2288 * to make sure this takes. This avoids clicking noises.
2290 cs4215_setdata(dbri, 1);
2292 cs4215_setdata(dbri, 0);
2297 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2298 struct snd_ctl_elem_info *uinfo)
2300 int mask = (kcontrol->private_value >> 16) & 0xff;
2302 uinfo->type = (mask == 1) ?
2303 SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2305 uinfo->value.integer.min = 0;
2306 uinfo->value.integer.max = mask;
2310 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2311 struct snd_ctl_elem_value *ucontrol)
2313 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2314 int elem = kcontrol->private_value & 0xff;
2315 int shift = (kcontrol->private_value >> 8) & 0xff;
2316 int mask = (kcontrol->private_value >> 16) & 0xff;
2317 int invert = (kcontrol->private_value >> 24) & 1;
2318 snd_assert(dbri != NULL, return -EINVAL);
2321 ucontrol->value.integer.value[0] =
2322 (dbri->mm.data[elem] >> shift) & mask;
2324 ucontrol->value.integer.value[0] =
2325 (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2329 ucontrol->value.integer.value[0] =
2330 mask - ucontrol->value.integer.value[0];
2335 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2336 struct snd_ctl_elem_value *ucontrol)
2338 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2339 int elem = kcontrol->private_value & 0xff;
2340 int shift = (kcontrol->private_value >> 8) & 0xff;
2341 int mask = (kcontrol->private_value >> 16) & 0xff;
2342 int invert = (kcontrol->private_value >> 24) & 1;
2345 snd_assert(dbri != NULL, return -EINVAL);
2347 val = (ucontrol->value.integer.value[0] & mask);
2353 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2354 ~(mask << shift)) | val;
2355 changed = (val != dbri->mm.data[elem]);
2357 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2358 ~(mask << shift)) | val;
2359 changed = (val != dbri->mm.ctrl[elem - 4]);
2362 dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2363 "mixer-value=%ld, mm-value=0x%x\n",
2364 mask, changed, ucontrol->value.integer.value[0],
2365 dbri->mm.data[elem & 3]);
2368 /* First mute outputs, and wait 1/8000 sec (125 us)
2369 * to make sure this takes. This avoids clicking noises.
2371 cs4215_setdata(dbri, 1);
2373 cs4215_setdata(dbri, 0);
2378 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2379 timeslots. Shift is the bit offset in the timeslot, mask defines the
2380 number of bits. invert is a boolean for use with attenuation.
2382 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2383 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2384 .info = snd_cs4215_info_single, \
2385 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2386 .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2388 static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2390 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2391 .name = "Playback Volume",
2392 .info = snd_cs4215_info_volume,
2393 .get = snd_cs4215_get_volume,
2394 .put = snd_cs4215_put_volume,
2395 .private_value = DBRI_PLAY,
2397 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2398 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2399 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2401 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2402 .name = "Capture Volume",
2403 .info = snd_cs4215_info_volume,
2404 .get = snd_cs4215_get_volume,
2405 .put = snd_cs4215_put_volume,
2406 .private_value = DBRI_REC,
2408 /* FIXME: mic/line switch */
2409 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2410 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2411 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2412 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2415 static int __init snd_dbri_mixer(struct snd_dbri * dbri)
2417 struct snd_card *card;
2420 snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2423 strcpy(card->mixername, card->shortname);
2425 for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2426 if ((err = snd_ctl_add(card,
2427 snd_ctl_new1(&dbri_controls[idx], dbri))) < 0)
2431 for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2432 dbri->stream_info[idx].left_gain = 0;
2433 dbri->stream_info[idx].right_gain = 0;
2439 /****************************************************************************
2441 ****************************************************************************/
2442 static void dbri_regs_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
2444 struct snd_dbri *dbri = entry->private_data;
2446 snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2447 snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2448 snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2449 snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2453 static void dbri_debug_read(struct snd_info_entry * entry,
2454 struct snd_info_buffer *buffer)
2456 struct snd_dbri *dbri = entry->private_data;
2458 snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2460 for (pipe = 0; pipe < 32; pipe++) {
2461 if (pipe_active(dbri, pipe)) {
2462 struct dbri_pipe *pptr = &dbri->pipes[pipe];
2464 "Pipe %d: %s SDP=0x%x desc=%d, "
2467 ((pptr->sdp & D_SDP_TO_SER) ? "output" : "input"),
2468 pptr->sdp, pptr->desc,
2469 pptr->length, pptr->nextpipe);
2475 void snd_dbri_proc(struct snd_dbri * dbri)
2477 struct snd_info_entry *entry;
2479 if (! snd_card_proc_new(dbri->card, "regs", &entry))
2480 snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2483 if (! snd_card_proc_new(dbri->card, "debug", &entry)) {
2484 snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2485 entry->mode = S_IFREG | S_IRUGO; /* Readable only. */
2491 ****************************************************************************
2492 **************************** Initialization ********************************
2493 ****************************************************************************
2495 static void snd_dbri_free(struct snd_dbri * dbri);
2497 static int __init snd_dbri_create(struct snd_card *card,
2498 struct sbus_dev *sdev,
2499 struct linux_prom_irqs *irq, int dev)
2501 struct snd_dbri *dbri = card->private_data;
2504 spin_lock_init(&dbri->lock);
2507 dbri->irq = irq->pri;
2509 dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2511 memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2513 dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2514 dbri->dma, dbri->dma_dvma);
2516 /* Map the registers into memory. */
2517 dbri->regs_size = sdev->reg_addrs[0].reg_size;
2518 dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2519 dbri->regs_size, "DBRI Registers");
2521 printk(KERN_ERR "DBRI: could not allocate registers\n");
2522 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2523 (void *)dbri->dma, dbri->dma_dvma);
2527 err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2528 "DBRI audio", dbri);
2530 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2531 sbus_iounmap(dbri->regs, dbri->regs_size);
2532 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2533 (void *)dbri->dma, dbri->dma_dvma);
2537 /* Do low level initialization of the DBRI and CS4215 chips */
2538 dbri_initialize(dbri);
2539 err = cs4215_init(dbri);
2541 snd_dbri_free(dbri);
2545 dbri->next = dbri_list;
2551 static void snd_dbri_free(struct snd_dbri * dbri)
2553 dprintk(D_GEN, "snd_dbri_free\n");
2557 free_irq(dbri->irq, dbri);
2560 sbus_iounmap(dbri->regs, dbri->regs_size);
2563 sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2564 (void *)dbri->dma, dbri->dma_dvma);
2567 static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2569 struct snd_dbri *dbri;
2570 struct linux_prom_irqs irq;
2571 struct resource *rp;
2572 struct snd_card *card;
2576 if (sdev->prom_name[9] < 'e') {
2577 printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2578 sdev->prom_name[9]);
2582 if (dev >= SNDRV_CARDS)
2589 err = prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2591 printk(KERN_ERR "DBRI-%d: Firmware node lacks IRQ property.\n", dev);
2595 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2596 sizeof(struct snd_dbri));
2600 strcpy(card->driver, "DBRI");
2601 strcpy(card->shortname, "Sun DBRI");
2602 rp = &sdev->resource[0];
2603 sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2605 rp->flags & 0xffL, (unsigned long long)rp->start, irq.pri);
2607 if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2608 snd_card_free(card);
2612 dbri = card->private_data;
2613 if ((err = snd_dbri_pcm(dbri)) < 0)
2616 if ((err = snd_dbri_mixer(dbri)) < 0)
2619 /* /proc file handling */
2620 snd_dbri_proc(dbri);
2622 if ((err = snd_card_register(card)) < 0)
2625 printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2627 dbri->irq, sdev->prom_name[9], dbri->mm.version);
2633 snd_dbri_free(dbri);
2634 snd_card_free(card);
2638 /* Probe for the dbri chip and then attach the driver. */
2639 static int __init dbri_init(void)
2641 struct sbus_bus *sbus;
2642 struct sbus_dev *sdev;
2645 /* Probe each SBUS for the DBRI chip(s). */
2646 for_all_sbusdev(sdev, sbus) {
2648 * The version is coded in the last character
2650 if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2651 dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2652 sdev->prom_name, sdev->slot);
2654 if (dbri_attach(sdev->prom_node, sdev) == 0)
2659 return (found > 0) ? 0 : -EIO;
2662 static void __exit dbri_exit(void)
2664 struct snd_dbri *this = dbri_list;
2666 while (this != NULL) {
2667 struct snd_dbri *next = this->next;
2668 struct snd_card *card = this->card;
2670 snd_dbri_free(this);
2671 snd_card_free(card);
2677 module_init(dbri_init);
2678 module_exit(dbri_exit);