3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
7 #include <asm/spu_priv1.h>
9 #include <asm/unistd.h>
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu *spu)
16 struct spu_context *ctx = spu->ctx;
19 * It should be impossible to preempt a context while an exception
20 * is being processed, since the context switch code is specially
21 * coded to deal with interrupts ... But, just in case, sanity check
22 * the context pointer. It is OK to return doing nothing since
23 * the exception will be regenerated when the context is resumed.
26 /* Copy exception arguments into module specific structure */
27 ctx->csa.class_0_pending = spu->class_0_pending;
28 ctx->csa.dsisr = spu->dsisr;
29 ctx->csa.dar = spu->dar;
31 /* ensure that the exception status has hit memory before a
32 * thread waiting on the context's stop queue is woken */
35 wake_up_all(&ctx->stop_wq);
38 /* Clear callback arguments from spu structure */
39 spu->class_0_pending = 0;
44 int spu_stopped(struct spu_context *ctx, u32 *stat)
49 *stat = ctx->ops->status_read(ctx);
51 if (test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags))
54 stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
55 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
59 dsisr = ctx->csa.dsisr;
60 if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED))
63 if (ctx->csa.class_0_pending)
69 static int spu_setup_isolated(struct spu_context *ctx)
72 u64 __iomem *mfc_cntl;
75 unsigned long timeout;
76 const u32 status_loading = SPU_STATUS_RUNNING
77 | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
84 * We need to exclude userspace access to the context.
86 * To protect against memory access we invalidate all ptes
87 * and make sure the pagefault handlers block on the mutex.
89 spu_unmap_mappings(ctx);
91 mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
93 /* purge the MFC DMA queue to ensure no spurious accesses before we
94 * enter kernel mode */
95 timeout = jiffies + HZ;
96 out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
97 while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
98 != MFC_CNTL_PURGE_DMA_COMPLETE) {
99 if (time_after(jiffies, timeout)) {
100 printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
108 /* put the SPE in kernel mode to allow access to the loader */
109 sr1 = spu_mfc_sr1_get(ctx->spu);
110 sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
111 spu_mfc_sr1_set(ctx->spu, sr1);
113 /* start the loader */
114 ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
115 ctx->ops->signal2_write(ctx,
116 (unsigned long)isolated_loader & 0xffffffff);
118 ctx->ops->runcntl_write(ctx,
119 SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
122 timeout = jiffies + HZ;
123 while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
125 if (time_after(jiffies, timeout)) {
126 printk(KERN_ERR "%s: timeout waiting for loader\n",
134 if (!(status & SPU_STATUS_RUNNING)) {
135 /* If isolated LOAD has failed: run SPU, we will get a stop-and
137 pr_debug("%s: isolated LOAD failed\n", __FUNCTION__);
138 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
143 if (!(status & SPU_STATUS_ISOLATED_STATE)) {
144 /* This isn't allowed by the CBEA, but check anyway */
145 pr_debug("%s: SPU fell out of isolated mode?\n", __FUNCTION__);
146 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
152 /* Finished accessing the loader. Drop kernel mode */
153 sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
154 spu_mfc_sr1_set(ctx->spu, sr1);
160 static int spu_run_init(struct spu_context *ctx, u32 *npc)
162 unsigned long runcntl = SPU_RUNCNTL_RUNNABLE;
165 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
168 * NOSCHED is synchronous scheduling with respect to the caller.
169 * The caller waits for the context to be loaded.
171 if (ctx->flags & SPU_CREATE_NOSCHED) {
172 if (ctx->state == SPU_STATE_SAVED) {
173 ret = spu_activate(ctx, 0);
180 * Apply special setup as required.
182 if (ctx->flags & SPU_CREATE_ISOLATE) {
183 if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
184 ret = spu_setup_isolated(ctx);
190 * If userspace has set the runcntrl register (eg, to
191 * issue an isolated exit), we need to re-set it here
193 runcntl = ctx->ops->runcntl_read(ctx) &
194 (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
196 runcntl = SPU_RUNCNTL_RUNNABLE;
199 if (ctx->flags & SPU_CREATE_NOSCHED) {
200 spuctx_switch_state(ctx, SPU_UTIL_USER);
201 ctx->ops->runcntl_write(ctx, runcntl);
203 unsigned long privcntl;
205 if (test_thread_flag(TIF_SINGLESTEP))
206 privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP;
208 privcntl = SPU_PRIVCNTL_MODE_NORMAL;
210 ctx->ops->npc_write(ctx, *npc);
211 ctx->ops->privcntl_write(ctx, privcntl);
212 ctx->ops->runcntl_write(ctx, runcntl);
214 if (ctx->state == SPU_STATE_SAVED) {
215 ret = spu_activate(ctx, 0);
219 spuctx_switch_state(ctx, SPU_UTIL_USER);
226 static int spu_run_fini(struct spu_context *ctx, u32 *npc,
231 spu_del_from_rq(ctx);
233 *status = ctx->ops->status_read(ctx);
234 *npc = ctx->ops->npc_read(ctx);
236 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
239 if (signal_pending(current))
246 * SPU syscall restarting is tricky because we violate the basic
247 * assumption that the signal handler is running on the interrupted
248 * thread. Here instead, the handler runs on PowerPC user space code,
249 * while the syscall was called from the SPU.
250 * This means we can only do a very rough approximation of POSIX
253 static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
260 case -ERESTARTNOINTR:
262 * Enter the regular syscall restarting for
263 * sys_spu_run, then restart the SPU syscall
269 case -ERESTARTNOHAND:
270 case -ERESTART_RESTARTBLOCK:
272 * Restart block is too hard for now, just return -EINTR
274 * ERESTARTNOHAND comes from sys_pause, we also return
276 * Assume that we need to be restarted ourselves though.
282 printk(KERN_WARNING "%s: unexpected return code %ld\n",
283 __FUNCTION__, *spu_ret);
289 static int spu_process_callback(struct spu_context *ctx)
291 struct spu_syscall_block s;
297 /* get syscall block from local store */
298 npc = ctx->ops->npc_read(ctx) & ~3;
299 ls = (void __iomem *)ctx->ops->get_ls(ctx);
300 ls_pointer = in_be32(ls + npc);
301 if (ls_pointer > (LS_SIZE - sizeof(s)))
303 memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
305 /* do actual syscall without pinning the spu */
310 if (s.nr_ret < __NR_syscalls) {
312 /* do actual system call from here */
313 spu_ret = spu_sys_callback(&s);
314 if (spu_ret <= -ERESTARTSYS) {
315 ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
317 ret2 = spu_acquire(ctx);
318 if (ret == -ERESTARTSYS)
324 /* write result, jump over indirect pointer */
325 memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
326 ctx->ops->npc_write(ctx, npc);
327 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
331 long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event)
337 if (mutex_lock_interruptible(&ctx->run_mutex))
341 ctx->event_return = 0;
343 ret = spu_acquire(ctx);
347 spu_update_sched_info(ctx);
349 ret = spu_run_init(ctx, npc);
356 ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
360 if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE,
361 &ctx->sched_flags))) {
362 if (!(status & SPU_STATUS_STOPPED_BY_STOP)) {
363 spu_switch_notify(spu, ctx);
368 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
370 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
371 (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
372 ret = spu_process_callback(ctx);
375 status &= ~SPU_STATUS_STOPPED_BY_STOP;
377 ret = spufs_handle_class1(ctx);
381 ret = spufs_handle_class0(ctx);
385 if (signal_pending(current))
387 } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
388 SPU_STATUS_STOPPED_BY_HALT |
389 SPU_STATUS_SINGLE_STEP)));
391 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
392 (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100) &&
393 (ctx->state == SPU_STATE_RUNNABLE))
394 ctx->stats.libassist++;
397 spu_disable_spu(ctx);
398 ret = spu_run_fini(ctx, npc, &status);
402 ((ret == -ERESTARTSYS) &&
403 ((status & SPU_STATUS_STOPPED_BY_HALT) ||
404 (status & SPU_STATUS_SINGLE_STEP) ||
405 ((status & SPU_STATUS_STOPPED_BY_STOP) &&
406 (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
409 /* Note: we don't need to force_sig SIGTRAP on single-step
410 * since we have TIF_SINGLESTEP set, thus the kernel will do
411 * it upon return from the syscall anyawy
413 if ((status & SPU_STATUS_STOPPED_BY_STOP)
414 && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff) {
415 force_sig(SIGTRAP, current);
420 *event = ctx->event_return;
422 mutex_unlock(&ctx->run_mutex);