2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
34 #include <asm/system.h>
37 #include "fw-transaction.h"
39 #define DESCRIPTOR_OUTPUT_MORE 0
40 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
41 #define DESCRIPTOR_INPUT_MORE (2 << 12)
42 #define DESCRIPTOR_INPUT_LAST (3 << 12)
43 #define DESCRIPTOR_STATUS (1 << 11)
44 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
45 #define DESCRIPTOR_PING (1 << 7)
46 #define DESCRIPTOR_YY (1 << 6)
47 #define DESCRIPTOR_NO_IRQ (0 << 4)
48 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
49 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
50 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
51 #define DESCRIPTOR_WAIT (3 << 0)
57 __le32 branch_address;
59 __le16 transfer_status;
60 } __attribute__((aligned(16)));
62 struct db_descriptor {
65 __le16 second_req_count;
66 __le16 first_req_count;
67 __le32 branch_address;
68 __le16 second_res_count;
69 __le16 first_res_count;
74 } __attribute__((aligned(16)));
76 #define CONTROL_SET(regs) (regs)
77 #define CONTROL_CLEAR(regs) ((regs) + 4)
78 #define COMMAND_PTR(regs) ((regs) + 12)
79 #define CONTEXT_MATCH(regs) ((regs) + 16)
82 struct descriptor descriptor;
83 struct ar_buffer *next;
89 struct ar_buffer *current_buffer;
90 struct ar_buffer *last_buffer;
93 struct tasklet_struct tasklet;
98 typedef int (*descriptor_callback_t)(struct context *ctx,
100 struct descriptor *last);
102 struct fw_ohci *ohci;
105 struct descriptor *buffer;
106 dma_addr_t buffer_bus;
108 struct descriptor *head_descriptor;
109 struct descriptor *tail_descriptor;
110 struct descriptor *tail_descriptor_last;
111 struct descriptor *prev_descriptor;
113 descriptor_callback_t callback;
115 struct tasklet_struct tasklet;
118 #define IT_HEADER_SY(v) ((v) << 0)
119 #define IT_HEADER_TCODE(v) ((v) << 4)
120 #define IT_HEADER_CHANNEL(v) ((v) << 8)
121 #define IT_HEADER_TAG(v) ((v) << 14)
122 #define IT_HEADER_SPEED(v) ((v) << 16)
123 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
126 struct fw_iso_context base;
127 struct context context;
129 size_t header_length;
132 #define CONFIG_ROM_SIZE 1024
138 __iomem char *registers;
139 dma_addr_t self_id_bus;
141 struct tasklet_struct bus_reset_tasklet;
144 int request_generation;
148 * Spinlock for accessing fw_ohci data. Never call out of
149 * this driver with this lock held.
152 u32 self_id_buffer[512];
154 /* Config rom buffers */
156 dma_addr_t config_rom_bus;
157 __be32 *next_config_rom;
158 dma_addr_t next_config_rom_bus;
161 struct ar_context ar_request_ctx;
162 struct ar_context ar_response_ctx;
163 struct context at_request_ctx;
164 struct context at_response_ctx;
167 struct iso_context *it_context_list;
169 struct iso_context *ir_context_list;
172 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
174 return container_of(card, struct fw_ohci, card);
177 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
178 #define IR_CONTEXT_BUFFER_FILL 0x80000000
179 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
180 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
181 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
182 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
184 #define CONTEXT_RUN 0x8000
185 #define CONTEXT_WAKE 0x1000
186 #define CONTEXT_DEAD 0x0800
187 #define CONTEXT_ACTIVE 0x0400
189 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
190 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
191 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
193 #define FW_OHCI_MAJOR 240
194 #define OHCI1394_REGISTER_SIZE 0x800
195 #define OHCI_LOOP_COUNT 500
196 #define OHCI1394_PCI_HCI_Control 0x40
197 #define SELF_ID_BUF_SIZE 0x800
198 #define OHCI_TCODE_PHY_PACKET 0x0e
199 #define OHCI_VERSION_1_1 0x010010
200 #define ISO_BUFFER_SIZE (64 * 1024)
201 #define AT_BUFFER_SIZE 4096
203 static char ohci_driver_name[] = KBUILD_MODNAME;
205 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
207 writel(data, ohci->registers + offset);
210 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
212 return readl(ohci->registers + offset);
215 static inline void flush_writes(const struct fw_ohci *ohci)
217 /* Do a dummy read to flush writes. */
218 reg_read(ohci, OHCI1394_Version);
222 ohci_update_phy_reg(struct fw_card *card, int addr,
223 int clear_bits, int set_bits)
225 struct fw_ohci *ohci = fw_ohci(card);
228 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
231 val = reg_read(ohci, OHCI1394_PhyControl);
232 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
233 fw_error("failed to set phy reg bits.\n");
237 old = OHCI1394_PhyControl_ReadData(val);
238 old = (old & ~clear_bits) | set_bits;
239 reg_write(ohci, OHCI1394_PhyControl,
240 OHCI1394_PhyControl_Write(addr, old));
245 static int ar_context_add_page(struct ar_context *ctx)
247 struct device *dev = ctx->ohci->card.device;
248 struct ar_buffer *ab;
252 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
256 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
257 if (dma_mapping_error(ab_bus)) {
258 free_page((unsigned long) ab);
262 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
263 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
265 DESCRIPTOR_BRANCH_ALWAYS);
266 offset = offsetof(struct ar_buffer, data);
267 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
268 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
269 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
270 ab->descriptor.branch_address = 0;
272 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
274 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
275 ctx->last_buffer->next = ab;
276 ctx->last_buffer = ab;
278 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
279 flush_writes(ctx->ohci);
284 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
286 struct fw_ohci *ohci = ctx->ohci;
288 u32 status, length, tcode;
290 p.header[0] = le32_to_cpu(buffer[0]);
291 p.header[1] = le32_to_cpu(buffer[1]);
292 p.header[2] = le32_to_cpu(buffer[2]);
294 tcode = (p.header[0] >> 4) & 0x0f;
296 case TCODE_WRITE_QUADLET_REQUEST:
297 case TCODE_READ_QUADLET_RESPONSE:
298 p.header[3] = (__force __u32) buffer[3];
299 p.header_length = 16;
300 p.payload_length = 0;
303 case TCODE_READ_BLOCK_REQUEST :
304 p.header[3] = le32_to_cpu(buffer[3]);
305 p.header_length = 16;
306 p.payload_length = 0;
309 case TCODE_WRITE_BLOCK_REQUEST:
310 case TCODE_READ_BLOCK_RESPONSE:
311 case TCODE_LOCK_REQUEST:
312 case TCODE_LOCK_RESPONSE:
313 p.header[3] = le32_to_cpu(buffer[3]);
314 p.header_length = 16;
315 p.payload_length = p.header[3] >> 16;
318 case TCODE_WRITE_RESPONSE:
319 case TCODE_READ_QUADLET_REQUEST:
320 case OHCI_TCODE_PHY_PACKET:
321 p.header_length = 12;
322 p.payload_length = 0;
326 p.payload = (void *) buffer + p.header_length;
328 /* FIXME: What to do about evt_* errors? */
329 length = (p.header_length + p.payload_length + 3) / 4;
330 status = le32_to_cpu(buffer[length]);
332 p.ack = ((status >> 16) & 0x1f) - 16;
333 p.speed = (status >> 21) & 0x7;
334 p.timestamp = status & 0xffff;
335 p.generation = ohci->request_generation;
338 * The OHCI bus reset handler synthesizes a phy packet with
339 * the new generation number when a bus reset happens (see
340 * section 8.4.2.3). This helps us determine when a request
341 * was received and make sure we send the response in the same
342 * generation. We only need this for requests; for responses
343 * we use the unique tlabel for finding the matching
347 if (p.ack + 16 == 0x09)
348 ohci->request_generation = (buffer[2] >> 16) & 0xff;
349 else if (ctx == &ohci->ar_request_ctx)
350 fw_core_handle_request(&ohci->card, &p);
352 fw_core_handle_response(&ohci->card, &p);
354 return buffer + length + 1;
357 static void ar_context_tasklet(unsigned long data)
359 struct ar_context *ctx = (struct ar_context *)data;
360 struct fw_ohci *ohci = ctx->ohci;
361 struct ar_buffer *ab;
362 struct descriptor *d;
365 ab = ctx->current_buffer;
368 if (d->res_count == 0) {
369 size_t size, rest, offset;
372 * This descriptor is finished and we may have a
373 * packet split across this and the next buffer. We
374 * reuse the page for reassembling the split packet.
377 offset = offsetof(struct ar_buffer, data);
378 dma_unmap_single(ohci->card.device,
379 le32_to_cpu(ab->descriptor.data_address) - offset,
380 PAGE_SIZE, DMA_BIDIRECTIONAL);
385 size = buffer + PAGE_SIZE - ctx->pointer;
386 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
387 memmove(buffer, ctx->pointer, size);
388 memcpy(buffer + size, ab->data, rest);
389 ctx->current_buffer = ab;
390 ctx->pointer = (void *) ab->data + rest;
391 end = buffer + size + rest;
394 buffer = handle_ar_packet(ctx, buffer);
396 free_page((unsigned long)buffer);
397 ar_context_add_page(ctx);
399 buffer = ctx->pointer;
401 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
404 buffer = handle_ar_packet(ctx, buffer);
409 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
415 ctx->last_buffer = &ab;
416 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
418 ar_context_add_page(ctx);
419 ar_context_add_page(ctx);
420 ctx->current_buffer = ab.next;
421 ctx->pointer = ctx->current_buffer->data;
426 static void ar_context_run(struct ar_context *ctx)
428 struct ar_buffer *ab = ctx->current_buffer;
432 offset = offsetof(struct ar_buffer, data);
433 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
435 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
436 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
437 flush_writes(ctx->ohci);
440 static void context_tasklet(unsigned long data)
442 struct context *ctx = (struct context *) data;
443 struct fw_ohci *ohci = ctx->ohci;
444 struct descriptor *d, *last;
448 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
449 ctx->buffer_size, DMA_TO_DEVICE);
451 d = ctx->tail_descriptor;
452 last = ctx->tail_descriptor_last;
454 while (last->branch_address != 0) {
455 address = le32_to_cpu(last->branch_address);
457 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
458 last = (z == 2) ? d : d + z - 1;
460 if (!ctx->callback(ctx, d, last))
463 ctx->tail_descriptor = d;
464 ctx->tail_descriptor_last = last;
469 context_init(struct context *ctx, struct fw_ohci *ohci,
470 size_t buffer_size, u32 regs,
471 descriptor_callback_t callback)
475 ctx->buffer_size = buffer_size;
476 ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
477 if (ctx->buffer == NULL)
480 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
481 ctx->callback = callback;
484 dma_map_single(ohci->card.device, ctx->buffer,
485 buffer_size, DMA_TO_DEVICE);
486 if (dma_mapping_error(ctx->buffer_bus)) {
491 ctx->head_descriptor = ctx->buffer;
492 ctx->prev_descriptor = ctx->buffer;
493 ctx->tail_descriptor = ctx->buffer;
494 ctx->tail_descriptor_last = ctx->buffer;
497 * We put a dummy descriptor in the buffer that has a NULL
498 * branch address and looks like it's been sent. That way we
499 * have a descriptor to append DMA programs to. Also, the
500 * ring buffer invariant is that it always has at least one
501 * element so that head == tail means buffer full.
504 memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
505 ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
506 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
507 ctx->head_descriptor++;
513 context_release(struct context *ctx)
515 struct fw_card *card = &ctx->ohci->card;
517 dma_unmap_single(card->device, ctx->buffer_bus,
518 ctx->buffer_size, DMA_TO_DEVICE);
522 static struct descriptor *
523 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
525 struct descriptor *d, *tail, *end;
527 d = ctx->head_descriptor;
528 tail = ctx->tail_descriptor;
529 end = ctx->buffer + ctx->buffer_size / sizeof(*d);
533 } else if (d > tail && d + z <= end) {
535 } else if (d > tail && ctx->buffer + z <= tail) {
543 memset(d, 0, z * sizeof(*d));
544 *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
549 static void context_run(struct context *ctx, u32 extra)
551 struct fw_ohci *ohci = ctx->ohci;
553 reg_write(ohci, COMMAND_PTR(ctx->regs),
554 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
555 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
556 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
560 static void context_append(struct context *ctx,
561 struct descriptor *d, int z, int extra)
565 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
567 ctx->head_descriptor = d + z + extra;
568 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
569 ctx->prev_descriptor = z == 2 ? d : d + z - 1;
571 dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
572 ctx->buffer_size, DMA_TO_DEVICE);
574 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
575 flush_writes(ctx->ohci);
578 static void context_stop(struct context *ctx)
583 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
584 flush_writes(ctx->ohci);
586 for (i = 0; i < 10; i++) {
587 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
588 if ((reg & CONTEXT_ACTIVE) == 0)
591 fw_notify("context_stop: still active (0x%08x)\n", reg);
597 struct fw_packet *packet;
601 * This function apppends a packet to the DMA queue for transmission.
602 * Must always be called with the ochi->lock held to ensure proper
603 * generation handling and locking around packet queue manipulation.
606 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
608 struct fw_ohci *ohci = ctx->ohci;
609 dma_addr_t d_bus, uninitialized_var(payload_bus);
610 struct driver_data *driver_data;
611 struct descriptor *d, *last;
616 d = context_get_descriptors(ctx, 4, &d_bus);
618 packet->ack = RCODE_SEND_ERROR;
622 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
623 d[0].res_count = cpu_to_le16(packet->timestamp);
626 * The DMA format for asyncronous link packets is different
627 * from the IEEE1394 layout, so shift the fields around
628 * accordingly. If header_length is 8, it's a PHY packet, to
629 * which we need to prepend an extra quadlet.
632 header = (__le32 *) &d[1];
633 if (packet->header_length > 8) {
634 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
635 (packet->speed << 16));
636 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
637 (packet->header[0] & 0xffff0000));
638 header[2] = cpu_to_le32(packet->header[2]);
640 tcode = (packet->header[0] >> 4) & 0x0f;
641 if (TCODE_IS_BLOCK_PACKET(tcode))
642 header[3] = cpu_to_le32(packet->header[3]);
644 header[3] = (__force __le32) packet->header[3];
646 d[0].req_count = cpu_to_le16(packet->header_length);
648 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
649 (packet->speed << 16));
650 header[1] = cpu_to_le32(packet->header[0]);
651 header[2] = cpu_to_le32(packet->header[1]);
652 d[0].req_count = cpu_to_le16(12);
655 driver_data = (struct driver_data *) &d[3];
656 driver_data->packet = packet;
657 packet->driver_data = driver_data;
659 if (packet->payload_length > 0) {
661 dma_map_single(ohci->card.device, packet->payload,
662 packet->payload_length, DMA_TO_DEVICE);
663 if (dma_mapping_error(payload_bus)) {
664 packet->ack = RCODE_SEND_ERROR;
668 d[2].req_count = cpu_to_le16(packet->payload_length);
669 d[2].data_address = cpu_to_le32(payload_bus);
677 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
678 DESCRIPTOR_IRQ_ALWAYS |
679 DESCRIPTOR_BRANCH_ALWAYS);
681 /* FIXME: Document how the locking works. */
682 if (ohci->generation != packet->generation) {
683 if (packet->payload_length > 0)
684 dma_unmap_single(ohci->card.device, payload_bus,
685 packet->payload_length, DMA_TO_DEVICE);
686 packet->ack = RCODE_GENERATION;
690 context_append(ctx, d, z, 4 - z);
692 /* If the context isn't already running, start it up. */
693 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
694 if ((reg & CONTEXT_RUN) == 0)
700 static int handle_at_packet(struct context *context,
701 struct descriptor *d,
702 struct descriptor *last)
704 struct driver_data *driver_data;
705 struct fw_packet *packet;
706 struct fw_ohci *ohci = context->ohci;
707 dma_addr_t payload_bus;
710 if (last->transfer_status == 0)
711 /* This descriptor isn't done yet, stop iteration. */
714 driver_data = (struct driver_data *) &d[3];
715 packet = driver_data->packet;
717 /* This packet was cancelled, just continue. */
720 payload_bus = le32_to_cpu(last->data_address);
721 if (payload_bus != 0)
722 dma_unmap_single(ohci->card.device, payload_bus,
723 packet->payload_length, DMA_TO_DEVICE);
725 evt = le16_to_cpu(last->transfer_status) & 0x1f;
726 packet->timestamp = le16_to_cpu(last->res_count);
729 case OHCI1394_evt_timeout:
730 /* Async response transmit timed out. */
731 packet->ack = RCODE_CANCELLED;
734 case OHCI1394_evt_flushed:
736 * The packet was flushed should give same error as
737 * when we try to use a stale generation count.
739 packet->ack = RCODE_GENERATION;
742 case OHCI1394_evt_missing_ack:
744 * Using a valid (current) generation count, but the
745 * node is not on the bus or not sending acks.
747 packet->ack = RCODE_NO_ACK;
750 case ACK_COMPLETE + 0x10:
751 case ACK_PENDING + 0x10:
752 case ACK_BUSY_X + 0x10:
753 case ACK_BUSY_A + 0x10:
754 case ACK_BUSY_B + 0x10:
755 case ACK_DATA_ERROR + 0x10:
756 case ACK_TYPE_ERROR + 0x10:
757 packet->ack = evt - 0x10;
761 packet->ack = RCODE_SEND_ERROR;
765 packet->callback(packet, &ohci->card, packet->ack);
770 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
771 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
772 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
773 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
774 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
777 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
779 struct fw_packet response;
780 int tcode, length, i;
782 tcode = HEADER_GET_TCODE(packet->header[0]);
783 if (TCODE_IS_BLOCK_PACKET(tcode))
784 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
788 i = csr - CSR_CONFIG_ROM;
789 if (i + length > CONFIG_ROM_SIZE) {
790 fw_fill_response(&response, packet->header,
791 RCODE_ADDRESS_ERROR, NULL, 0);
792 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
793 fw_fill_response(&response, packet->header,
794 RCODE_TYPE_ERROR, NULL, 0);
796 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
797 (void *) ohci->config_rom + i, length);
800 fw_core_handle_response(&ohci->card, &response);
804 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
806 struct fw_packet response;
807 int tcode, length, ext_tcode, sel;
808 __be32 *payload, lock_old;
809 u32 lock_arg, lock_data;
811 tcode = HEADER_GET_TCODE(packet->header[0]);
812 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
813 payload = packet->payload;
814 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
816 if (tcode == TCODE_LOCK_REQUEST &&
817 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
818 lock_arg = be32_to_cpu(payload[0]);
819 lock_data = be32_to_cpu(payload[1]);
820 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
824 fw_fill_response(&response, packet->header,
825 RCODE_TYPE_ERROR, NULL, 0);
829 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
830 reg_write(ohci, OHCI1394_CSRData, lock_data);
831 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
832 reg_write(ohci, OHCI1394_CSRControl, sel);
834 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
835 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
837 fw_notify("swap not done yet\n");
839 fw_fill_response(&response, packet->header,
840 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
842 fw_core_handle_response(&ohci->card, &response);
846 handle_local_request(struct context *ctx, struct fw_packet *packet)
851 if (ctx == &ctx->ohci->at_request_ctx) {
852 packet->ack = ACK_PENDING;
853 packet->callback(packet, &ctx->ohci->card, packet->ack);
857 ((unsigned long long)
858 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
860 csr = offset - CSR_REGISTER_BASE;
862 /* Handle config rom reads. */
863 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
864 handle_local_rom(ctx->ohci, packet, csr);
866 case CSR_BUS_MANAGER_ID:
867 case CSR_BANDWIDTH_AVAILABLE:
868 case CSR_CHANNELS_AVAILABLE_HI:
869 case CSR_CHANNELS_AVAILABLE_LO:
870 handle_local_lock(ctx->ohci, packet, csr);
873 if (ctx == &ctx->ohci->at_request_ctx)
874 fw_core_handle_request(&ctx->ohci->card, packet);
876 fw_core_handle_response(&ctx->ohci->card, packet);
880 if (ctx == &ctx->ohci->at_response_ctx) {
881 packet->ack = ACK_COMPLETE;
882 packet->callback(packet, &ctx->ohci->card, packet->ack);
887 at_context_transmit(struct context *ctx, struct fw_packet *packet)
892 spin_lock_irqsave(&ctx->ohci->lock, flags);
894 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
895 ctx->ohci->generation == packet->generation) {
896 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
897 handle_local_request(ctx, packet);
901 retval = at_context_queue_packet(ctx, packet);
902 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
905 packet->callback(packet, &ctx->ohci->card, packet->ack);
909 static void bus_reset_tasklet(unsigned long data)
911 struct fw_ohci *ohci = (struct fw_ohci *)data;
912 int self_id_count, i, j, reg;
913 int generation, new_generation;
915 void *free_rom = NULL;
916 dma_addr_t free_rom_bus = 0;
918 reg = reg_read(ohci, OHCI1394_NodeID);
919 if (!(reg & OHCI1394_NodeID_idValid)) {
920 fw_notify("node ID not valid, new bus reset in progress\n");
923 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
924 fw_notify("malconfigured bus\n");
927 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
928 OHCI1394_NodeID_nodeNumber);
931 * The count in the SelfIDCount register is the number of
932 * bytes in the self ID receive buffer. Since we also receive
933 * the inverted quadlets and a header quadlet, we shift one
934 * bit extra to get the actual number of self IDs.
937 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
938 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
941 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
942 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
943 fw_error("inconsistent self IDs\n");
944 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
949 * Check the consistency of the self IDs we just read. The
950 * problem we face is that a new bus reset can start while we
951 * read out the self IDs from the DMA buffer. If this happens,
952 * the DMA buffer will be overwritten with new self IDs and we
953 * will read out inconsistent data. The OHCI specification
954 * (section 11.2) recommends a technique similar to
955 * linux/seqlock.h, where we remember the generation of the
956 * self IDs in the buffer before reading them out and compare
957 * it to the current generation after reading them out. If
958 * the two generations match we know we have a consistent set
962 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
963 if (new_generation != generation) {
964 fw_notify("recursive bus reset detected, "
965 "discarding self ids\n");
969 /* FIXME: Document how the locking works. */
970 spin_lock_irqsave(&ohci->lock, flags);
972 ohci->generation = generation;
973 context_stop(&ohci->at_request_ctx);
974 context_stop(&ohci->at_response_ctx);
975 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
978 * This next bit is unrelated to the AT context stuff but we
979 * have to do it under the spinlock also. If a new config rom
980 * was set up before this reset, the old one is now no longer
981 * in use and we can free it. Update the config rom pointers
982 * to point to the current config rom and clear the
983 * next_config_rom pointer so a new udpate can take place.
986 if (ohci->next_config_rom != NULL) {
987 if (ohci->next_config_rom != ohci->config_rom) {
988 free_rom = ohci->config_rom;
989 free_rom_bus = ohci->config_rom_bus;
991 ohci->config_rom = ohci->next_config_rom;
992 ohci->config_rom_bus = ohci->next_config_rom_bus;
993 ohci->next_config_rom = NULL;
996 * Restore config_rom image and manually update
997 * config_rom registers. Writing the header quadlet
998 * will indicate that the config rom is ready, so we
1001 reg_write(ohci, OHCI1394_BusOptions,
1002 be32_to_cpu(ohci->config_rom[2]));
1003 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1004 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1007 spin_unlock_irqrestore(&ohci->lock, flags);
1010 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1011 free_rom, free_rom_bus);
1013 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1014 self_id_count, ohci->self_id_buffer);
1017 static irqreturn_t irq_handler(int irq, void *data)
1019 struct fw_ohci *ohci = data;
1020 u32 event, iso_event, cycle_time;
1023 event = reg_read(ohci, OHCI1394_IntEventClear);
1025 if (!event || !~event)
1028 reg_write(ohci, OHCI1394_IntEventClear, event);
1030 if (event & OHCI1394_selfIDComplete)
1031 tasklet_schedule(&ohci->bus_reset_tasklet);
1033 if (event & OHCI1394_RQPkt)
1034 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1036 if (event & OHCI1394_RSPkt)
1037 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1039 if (event & OHCI1394_reqTxComplete)
1040 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1042 if (event & OHCI1394_respTxComplete)
1043 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1045 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1046 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1049 i = ffs(iso_event) - 1;
1050 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1051 iso_event &= ~(1 << i);
1054 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1055 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1058 i = ffs(iso_event) - 1;
1059 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1060 iso_event &= ~(1 << i);
1063 if (unlikely(event & OHCI1394_postedWriteErr))
1064 fw_error("PCI posted write error\n");
1066 if (event & OHCI1394_cycle64Seconds) {
1067 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1068 if ((cycle_time & 0x80000000) == 0)
1069 ohci->bus_seconds++;
1075 static int software_reset(struct fw_ohci *ohci)
1079 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1081 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1082 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1083 OHCI1394_HCControl_softReset) == 0)
1091 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1093 struct fw_ohci *ohci = fw_ohci(card);
1094 struct pci_dev *dev = to_pci_dev(card->device);
1096 if (software_reset(ohci)) {
1097 fw_error("Failed to reset ohci card.\n");
1102 * Now enable LPS, which we need in order to start accessing
1103 * most of the registers. In fact, on some cards (ALI M5251),
1104 * accessing registers in the SClk domain without LPS enabled
1105 * will lock up the machine. Wait 50msec to make sure we have
1106 * full link enabled.
1108 reg_write(ohci, OHCI1394_HCControlSet,
1109 OHCI1394_HCControl_LPS |
1110 OHCI1394_HCControl_postedWriteEnable);
1114 reg_write(ohci, OHCI1394_HCControlClear,
1115 OHCI1394_HCControl_noByteSwapData);
1117 reg_write(ohci, OHCI1394_LinkControlSet,
1118 OHCI1394_LinkControl_rcvSelfID |
1119 OHCI1394_LinkControl_cycleTimerEnable |
1120 OHCI1394_LinkControl_cycleMaster);
1122 reg_write(ohci, OHCI1394_ATRetries,
1123 OHCI1394_MAX_AT_REQ_RETRIES |
1124 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1125 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1127 ar_context_run(&ohci->ar_request_ctx);
1128 ar_context_run(&ohci->ar_response_ctx);
1130 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1131 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1132 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1133 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1134 reg_write(ohci, OHCI1394_IntMaskSet,
1135 OHCI1394_selfIDComplete |
1136 OHCI1394_RQPkt | OHCI1394_RSPkt |
1137 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1138 OHCI1394_isochRx | OHCI1394_isochTx |
1139 OHCI1394_postedWriteErr | OHCI1394_cycle64Seconds |
1140 OHCI1394_masterIntEnable);
1142 /* Activate link_on bit and contender bit in our self ID packets.*/
1143 if (ohci_update_phy_reg(card, 4, 0,
1144 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1148 * When the link is not yet enabled, the atomic config rom
1149 * update mechanism described below in ohci_set_config_rom()
1150 * is not active. We have to update ConfigRomHeader and
1151 * BusOptions manually, and the write to ConfigROMmap takes
1152 * effect immediately. We tie this to the enabling of the
1153 * link, so we have a valid config rom before enabling - the
1154 * OHCI requires that ConfigROMhdr and BusOptions have valid
1155 * values before enabling.
1157 * However, when the ConfigROMmap is written, some controllers
1158 * always read back quadlets 0 and 2 from the config rom to
1159 * the ConfigRomHeader and BusOptions registers on bus reset.
1160 * They shouldn't do that in this initial case where the link
1161 * isn't enabled. This means we have to use the same
1162 * workaround here, setting the bus header to 0 and then write
1163 * the right values in the bus reset tasklet.
1167 ohci->next_config_rom =
1168 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1169 &ohci->next_config_rom_bus,
1171 if (ohci->next_config_rom == NULL)
1174 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1175 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1178 * In the suspend case, config_rom is NULL, which
1179 * means that we just reuse the old config rom.
1181 ohci->next_config_rom = ohci->config_rom;
1182 ohci->next_config_rom_bus = ohci->config_rom_bus;
1185 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1186 ohci->next_config_rom[0] = 0;
1187 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1188 reg_write(ohci, OHCI1394_BusOptions,
1189 be32_to_cpu(ohci->next_config_rom[2]));
1190 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1192 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1194 if (request_irq(dev->irq, irq_handler,
1195 IRQF_SHARED, ohci_driver_name, ohci)) {
1196 fw_error("Failed to allocate shared interrupt %d.\n",
1198 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1199 ohci->config_rom, ohci->config_rom_bus);
1203 reg_write(ohci, OHCI1394_HCControlSet,
1204 OHCI1394_HCControl_linkEnable |
1205 OHCI1394_HCControl_BIBimageValid);
1209 * We are ready to go, initiate bus reset to finish the
1213 fw_core_initiate_bus_reset(&ohci->card, 1);
1219 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1221 struct fw_ohci *ohci;
1222 unsigned long flags;
1223 int retval = -EBUSY;
1224 __be32 *next_config_rom;
1225 dma_addr_t next_config_rom_bus;
1227 ohci = fw_ohci(card);
1230 * When the OHCI controller is enabled, the config rom update
1231 * mechanism is a bit tricky, but easy enough to use. See
1232 * section 5.5.6 in the OHCI specification.
1234 * The OHCI controller caches the new config rom address in a
1235 * shadow register (ConfigROMmapNext) and needs a bus reset
1236 * for the changes to take place. When the bus reset is
1237 * detected, the controller loads the new values for the
1238 * ConfigRomHeader and BusOptions registers from the specified
1239 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1240 * shadow register. All automatically and atomically.
1242 * Now, there's a twist to this story. The automatic load of
1243 * ConfigRomHeader and BusOptions doesn't honor the
1244 * noByteSwapData bit, so with a be32 config rom, the
1245 * controller will load be32 values in to these registers
1246 * during the atomic update, even on litte endian
1247 * architectures. The workaround we use is to put a 0 in the
1248 * header quadlet; 0 is endian agnostic and means that the
1249 * config rom isn't ready yet. In the bus reset tasklet we
1250 * then set up the real values for the two registers.
1252 * We use ohci->lock to avoid racing with the code that sets
1253 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1257 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1258 &next_config_rom_bus, GFP_KERNEL);
1259 if (next_config_rom == NULL)
1262 spin_lock_irqsave(&ohci->lock, flags);
1264 if (ohci->next_config_rom == NULL) {
1265 ohci->next_config_rom = next_config_rom;
1266 ohci->next_config_rom_bus = next_config_rom_bus;
1268 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1269 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1272 ohci->next_header = config_rom[0];
1273 ohci->next_config_rom[0] = 0;
1275 reg_write(ohci, OHCI1394_ConfigROMmap,
1276 ohci->next_config_rom_bus);
1280 spin_unlock_irqrestore(&ohci->lock, flags);
1283 * Now initiate a bus reset to have the changes take
1284 * effect. We clean up the old config rom memory and DMA
1285 * mappings in the bus reset tasklet, since the OHCI
1286 * controller could need to access it before the bus reset
1290 fw_core_initiate_bus_reset(&ohci->card, 1);
1292 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1293 next_config_rom, next_config_rom_bus);
1298 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1300 struct fw_ohci *ohci = fw_ohci(card);
1302 at_context_transmit(&ohci->at_request_ctx, packet);
1305 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1307 struct fw_ohci *ohci = fw_ohci(card);
1309 at_context_transmit(&ohci->at_response_ctx, packet);
1312 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1314 struct fw_ohci *ohci = fw_ohci(card);
1315 struct context *ctx = &ohci->at_request_ctx;
1316 struct driver_data *driver_data = packet->driver_data;
1317 int retval = -ENOENT;
1319 tasklet_disable(&ctx->tasklet);
1321 if (packet->ack != 0)
1324 driver_data->packet = NULL;
1325 packet->ack = RCODE_CANCELLED;
1326 packet->callback(packet, &ohci->card, packet->ack);
1330 tasklet_enable(&ctx->tasklet);
1336 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1338 struct fw_ohci *ohci = fw_ohci(card);
1339 unsigned long flags;
1343 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1344 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1347 spin_lock_irqsave(&ohci->lock, flags);
1349 if (ohci->generation != generation) {
1355 * Note, if the node ID contains a non-local bus ID, physical DMA is
1356 * enabled for _all_ nodes on remote buses.
1359 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1361 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1363 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1367 spin_unlock_irqrestore(&ohci->lock, flags);
1372 ohci_get_bus_time(struct fw_card *card)
1374 struct fw_ohci *ohci = fw_ohci(card);
1378 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1379 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1384 static int handle_ir_dualbuffer_packet(struct context *context,
1385 struct descriptor *d,
1386 struct descriptor *last)
1388 struct iso_context *ctx =
1389 container_of(context, struct iso_context, context);
1390 struct db_descriptor *db = (struct db_descriptor *) d;
1392 size_t header_length;
1396 if (db->first_res_count > 0 && db->second_res_count > 0)
1397 /* This descriptor isn't done yet, stop iteration. */
1400 header_length = le16_to_cpu(db->first_req_count) -
1401 le16_to_cpu(db->first_res_count);
1403 i = ctx->header_length;
1405 end = p + header_length;
1406 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1408 * The iso header is byteswapped to little endian by
1409 * the controller, but the remaining header quadlets
1410 * are big endian. We want to present all the headers
1411 * as big endian, so we have to swap the first
1414 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1415 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1416 i += ctx->base.header_size;
1417 p += ctx->base.header_size + 4;
1420 ctx->header_length = i;
1422 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1423 ir_header = (__le32 *) (db + 1);
1424 ctx->base.callback(&ctx->base,
1425 le32_to_cpu(ir_header[0]) & 0xffff,
1426 ctx->header_length, ctx->header,
1427 ctx->base.callback_data);
1428 ctx->header_length = 0;
1434 static int handle_it_packet(struct context *context,
1435 struct descriptor *d,
1436 struct descriptor *last)
1438 struct iso_context *ctx =
1439 container_of(context, struct iso_context, context);
1441 if (last->transfer_status == 0)
1442 /* This descriptor isn't done yet, stop iteration. */
1445 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1446 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1447 0, NULL, ctx->base.callback_data);
1452 static struct fw_iso_context *
1453 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1455 struct fw_ohci *ohci = fw_ohci(card);
1456 struct iso_context *ctx, *list;
1457 descriptor_callback_t callback;
1459 unsigned long flags;
1460 int index, retval = -ENOMEM;
1462 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1463 mask = &ohci->it_context_mask;
1464 list = ohci->it_context_list;
1465 callback = handle_it_packet;
1467 mask = &ohci->ir_context_mask;
1468 list = ohci->ir_context_list;
1469 callback = handle_ir_dualbuffer_packet;
1472 /* FIXME: We need a fallback for pre 1.1 OHCI. */
1473 if (callback == handle_ir_dualbuffer_packet &&
1474 ohci->version < OHCI_VERSION_1_1)
1475 return ERR_PTR(-ENOSYS);
1477 spin_lock_irqsave(&ohci->lock, flags);
1478 index = ffs(*mask) - 1;
1480 *mask &= ~(1 << index);
1481 spin_unlock_irqrestore(&ohci->lock, flags);
1484 return ERR_PTR(-EBUSY);
1486 if (type == FW_ISO_CONTEXT_TRANSMIT)
1487 regs = OHCI1394_IsoXmitContextBase(index);
1489 regs = OHCI1394_IsoRcvContextBase(index);
1492 memset(ctx, 0, sizeof(*ctx));
1493 ctx->header_length = 0;
1494 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1495 if (ctx->header == NULL)
1498 retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1501 goto out_with_header;
1506 free_page((unsigned long)ctx->header);
1508 spin_lock_irqsave(&ohci->lock, flags);
1509 *mask |= 1 << index;
1510 spin_unlock_irqrestore(&ohci->lock, flags);
1512 return ERR_PTR(retval);
1515 static int ohci_start_iso(struct fw_iso_context *base,
1516 s32 cycle, u32 sync, u32 tags)
1518 struct iso_context *ctx = container_of(base, struct iso_context, base);
1519 struct fw_ohci *ohci = ctx->context.ohci;
1523 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1524 index = ctx - ohci->it_context_list;
1527 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1528 (cycle & 0x7fff) << 16;
1530 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1531 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1532 context_run(&ctx->context, match);
1534 index = ctx - ohci->ir_context_list;
1535 control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
1536 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1538 match |= (cycle & 0x07fff) << 12;
1539 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1542 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1543 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1544 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1545 context_run(&ctx->context, control);
1551 static int ohci_stop_iso(struct fw_iso_context *base)
1553 struct fw_ohci *ohci = fw_ohci(base->card);
1554 struct iso_context *ctx = container_of(base, struct iso_context, base);
1557 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1558 index = ctx - ohci->it_context_list;
1559 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1561 index = ctx - ohci->ir_context_list;
1562 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1565 context_stop(&ctx->context);
1570 static void ohci_free_iso_context(struct fw_iso_context *base)
1572 struct fw_ohci *ohci = fw_ohci(base->card);
1573 struct iso_context *ctx = container_of(base, struct iso_context, base);
1574 unsigned long flags;
1577 ohci_stop_iso(base);
1578 context_release(&ctx->context);
1579 free_page((unsigned long)ctx->header);
1581 spin_lock_irqsave(&ohci->lock, flags);
1583 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1584 index = ctx - ohci->it_context_list;
1585 ohci->it_context_mask |= 1 << index;
1587 index = ctx - ohci->ir_context_list;
1588 ohci->ir_context_mask |= 1 << index;
1591 spin_unlock_irqrestore(&ohci->lock, flags);
1595 ohci_queue_iso_transmit(struct fw_iso_context *base,
1596 struct fw_iso_packet *packet,
1597 struct fw_iso_buffer *buffer,
1598 unsigned long payload)
1600 struct iso_context *ctx = container_of(base, struct iso_context, base);
1601 struct descriptor *d, *last, *pd;
1602 struct fw_iso_packet *p;
1604 dma_addr_t d_bus, page_bus;
1605 u32 z, header_z, payload_z, irq;
1606 u32 payload_index, payload_end_index, next_page_index;
1607 int page, end_page, i, length, offset;
1610 * FIXME: Cycle lost behavior should be configurable: lose
1611 * packet, retransmit or terminate..
1615 payload_index = payload;
1621 if (p->header_length > 0)
1624 /* Determine the first page the payload isn't contained in. */
1625 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1626 if (p->payload_length > 0)
1627 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1633 /* Get header size in number of descriptors. */
1634 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1636 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1641 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1642 d[0].req_count = cpu_to_le16(8);
1644 header = (__le32 *) &d[1];
1645 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1646 IT_HEADER_TAG(p->tag) |
1647 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1648 IT_HEADER_CHANNEL(ctx->base.channel) |
1649 IT_HEADER_SPEED(ctx->base.speed));
1651 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1652 p->payload_length));
1655 if (p->header_length > 0) {
1656 d[2].req_count = cpu_to_le16(p->header_length);
1657 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1658 memcpy(&d[z], p->header, p->header_length);
1661 pd = d + z - payload_z;
1662 payload_end_index = payload_index + p->payload_length;
1663 for (i = 0; i < payload_z; i++) {
1664 page = payload_index >> PAGE_SHIFT;
1665 offset = payload_index & ~PAGE_MASK;
1666 next_page_index = (page + 1) << PAGE_SHIFT;
1668 min(next_page_index, payload_end_index) - payload_index;
1669 pd[i].req_count = cpu_to_le16(length);
1671 page_bus = page_private(buffer->pages[page]);
1672 pd[i].data_address = cpu_to_le32(page_bus + offset);
1674 payload_index += length;
1678 irq = DESCRIPTOR_IRQ_ALWAYS;
1680 irq = DESCRIPTOR_NO_IRQ;
1682 last = z == 2 ? d : d + z - 1;
1683 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1685 DESCRIPTOR_BRANCH_ALWAYS |
1688 context_append(&ctx->context, d, z, header_z);
1694 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1695 struct fw_iso_packet *packet,
1696 struct fw_iso_buffer *buffer,
1697 unsigned long payload)
1699 struct iso_context *ctx = container_of(base, struct iso_context, base);
1700 struct db_descriptor *db = NULL;
1701 struct descriptor *d;
1702 struct fw_iso_packet *p;
1703 dma_addr_t d_bus, page_bus;
1704 u32 z, header_z, length, rest;
1705 int page, offset, packet_count, header_size;
1708 * FIXME: Cycle lost behavior should be configurable: lose
1709 * packet, retransmit or terminate..
1713 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1717 db = (struct db_descriptor *) d;
1718 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1719 DESCRIPTOR_BRANCH_ALWAYS |
1721 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1722 context_append(&ctx->context, d, 2, 0);
1729 * The OHCI controller puts the status word in the header
1730 * buffer too, so we need 4 extra bytes per packet.
1732 packet_count = p->header_length / ctx->base.header_size;
1733 header_size = packet_count * (ctx->base.header_size + 4);
1735 /* Get header size in number of descriptors. */
1736 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1737 page = payload >> PAGE_SHIFT;
1738 offset = payload & ~PAGE_MASK;
1739 rest = p->payload_length;
1741 /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1742 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1744 d = context_get_descriptors(&ctx->context,
1745 z + header_z, &d_bus);
1749 db = (struct db_descriptor *) d;
1750 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1751 DESCRIPTOR_BRANCH_ALWAYS);
1752 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1753 db->first_req_count = cpu_to_le16(header_size);
1754 db->first_res_count = db->first_req_count;
1755 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1757 if (offset + rest < PAGE_SIZE)
1760 length = PAGE_SIZE - offset;
1762 db->second_req_count = cpu_to_le16(length);
1763 db->second_res_count = db->second_req_count;
1764 page_bus = page_private(buffer->pages[page]);
1765 db->second_buffer = cpu_to_le32(page_bus + offset);
1767 if (p->interrupt && length == rest)
1768 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1770 context_append(&ctx->context, d, z, header_z);
1771 offset = (offset + length) & ~PAGE_MASK;
1780 ohci_queue_iso(struct fw_iso_context *base,
1781 struct fw_iso_packet *packet,
1782 struct fw_iso_buffer *buffer,
1783 unsigned long payload)
1785 struct iso_context *ctx = container_of(base, struct iso_context, base);
1787 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1788 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1789 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1790 return ohci_queue_iso_receive_dualbuffer(base, packet,
1793 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1797 static const struct fw_card_driver ohci_driver = {
1798 .name = ohci_driver_name,
1799 .enable = ohci_enable,
1800 .update_phy_reg = ohci_update_phy_reg,
1801 .set_config_rom = ohci_set_config_rom,
1802 .send_request = ohci_send_request,
1803 .send_response = ohci_send_response,
1804 .cancel_packet = ohci_cancel_packet,
1805 .enable_phys_dma = ohci_enable_phys_dma,
1806 .get_bus_time = ohci_get_bus_time,
1808 .allocate_iso_context = ohci_allocate_iso_context,
1809 .free_iso_context = ohci_free_iso_context,
1810 .queue_iso = ohci_queue_iso,
1811 .start_iso = ohci_start_iso,
1812 .stop_iso = ohci_stop_iso,
1815 static int __devinit
1816 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1818 struct fw_ohci *ohci;
1819 u32 bus_options, max_receive, link_speed;
1824 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1826 fw_error("Could not malloc fw_ohci data.\n");
1830 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1832 err = pci_enable_device(dev);
1834 fw_error("Failed to enable OHCI hardware.\n");
1838 pci_set_master(dev);
1839 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1840 pci_set_drvdata(dev, ohci);
1842 spin_lock_init(&ohci->lock);
1844 tasklet_init(&ohci->bus_reset_tasklet,
1845 bus_reset_tasklet, (unsigned long)ohci);
1847 err = pci_request_region(dev, 0, ohci_driver_name);
1849 fw_error("MMIO resource unavailable\n");
1853 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1854 if (ohci->registers == NULL) {
1855 fw_error("Failed to remap registers\n");
1860 ar_context_init(&ohci->ar_request_ctx, ohci,
1861 OHCI1394_AsReqRcvContextControlSet);
1863 ar_context_init(&ohci->ar_response_ctx, ohci,
1864 OHCI1394_AsRspRcvContextControlSet);
1866 context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1867 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1869 context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1870 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1872 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1873 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1874 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1875 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1876 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1878 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1879 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1880 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1881 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1882 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1884 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1885 fw_error("Out of memory for it/ir contexts.\n");
1887 goto fail_registers;
1890 /* self-id dma buffer allocation */
1891 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1895 if (ohci->self_id_cpu == NULL) {
1896 fw_error("Out of memory for self ID buffer.\n");
1898 goto fail_registers;
1901 bus_options = reg_read(ohci, OHCI1394_BusOptions);
1902 max_receive = (bus_options >> 12) & 0xf;
1903 link_speed = bus_options & 0x7;
1904 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1905 reg_read(ohci, OHCI1394_GUIDLo);
1907 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1911 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1912 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1913 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1914 if (ohci->version < OHCI_VERSION_1_1) {
1915 fw_notify(" Isochronous I/O is not yet implemented for "
1916 "OHCI 1.0 chips.\n");
1917 fw_notify(" Cameras, audio devices etc. won't work on "
1918 "this controller with this driver version.\n");
1923 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1924 ohci->self_id_cpu, ohci->self_id_bus);
1926 kfree(ohci->it_context_list);
1927 kfree(ohci->ir_context_list);
1928 pci_iounmap(dev, ohci->registers);
1930 pci_release_region(dev, 0);
1932 pci_disable_device(dev);
1934 fw_card_put(&ohci->card);
1939 static void pci_remove(struct pci_dev *dev)
1941 struct fw_ohci *ohci;
1943 ohci = pci_get_drvdata(dev);
1944 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1946 fw_core_remove_card(&ohci->card);
1949 * FIXME: Fail all pending packets here, now that the upper
1950 * layers can't queue any more.
1953 software_reset(ohci);
1954 free_irq(dev->irq, ohci);
1955 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1956 ohci->self_id_cpu, ohci->self_id_bus);
1957 kfree(ohci->it_context_list);
1958 kfree(ohci->ir_context_list);
1959 pci_iounmap(dev, ohci->registers);
1960 pci_release_region(dev, 0);
1961 pci_disable_device(dev);
1962 fw_card_put(&ohci->card);
1964 fw_notify("Removed fw-ohci device.\n");
1968 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
1970 struct fw_ohci *ohci = pci_get_drvdata(pdev);
1973 software_reset(ohci);
1974 free_irq(pdev->irq, ohci);
1975 err = pci_save_state(pdev);
1977 fw_error("pci_save_state failed\n");
1980 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
1982 fw_error("pci_set_power_state failed with %d\n", err);
1987 static int pci_resume(struct pci_dev *pdev)
1989 struct fw_ohci *ohci = pci_get_drvdata(pdev);
1992 pci_set_power_state(pdev, PCI_D0);
1993 pci_restore_state(pdev);
1994 err = pci_enable_device(pdev);
1996 fw_error("pci_enable_device failed\n");
2000 return ohci_enable(&ohci->card, NULL, 0);
2004 static struct pci_device_id pci_table[] = {
2005 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2009 MODULE_DEVICE_TABLE(pci, pci_table);
2011 static struct pci_driver fw_ohci_pci_driver = {
2012 .name = ohci_driver_name,
2013 .id_table = pci_table,
2015 .remove = pci_remove,
2017 .resume = pci_resume,
2018 .suspend = pci_suspend,
2022 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2023 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2024 MODULE_LICENSE("GPL");
2026 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2027 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2028 MODULE_ALIAS("ohci1394");
2031 static int __init fw_ohci_init(void)
2033 return pci_register_driver(&fw_ohci_pci_driver);
2036 static void __exit fw_ohci_cleanup(void)
2038 pci_unregister_driver(&fw_ohci_pci_driver);
2041 module_init(fw_ohci_init);
2042 module_exit(fw_ohci_cleanup);