2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2x00 queue specific routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
31 #include "rt2x00lib.h"
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34 struct queue_entry *entry)
37 struct skb_frame_desc *skbdesc;
38 unsigned int frame_size;
39 unsigned int head_size = 0;
40 unsigned int tail_size = 0;
43 * The frame size includes descriptor size, because the
44 * hardware directly receive the frame into the skbuffer.
46 frame_size = entry->queue->data_size + entry->queue->desc_size;
49 * The payload should be aligned to a 4-byte boundary,
50 * this means we need at least 3 bytes for moving the frame
51 * into the correct offset.
56 * For IV/EIV/ICV assembly we must make sure there is
57 * at least 8 bytes bytes available in headroom for IV/EIV
58 * and 8 bytes for ICV data as tailroon.
60 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
68 skb = dev_alloc_skb(frame_size + head_size + tail_size);
73 * Make sure we not have a frame with the requested bytes
74 * available in the head and tail.
76 skb_reserve(skb, head_size);
77 skb_put(skb, frame_size);
82 skbdesc = get_skb_frame_desc(skb);
83 memset(skbdesc, 0, sizeof(*skbdesc));
84 skbdesc->entry = entry;
86 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
87 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
97 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
99 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
102 * If device has requested headroom, we should make sure that
103 * is also mapped to the DMA so it can be used for transfering
104 * additional descriptor information to the hardware.
106 skb_push(skb, rt2x00dev->hw->extra_tx_headroom);
109 dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
112 * Restore data pointer to original location again.
114 skb_pull(skb, rt2x00dev->hw->extra_tx_headroom);
116 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
118 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
120 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
122 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
124 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
125 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
127 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
130 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
132 * Add headroom to the skb length, it has been removed
133 * by the driver, but it was actually mapped to DMA.
135 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
136 skb->len + rt2x00dev->hw->extra_tx_headroom,
138 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
142 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
147 rt2x00queue_unmap_skb(rt2x00dev, skb);
148 dev_kfree_skb_any(skb);
151 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
152 struct txentry_desc *txdesc)
154 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
155 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
156 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
157 unsigned long irqflags;
159 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
160 unlikely(!tx_info->control.vif))
164 * Hardware should insert sequence counter.
165 * FIXME: We insert a software sequence counter first for
166 * hardware that doesn't support hardware sequence counting.
168 * This is wrong because beacons are not getting sequence
169 * numbers assigned properly.
171 * A secondary problem exists for drivers that cannot toggle
172 * sequence counting per-frame, since those will override the
173 * sequence counter given by mac80211.
175 spin_lock_irqsave(&intf->seqlock, irqflags);
177 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
179 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
180 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
182 spin_unlock_irqrestore(&intf->seqlock, irqflags);
184 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
187 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
188 struct txentry_desc *txdesc,
189 const struct rt2x00_rate *hwrate)
191 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
192 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
193 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
194 unsigned int data_length;
195 unsigned int duration;
196 unsigned int residual;
198 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
199 data_length = entry->skb->len + 4;
200 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
204 * Length calculation depends on OFDM/CCK rate.
206 txdesc->signal = hwrate->plcp;
207 txdesc->service = 0x04;
209 if (hwrate->flags & DEV_RATE_OFDM) {
210 txdesc->length_high = (data_length >> 6) & 0x3f;
211 txdesc->length_low = data_length & 0x3f;
214 * Convert length to microseconds.
216 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
217 duration = GET_DURATION(data_length, hwrate->bitrate);
223 * Check if we need to set the Length Extension
225 if (hwrate->bitrate == 110 && residual <= 30)
226 txdesc->service |= 0x80;
229 txdesc->length_high = (duration >> 8) & 0xff;
230 txdesc->length_low = duration & 0xff;
233 * When preamble is enabled we should set the
234 * preamble bit for the signal.
236 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
237 txdesc->signal |= 0x08;
241 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
242 struct txentry_desc *txdesc)
244 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
245 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
246 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
247 struct ieee80211_rate *rate =
248 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
249 const struct rt2x00_rate *hwrate;
251 memset(txdesc, 0, sizeof(*txdesc));
254 * Initialize information from queue
256 txdesc->queue = entry->queue->qid;
257 txdesc->cw_min = entry->queue->cw_min;
258 txdesc->cw_max = entry->queue->cw_max;
259 txdesc->aifs = entry->queue->aifs;
262 * Check whether this frame is to be acked.
264 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
265 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
268 * Check if this is a RTS/CTS frame
270 if (ieee80211_is_rts(hdr->frame_control) ||
271 ieee80211_is_cts(hdr->frame_control)) {
272 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
273 if (ieee80211_is_rts(hdr->frame_control))
274 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
276 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
277 if (tx_info->control.rts_cts_rate_idx >= 0)
279 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
283 * Determine retry information.
285 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
286 if (txdesc->retry_limit >= rt2x00dev->long_retry)
287 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
290 * Check if more fragments are pending
292 if (ieee80211_has_morefrags(hdr->frame_control)) {
293 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
294 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
298 * Beacons and probe responses require the tsf timestamp
299 * to be inserted into the frame.
301 if (ieee80211_is_beacon(hdr->frame_control) ||
302 ieee80211_is_probe_resp(hdr->frame_control))
303 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
306 * Determine with what IFS priority this frame should be send.
307 * Set ifs to IFS_SIFS when the this is not the first fragment,
308 * or this fragment came after RTS/CTS.
310 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
311 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
312 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
313 txdesc->ifs = IFS_BACKOFF;
315 txdesc->ifs = IFS_SIFS;
318 * Determine rate modulation.
320 hwrate = rt2x00_get_rate(rate->hw_value);
321 txdesc->rate_mode = RATE_MODE_CCK;
322 if (hwrate->flags & DEV_RATE_OFDM)
323 txdesc->rate_mode = RATE_MODE_OFDM;
326 * Apply TX descriptor handling by components
328 rt2x00crypto_create_tx_descriptor(entry, txdesc);
329 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
330 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
333 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
334 struct txentry_desc *txdesc)
336 struct data_queue *queue = entry->queue;
337 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
339 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
342 * All processing on the frame has been completed, this means
343 * it is now ready to be dumped to userspace through debugfs.
345 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
348 * Check if we need to kick the queue, there are however a few rules
349 * 1) Don't kick beacon queue
350 * 2) Don't kick unless this is the last in frame in a burst.
351 * When the burst flag is set, this frame is always followed
352 * by another frame which in some way are related to eachother.
353 * This is true for fragments, RTS or CTS-to-self frames.
354 * 3) Rule 2 can be broken when the available entries
355 * in the queue are less then a certain threshold.
357 if (entry->queue->qid == QID_BEACON)
360 if (rt2x00queue_threshold(queue) ||
361 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
362 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
365 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
367 struct ieee80211_tx_info *tx_info;
368 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
369 struct txentry_desc txdesc;
370 struct skb_frame_desc *skbdesc;
371 unsigned int iv_len = 0;
372 u8 rate_idx, rate_flags;
374 if (unlikely(rt2x00queue_full(queue)))
377 if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
378 ERROR(queue->rt2x00dev,
379 "Arrived at non-free entry in the non-full queue %d.\n"
380 "Please file bug report to %s.\n",
381 queue->qid, DRV_PROJECT);
386 * Copy all TX descriptor information into txdesc,
387 * after that we are free to use the skb->cb array
388 * for our information.
391 rt2x00queue_create_tx_descriptor(entry, &txdesc);
393 if (IEEE80211_SKB_CB(skb)->control.hw_key != NULL)
394 iv_len = IEEE80211_SKB_CB(skb)->control.hw_key->iv_len;
397 * All information is retrieved from the skb->cb array,
398 * now we should claim ownership of the driver part of that
399 * array, preserving the bitrate index and flags.
401 tx_info = IEEE80211_SKB_CB(skb);
402 rate_idx = tx_info->control.rates[0].idx;
403 rate_flags = tx_info->control.rates[0].flags;
404 skbdesc = get_skb_frame_desc(skb);
405 memset(skbdesc, 0, sizeof(*skbdesc));
406 skbdesc->entry = entry;
407 skbdesc->tx_rate_idx = rate_idx;
408 skbdesc->tx_rate_flags = rate_flags;
411 * When hardware encryption is supported, and this frame
412 * is to be encrypted, we should strip the IV/EIV data from
413 * the frame so we can provide it to the driver seperately.
415 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
416 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
417 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
418 rt2x00crypto_tx_copy_iv(skb, iv_len);
420 rt2x00crypto_tx_remove_iv(skb, iv_len);
424 * It could be possible that the queue was corrupted and this
425 * call failed. Since we always return NETDEV_TX_OK to mac80211,
426 * this frame will simply be dropped.
428 if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
429 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
434 if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
435 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
437 set_bit(ENTRY_DATA_PENDING, &entry->flags);
439 rt2x00queue_index_inc(queue, Q_INDEX);
440 rt2x00queue_write_tx_descriptor(entry, &txdesc);
445 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
446 struct ieee80211_vif *vif,
447 const bool enable_beacon)
449 struct rt2x00_intf *intf = vif_to_intf(vif);
450 struct skb_frame_desc *skbdesc;
451 struct txentry_desc txdesc;
454 if (unlikely(!intf->beacon))
457 if (!enable_beacon) {
458 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
462 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
463 if (!intf->beacon->skb)
467 * Copy all TX descriptor information into txdesc,
468 * after that we are free to use the skb->cb array
469 * for our information.
471 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
474 * For the descriptor we use a local array from where the
475 * driver can move it to the correct location required for
478 memset(desc, 0, sizeof(desc));
481 * Fill in skb descriptor
483 skbdesc = get_skb_frame_desc(intf->beacon->skb);
484 memset(skbdesc, 0, sizeof(*skbdesc));
485 skbdesc->desc = desc;
486 skbdesc->desc_len = intf->beacon->queue->desc_size;
487 skbdesc->entry = intf->beacon;
490 * Write TX descriptor into reserved room in front of the beacon.
492 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
495 * Send beacon to hardware.
496 * Also enable beacon generation, which might have been disabled
497 * by the driver during the config_beacon() callback function.
499 rt2x00dev->ops->lib->write_beacon(intf->beacon);
500 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
505 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
506 const enum data_queue_qid queue)
508 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
511 return rt2x00dev->rx;
513 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
514 return &rt2x00dev->tx[queue];
519 if (queue == QID_BEACON)
520 return &rt2x00dev->bcn[0];
521 else if (queue == QID_ATIM && atim)
522 return &rt2x00dev->bcn[1];
526 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
528 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
529 enum queue_index index)
531 struct queue_entry *entry;
532 unsigned long irqflags;
534 if (unlikely(index >= Q_INDEX_MAX)) {
535 ERROR(queue->rt2x00dev,
536 "Entry requested from invalid index type (%d)\n", index);
540 spin_lock_irqsave(&queue->lock, irqflags);
542 entry = &queue->entries[queue->index[index]];
544 spin_unlock_irqrestore(&queue->lock, irqflags);
548 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
550 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
552 unsigned long irqflags;
554 if (unlikely(index >= Q_INDEX_MAX)) {
555 ERROR(queue->rt2x00dev,
556 "Index change on invalid index type (%d)\n", index);
560 spin_lock_irqsave(&queue->lock, irqflags);
562 queue->index[index]++;
563 if (queue->index[index] >= queue->limit)
564 queue->index[index] = 0;
566 if (index == Q_INDEX) {
568 } else if (index == Q_INDEX_DONE) {
573 spin_unlock_irqrestore(&queue->lock, irqflags);
576 static void rt2x00queue_reset(struct data_queue *queue)
578 unsigned long irqflags;
580 spin_lock_irqsave(&queue->lock, irqflags);
584 memset(queue->index, 0, sizeof(queue->index));
586 spin_unlock_irqrestore(&queue->lock, irqflags);
589 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
591 struct data_queue *queue;
593 txall_queue_for_each(rt2x00dev, queue)
594 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
597 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
599 struct data_queue *queue;
602 queue_for_each(rt2x00dev, queue) {
603 rt2x00queue_reset(queue);
605 for (i = 0; i < queue->limit; i++) {
606 queue->entries[i].flags = 0;
608 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
613 static int rt2x00queue_alloc_entries(struct data_queue *queue,
614 const struct data_queue_desc *qdesc)
616 struct queue_entry *entries;
617 unsigned int entry_size;
620 rt2x00queue_reset(queue);
622 queue->limit = qdesc->entry_num;
623 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
624 queue->data_size = qdesc->data_size;
625 queue->desc_size = qdesc->desc_size;
628 * Allocate all queue entries.
630 entry_size = sizeof(*entries) + qdesc->priv_size;
631 entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
635 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
636 ( ((char *)(__base)) + ((__limit) * (__esize)) + \
637 ((__index) * (__psize)) )
639 for (i = 0; i < queue->limit; i++) {
640 entries[i].flags = 0;
641 entries[i].queue = queue;
642 entries[i].skb = NULL;
643 entries[i].entry_idx = i;
644 entries[i].priv_data =
645 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
646 sizeof(*entries), qdesc->priv_size);
649 #undef QUEUE_ENTRY_PRIV_OFFSET
651 queue->entries = entries;
656 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
657 struct data_queue *queue)
664 for (i = 0; i < queue->limit; i++) {
665 if (queue->entries[i].skb)
666 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
670 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
671 struct data_queue *queue)
676 for (i = 0; i < queue->limit; i++) {
677 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
680 queue->entries[i].skb = skb;
686 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
688 struct data_queue *queue;
691 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
695 tx_queue_for_each(rt2x00dev, queue) {
696 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
701 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
705 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
706 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
707 rt2x00dev->ops->atim);
712 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
719 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
721 rt2x00queue_uninitialize(rt2x00dev);
726 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
728 struct data_queue *queue;
730 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
732 queue_for_each(rt2x00dev, queue) {
733 kfree(queue->entries);
734 queue->entries = NULL;
738 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
739 struct data_queue *queue, enum data_queue_qid qid)
741 spin_lock_init(&queue->lock);
743 queue->rt2x00dev = rt2x00dev;
751 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
753 struct data_queue *queue;
754 enum data_queue_qid qid;
755 unsigned int req_atim =
756 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
759 * We need the following queues:
763 * Atim: 1 (if required)
765 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
767 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
769 ERROR(rt2x00dev, "Queue allocation failed.\n");
774 * Initialize pointers
776 rt2x00dev->rx = queue;
777 rt2x00dev->tx = &queue[1];
778 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
781 * Initialize queue parameters.
783 * TX: qid = QID_AC_BE + index
784 * TX: cw_min: 2^5 = 32.
785 * TX: cw_max: 2^10 = 1024.
786 * BCN: qid = QID_BEACON
787 * ATIM: qid = QID_ATIM
789 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
792 tx_queue_for_each(rt2x00dev, queue)
793 rt2x00queue_init(rt2x00dev, queue, qid++);
795 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
797 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
802 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
804 kfree(rt2x00dev->rx);
805 rt2x00dev->rx = NULL;
806 rt2x00dev->tx = NULL;
807 rt2x00dev->bcn = NULL;