2 * Isochronous I/O functionality:
3 * - Isochronous DMA context management
4 * - Isochronous bus resource management (channels, bandwidth), client side
6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/kernel.h>
28 #include <linux/spinlock.h>
29 #include <linux/vmalloc.h>
31 #include "fw-topology.h"
32 #include "fw-transaction.h"
35 * Isochronous DMA context management
38 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
39 int page_count, enum dma_data_direction direction)
44 buffer->page_count = page_count;
45 buffer->direction = direction;
47 buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
49 if (buffer->pages == NULL)
52 for (i = 0; i < buffer->page_count; i++) {
53 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
54 if (buffer->pages[i] == NULL)
57 address = dma_map_page(card->device, buffer->pages[i],
58 0, PAGE_SIZE, direction);
59 if (dma_mapping_error(card->device, address)) {
60 __free_page(buffer->pages[i]);
63 set_page_private(buffer->pages[i], address);
69 for (j = 0; j < i; j++) {
70 address = page_private(buffer->pages[j]);
71 dma_unmap_page(card->device, address,
72 PAGE_SIZE, DMA_TO_DEVICE);
73 __free_page(buffer->pages[j]);
82 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
87 uaddr = vma->vm_start;
88 for (i = 0; i < buffer->page_count; i++) {
89 err = vm_insert_page(vma, uaddr, buffer->pages[i]);
99 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
100 struct fw_card *card)
105 for (i = 0; i < buffer->page_count; i++) {
106 address = page_private(buffer->pages[i]);
107 dma_unmap_page(card->device, address,
108 PAGE_SIZE, DMA_TO_DEVICE);
109 __free_page(buffer->pages[i]);
112 kfree(buffer->pages);
113 buffer->pages = NULL;
116 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
117 int type, int channel, int speed, size_t header_size,
118 fw_iso_callback_t callback, void *callback_data)
120 struct fw_iso_context *ctx;
122 ctx = card->driver->allocate_iso_context(card,
123 type, channel, header_size);
129 ctx->channel = channel;
131 ctx->header_size = header_size;
132 ctx->callback = callback;
133 ctx->callback_data = callback_data;
138 void fw_iso_context_destroy(struct fw_iso_context *ctx)
140 struct fw_card *card = ctx->card;
142 card->driver->free_iso_context(ctx);
145 int fw_iso_context_start(struct fw_iso_context *ctx,
146 int cycle, int sync, int tags)
148 return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
151 int fw_iso_context_queue(struct fw_iso_context *ctx,
152 struct fw_iso_packet *packet,
153 struct fw_iso_buffer *buffer,
154 unsigned long payload)
156 struct fw_card *card = ctx->card;
158 return card->driver->queue_iso(ctx, packet, buffer, payload);
161 int fw_iso_context_stop(struct fw_iso_context *ctx)
163 return ctx->card->driver->stop_iso(ctx);
167 * Isochronous bus resource management (channels, bandwidth), client side
170 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
171 int bandwidth, bool allocate)
174 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
177 * On a 1394a IRM with low contention, try < 1 is enough.
178 * On a 1394-1995 IRM, we need at least try < 2.
179 * Let's just do try < 5.
181 for (try = 0; try < 5; try++) {
182 new = allocate ? old - bandwidth : old + bandwidth;
183 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
186 data[0] = cpu_to_be32(old);
187 data[1] = cpu_to_be32(new);
188 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
189 irm_id, generation, SCODE_100,
190 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
191 data, sizeof(data))) {
192 case RCODE_GENERATION:
193 /* A generation change frees all bandwidth. */
194 return allocate ? -EAGAIN : bandwidth;
197 if (be32_to_cpup(data) == old)
200 old = be32_to_cpup(data);
208 static int manage_channel(struct fw_card *card, int irm_id, int generation,
209 u32 channels_mask, u64 offset, bool allocate)
211 __be32 data[2], c, all, old;
214 old = all = allocate ? cpu_to_be32(~0) : 0;
216 for (i = 0; i < 32; i++) {
217 if (!(channels_mask & 1 << i))
220 c = cpu_to_be32(1 << (31 - i));
221 if ((old & c) != (all & c))
226 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
227 irm_id, generation, SCODE_100,
228 offset, data, sizeof(data))) {
229 case RCODE_GENERATION:
230 /* A generation change frees all channels. */
231 return allocate ? -EAGAIN : i;
239 /* Is the IRM 1394a-2000 compliant? */
240 if ((data[0] & c) == (data[1] & c))
243 /* 1394-1995 IRM, fall through to retry. */
253 static void deallocate_channel(struct fw_card *card, int irm_id,
254 int generation, int channel)
259 mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
260 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
261 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
263 manage_channel(card, irm_id, generation, mask, offset, false);
267 * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
269 * In parameters: card, generation, channels_mask, bandwidth, allocate
270 * Out parameters: channel, bandwidth
271 * This function blocks (sleeps) during communication with the IRM.
273 * Allocates or deallocates at most one channel out of channels_mask.
274 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
275 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
276 * channel 0 and LSB for channel 63.)
277 * Allocates or deallocates as many bandwidth allocation units as specified.
279 * Returns channel < 0 if no channel was allocated or deallocated.
280 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
282 * If generation is stale, deallocations succeed but allocations fail with
285 * If channel allocation fails, no bandwidth will be allocated either.
286 * If bandwidth allocation fails, no channel will be allocated either.
287 * But deallocations of channel and bandwidth are tried independently
288 * of each other's success.
290 void fw_iso_resource_manage(struct fw_card *card, int generation,
291 u64 channels_mask, int *channel, int *bandwidth,
294 u32 channels_hi = channels_mask; /* channels 31...0 */
295 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
296 int irm_id, ret, c = -EINVAL;
298 spin_lock_irq(&card->lock);
299 irm_id = card->irm_node->node_id;
300 spin_unlock_irq(&card->lock);
303 c = manage_channel(card, irm_id, generation, channels_hi,
304 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, allocate);
305 if (channels_lo && c < 0) {
306 c = manage_channel(card, irm_id, generation, channels_lo,
307 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, allocate);
313 if (allocate && channels_mask != 0 && c < 0)
319 ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
323 if (allocate && ret < 0 && c >= 0) {
324 deallocate_channel(card, irm_id, generation, c);