Merge branch 'for-2.6.25' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus...
[linux-2.6] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
43 #include <asm/system.h>
44
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49
50 #include "fw-transaction.h"
51 #include "fw-topology.h"
52 #include "fw-device.h"
53
54 /*
55  * So far only bridges from Oxford Semiconductor are known to support
56  * concurrent logins. Depending on firmware, four or two concurrent logins
57  * are possible on OXFW911 and newer Oxsemi bridges.
58  *
59  * Concurrent logins are useful together with cluster filesystems.
60  */
61 static int sbp2_param_exclusive_login = 1;
62 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
63 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
64                  "(default = Y, use N for concurrent initiators)");
65
66 /*
67  * Flags for firmware oddities
68  *
69  * - 128kB max transfer
70  *   Limit transfer size. Necessary for some old bridges.
71  *
72  * - 36 byte inquiry
73  *   When scsi_mod probes the device, let the inquiry command look like that
74  *   from MS Windows.
75  *
76  * - skip mode page 8
77  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
78  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
79  *
80  * - fix capacity
81  *   Tell sd_mod to correct the last sector number reported by read_capacity.
82  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
83  *   Don't use this with devices which don't have this bug.
84  *
85  * - override internal blacklist
86  *   Instead of adding to the built-in blacklist, use only the workarounds
87  *   specified in the module load parameter.
88  *   Useful if a blacklist entry interfered with a non-broken device.
89  */
90 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
91 #define SBP2_WORKAROUND_INQUIRY_36      0x2
92 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
93 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
94 #define SBP2_WORKAROUND_OVERRIDE        0x100
95
96 static int sbp2_param_workarounds;
97 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
98 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
99         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
100         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
101         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
102         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
103         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
104         ", or a combination)");
105
106 /* I don't know why the SCSI stack doesn't define something like this... */
107 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
108
109 static const char sbp2_driver_name[] = "sbp2";
110
111 /*
112  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
113  * and one struct scsi_device per sbp2_logical_unit.
114  */
115 struct sbp2_logical_unit {
116         struct sbp2_target *tgt;
117         struct list_head link;
118         struct scsi_device *sdev;
119         struct fw_address_handler address_handler;
120         struct list_head orb_list;
121
122         u64 command_block_agent_address;
123         u16 lun;
124         int login_id;
125
126         /*
127          * The generation is updated once we've logged in or reconnected
128          * to the logical unit.  Thus, I/O to the device will automatically
129          * fail and get retried if it happens in a window where the device
130          * is not ready, e.g. after a bus reset but before we reconnect.
131          */
132         int generation;
133         int retries;
134         struct delayed_work work;
135 };
136
137 /*
138  * We create one struct sbp2_target per IEEE 1212 Unit Directory
139  * and one struct Scsi_Host per sbp2_target.
140  */
141 struct sbp2_target {
142         struct kref kref;
143         struct fw_unit *unit;
144
145         u64 management_agent_address;
146         int directory_id;
147         int node_id;
148         int address_high;
149
150         unsigned workarounds;
151         struct list_head lu_list;
152
153         unsigned int mgt_orb_timeout;
154 };
155
156 /*
157  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
158  * provided in the config rom. Most devices do provide a value, which
159  * we'll use for login management orbs, but with some sane limits.
160  */
161 #define SBP2_MIN_LOGIN_ORB_TIMEOUT      5000U   /* Timeout in ms */
162 #define SBP2_MAX_LOGIN_ORB_TIMEOUT      40000U  /* Timeout in ms */
163 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
164 #define SBP2_ORB_NULL                   0x80000000
165 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
166
167 #define SBP2_DIRECTION_TO_MEDIA         0x0
168 #define SBP2_DIRECTION_FROM_MEDIA       0x1
169
170 /* Unit directory keys */
171 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
172 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
173 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
174 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
175
176 /* Management orb opcodes */
177 #define SBP2_LOGIN_REQUEST              0x0
178 #define SBP2_QUERY_LOGINS_REQUEST       0x1
179 #define SBP2_RECONNECT_REQUEST          0x3
180 #define SBP2_SET_PASSWORD_REQUEST       0x4
181 #define SBP2_LOGOUT_REQUEST             0x7
182 #define SBP2_ABORT_TASK_REQUEST         0xb
183 #define SBP2_ABORT_TASK_SET             0xc
184 #define SBP2_LOGICAL_UNIT_RESET         0xe
185 #define SBP2_TARGET_RESET_REQUEST       0xf
186
187 /* Offsets for command block agent registers */
188 #define SBP2_AGENT_STATE                0x00
189 #define SBP2_AGENT_RESET                0x04
190 #define SBP2_ORB_POINTER                0x08
191 #define SBP2_DOORBELL                   0x10
192 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
193
194 /* Status write response codes */
195 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
196 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
197 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
198 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
199
200 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
201 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
202 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
203 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
204 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
205 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
206 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
207 #define STATUS_GET_DATA(v)              ((v).data)
208
209 struct sbp2_status {
210         u32 status;
211         u32 orb_low;
212         u8 data[24];
213 };
214
215 struct sbp2_pointer {
216         u32 high;
217         u32 low;
218 };
219
220 struct sbp2_orb {
221         struct fw_transaction t;
222         struct kref kref;
223         dma_addr_t request_bus;
224         int rcode;
225         struct sbp2_pointer pointer;
226         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
227         struct list_head link;
228 };
229
230 #define MANAGEMENT_ORB_LUN(v)                   ((v))
231 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
232 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
233 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
234 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
235 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
236
237 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
238 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
239
240 struct sbp2_management_orb {
241         struct sbp2_orb base;
242         struct {
243                 struct sbp2_pointer password;
244                 struct sbp2_pointer response;
245                 u32 misc;
246                 u32 length;
247                 struct sbp2_pointer status_fifo;
248         } request;
249         __be32 response[4];
250         dma_addr_t response_bus;
251         struct completion done;
252         struct sbp2_status status;
253 };
254
255 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
256 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
257
258 struct sbp2_login_response {
259         u32 misc;
260         struct sbp2_pointer command_block_agent;
261         u32 reconnect_hold;
262 };
263 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
264 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
265 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
266 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
267 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
268 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
269 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
270 #define COMMAND_ORB_NOTIFY              ((1) << 31)
271
272 struct sbp2_command_orb {
273         struct sbp2_orb base;
274         struct {
275                 struct sbp2_pointer next;
276                 struct sbp2_pointer data_descriptor;
277                 u32 misc;
278                 u8 command_block[12];
279         } request;
280         struct scsi_cmnd *cmd;
281         scsi_done_fn_t done;
282         struct sbp2_logical_unit *lu;
283
284         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
285         dma_addr_t page_table_bus;
286 };
287
288 /*
289  * List of devices with known bugs.
290  *
291  * The firmware_revision field, masked with 0xffff00, is the best
292  * indicator for the type of bridge chip of a device.  It yields a few
293  * false positives but this did not break correctly behaving devices
294  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
295  * from the config rom can never match that.
296  */
297 static const struct {
298         u32 firmware_revision;
299         u32 model;
300         unsigned workarounds;
301 } sbp2_workarounds_table[] = {
302         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
303                 .firmware_revision      = 0x002800,
304                 .model                  = 0x001010,
305                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
306                                           SBP2_WORKAROUND_MODE_SENSE_8,
307         },
308         /* Initio bridges, actually only needed for some older ones */ {
309                 .firmware_revision      = 0x000200,
310                 .model                  = ~0,
311                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
312         },
313         /* Symbios bridge */ {
314                 .firmware_revision      = 0xa0b800,
315                 .model                  = ~0,
316                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
317         },
318
319         /*
320          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
321          * these iPods do not feature the read_capacity bug according
322          * to one report.  Read_capacity behaviour as well as model_id
323          * could change due to Apple-supplied firmware updates though.
324          */
325
326         /* iPod 4th generation. */ {
327                 .firmware_revision      = 0x0a2700,
328                 .model                  = 0x000021,
329                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
330         },
331         /* iPod mini */ {
332                 .firmware_revision      = 0x0a2700,
333                 .model                  = 0x000023,
334                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
335         },
336         /* iPod Photo */ {
337                 .firmware_revision      = 0x0a2700,
338                 .model                  = 0x00007e,
339                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
340         }
341 };
342
343 static void
344 free_orb(struct kref *kref)
345 {
346         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
347
348         kfree(orb);
349 }
350
351 static void
352 sbp2_status_write(struct fw_card *card, struct fw_request *request,
353                   int tcode, int destination, int source,
354                   int generation, int speed,
355                   unsigned long long offset,
356                   void *payload, size_t length, void *callback_data)
357 {
358         struct sbp2_logical_unit *lu = callback_data;
359         struct sbp2_orb *orb;
360         struct sbp2_status status;
361         size_t header_size;
362         unsigned long flags;
363
364         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
365             length == 0 || length > sizeof(status)) {
366                 fw_send_response(card, request, RCODE_TYPE_ERROR);
367                 return;
368         }
369
370         header_size = min(length, 2 * sizeof(u32));
371         fw_memcpy_from_be32(&status, payload, header_size);
372         if (length > header_size)
373                 memcpy(status.data, payload + 8, length - header_size);
374         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
375                 fw_notify("non-orb related status write, not handled\n");
376                 fw_send_response(card, request, RCODE_COMPLETE);
377                 return;
378         }
379
380         /* Lookup the orb corresponding to this status write. */
381         spin_lock_irqsave(&card->lock, flags);
382         list_for_each_entry(orb, &lu->orb_list, link) {
383                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
384                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
385                         orb->rcode = RCODE_COMPLETE;
386                         list_del(&orb->link);
387                         break;
388                 }
389         }
390         spin_unlock_irqrestore(&card->lock, flags);
391
392         if (&orb->link != &lu->orb_list)
393                 orb->callback(orb, &status);
394         else
395                 fw_error("status write for unknown orb\n");
396
397         kref_put(&orb->kref, free_orb);
398
399         fw_send_response(card, request, RCODE_COMPLETE);
400 }
401
402 static void
403 complete_transaction(struct fw_card *card, int rcode,
404                      void *payload, size_t length, void *data)
405 {
406         struct sbp2_orb *orb = data;
407         unsigned long flags;
408
409         /*
410          * This is a little tricky.  We can get the status write for
411          * the orb before we get this callback.  The status write
412          * handler above will assume the orb pointer transaction was
413          * successful and set the rcode to RCODE_COMPLETE for the orb.
414          * So this callback only sets the rcode if it hasn't already
415          * been set and only does the cleanup if the transaction
416          * failed and we didn't already get a status write.
417          */
418         spin_lock_irqsave(&card->lock, flags);
419
420         if (orb->rcode == -1)
421                 orb->rcode = rcode;
422         if (orb->rcode != RCODE_COMPLETE) {
423                 list_del(&orb->link);
424                 spin_unlock_irqrestore(&card->lock, flags);
425                 orb->callback(orb, NULL);
426         } else {
427                 spin_unlock_irqrestore(&card->lock, flags);
428         }
429
430         kref_put(&orb->kref, free_orb);
431 }
432
433 static void
434 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
435               int node_id, int generation, u64 offset)
436 {
437         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
438         unsigned long flags;
439
440         orb->pointer.high = 0;
441         orb->pointer.low = orb->request_bus;
442         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
443
444         spin_lock_irqsave(&device->card->lock, flags);
445         list_add_tail(&orb->link, &lu->orb_list);
446         spin_unlock_irqrestore(&device->card->lock, flags);
447
448         /* Take a ref for the orb list and for the transaction callback. */
449         kref_get(&orb->kref);
450         kref_get(&orb->kref);
451
452         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
453                         node_id, generation, device->max_speed, offset,
454                         &orb->pointer, sizeof(orb->pointer),
455                         complete_transaction, orb);
456 }
457
458 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
459 {
460         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
461         struct sbp2_orb *orb, *next;
462         struct list_head list;
463         unsigned long flags;
464         int retval = -ENOENT;
465
466         INIT_LIST_HEAD(&list);
467         spin_lock_irqsave(&device->card->lock, flags);
468         list_splice_init(&lu->orb_list, &list);
469         spin_unlock_irqrestore(&device->card->lock, flags);
470
471         list_for_each_entry_safe(orb, next, &list, link) {
472                 retval = 0;
473                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
474                         continue;
475
476                 orb->rcode = RCODE_CANCELLED;
477                 orb->callback(orb, NULL);
478         }
479
480         return retval;
481 }
482
483 static void
484 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
485 {
486         struct sbp2_management_orb *orb =
487                 container_of(base_orb, struct sbp2_management_orb, base);
488
489         if (status)
490                 memcpy(&orb->status, status, sizeof(*status));
491         complete(&orb->done);
492 }
493
494 static int
495 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
496                          int generation, int function, int lun_or_login_id,
497                          void *response)
498 {
499         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
500         struct sbp2_management_orb *orb;
501         unsigned int timeout;
502         int retval = -ENOMEM;
503
504         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
505         if (orb == NULL)
506                 return -ENOMEM;
507
508         kref_init(&orb->base.kref);
509         orb->response_bus =
510                 dma_map_single(device->card->device, &orb->response,
511                                sizeof(orb->response), DMA_FROM_DEVICE);
512         if (dma_mapping_error(orb->response_bus))
513                 goto fail_mapping_response;
514
515         orb->request.response.high    = 0;
516         orb->request.response.low     = orb->response_bus;
517
518         orb->request.misc =
519                 MANAGEMENT_ORB_NOTIFY |
520                 MANAGEMENT_ORB_FUNCTION(function) |
521                 MANAGEMENT_ORB_LUN(lun_or_login_id);
522         orb->request.length =
523                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
524
525         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
526         orb->request.status_fifo.low  = lu->address_handler.offset;
527
528         if (function == SBP2_LOGIN_REQUEST) {
529                 /* Ask for 2^2 == 4 seconds reconnect grace period */
530                 orb->request.misc |=
531                         MANAGEMENT_ORB_RECONNECT(2) |
532                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
533                 timeout = lu->tgt->mgt_orb_timeout;
534         } else {
535                 timeout = SBP2_ORB_TIMEOUT;
536         }
537
538         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
539
540         init_completion(&orb->done);
541         orb->base.callback = complete_management_orb;
542
543         orb->base.request_bus =
544                 dma_map_single(device->card->device, &orb->request,
545                                sizeof(orb->request), DMA_TO_DEVICE);
546         if (dma_mapping_error(orb->base.request_bus))
547                 goto fail_mapping_request;
548
549         sbp2_send_orb(&orb->base, lu, node_id, generation,
550                       lu->tgt->management_agent_address);
551
552         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
553
554         retval = -EIO;
555         if (sbp2_cancel_orbs(lu) == 0) {
556                 fw_error("orb reply timed out, rcode=0x%02x\n",
557                          orb->base.rcode);
558                 goto out;
559         }
560
561         if (orb->base.rcode != RCODE_COMPLETE) {
562                 fw_error("management write failed, rcode 0x%02x\n",
563                          orb->base.rcode);
564                 goto out;
565         }
566
567         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
568             STATUS_GET_SBP_STATUS(orb->status) != 0) {
569                 fw_error("error status: %d:%d\n",
570                          STATUS_GET_RESPONSE(orb->status),
571                          STATUS_GET_SBP_STATUS(orb->status));
572                 goto out;
573         }
574
575         retval = 0;
576  out:
577         dma_unmap_single(device->card->device, orb->base.request_bus,
578                          sizeof(orb->request), DMA_TO_DEVICE);
579  fail_mapping_request:
580         dma_unmap_single(device->card->device, orb->response_bus,
581                          sizeof(orb->response), DMA_FROM_DEVICE);
582  fail_mapping_response:
583         if (response)
584                 fw_memcpy_from_be32(response,
585                                     orb->response, sizeof(orb->response));
586         kref_put(&orb->base.kref, free_orb);
587
588         return retval;
589 }
590
591 static void
592 complete_agent_reset_write(struct fw_card *card, int rcode,
593                            void *payload, size_t length, void *data)
594 {
595         struct fw_transaction *t = data;
596
597         kfree(t);
598 }
599
600 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
601 {
602         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
603         struct fw_transaction *t;
604         static u32 zero;
605
606         t = kzalloc(sizeof(*t), GFP_ATOMIC);
607         if (t == NULL)
608                 return -ENOMEM;
609
610         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
611                         lu->tgt->node_id, lu->generation, device->max_speed,
612                         lu->command_block_agent_address + SBP2_AGENT_RESET,
613                         &zero, sizeof(zero), complete_agent_reset_write, t);
614
615         return 0;
616 }
617
618 static void sbp2_release_target(struct kref *kref)
619 {
620         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
621         struct sbp2_logical_unit *lu, *next;
622         struct Scsi_Host *shost =
623                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
624         struct fw_device *device = fw_device(tgt->unit->device.parent);
625
626         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
627                 if (lu->sdev)
628                         scsi_remove_device(lu->sdev);
629
630                 if (!fw_device_is_shutdown(device))
631                         sbp2_send_management_orb(lu, tgt->node_id,
632                                         lu->generation, SBP2_LOGOUT_REQUEST,
633                                         lu->login_id, NULL);
634
635                 fw_core_remove_address_handler(&lu->address_handler);
636                 list_del(&lu->link);
637                 kfree(lu);
638         }
639         scsi_remove_host(shost);
640         fw_notify("released %s\n", tgt->unit->device.bus_id);
641
642         put_device(&tgt->unit->device);
643         scsi_host_put(shost);
644 }
645
646 static struct workqueue_struct *sbp2_wq;
647
648 /*
649  * Always get the target's kref when scheduling work on one its units.
650  * Each workqueue job is responsible to call sbp2_target_put() upon return.
651  */
652 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
653 {
654         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
655                 kref_get(&lu->tgt->kref);
656 }
657
658 static void sbp2_target_put(struct sbp2_target *tgt)
659 {
660         kref_put(&tgt->kref, sbp2_release_target);
661 }
662
663 static void sbp2_reconnect(struct work_struct *work);
664
665 static void sbp2_login(struct work_struct *work)
666 {
667         struct sbp2_logical_unit *lu =
668                 container_of(work, struct sbp2_logical_unit, work.work);
669         struct Scsi_Host *shost =
670                 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
671         struct scsi_device *sdev;
672         struct scsi_lun eight_bytes_lun;
673         struct fw_unit *unit = lu->tgt->unit;
674         struct fw_device *device = fw_device(unit->device.parent);
675         struct sbp2_login_response response;
676         int generation, node_id, local_node_id;
677
678         generation    = device->generation;
679         smp_rmb();    /* node_id must not be older than generation */
680         node_id       = device->node_id;
681         local_node_id = device->card->node_id;
682
683         if (sbp2_send_management_orb(lu, node_id, generation,
684                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
685                 if (lu->retries++ < 5)
686                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
687                 else
688                         fw_error("failed to login to %s LUN %04x\n",
689                                  unit->device.bus_id, lu->lun);
690                 goto out;
691         }
692
693         lu->generation        = generation;
694         lu->tgt->node_id      = node_id;
695         lu->tgt->address_high = local_node_id << 16;
696
697         /* Get command block agent offset and login id. */
698         lu->command_block_agent_address =
699                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
700                 response.command_block_agent.low;
701         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
702
703         fw_notify("logged in to %s LUN %04x (%d retries)\n",
704                   unit->device.bus_id, lu->lun, lu->retries);
705
706 #if 0
707         /* FIXME: The linux1394 sbp2 does this last step. */
708         sbp2_set_busy_timeout(scsi_id);
709 #endif
710
711         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
712         sbp2_agent_reset(lu);
713
714         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
715         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
716         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
717
718         sdev = __scsi_add_device(shost, 0, 0,
719                                  scsilun_to_int(&eight_bytes_lun), lu);
720         if (IS_ERR(sdev)) {
721                 sbp2_send_management_orb(lu, node_id, generation,
722                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
723                 /*
724                  * Set this back to sbp2_login so we fall back and
725                  * retry login on bus reset.
726                  */
727                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
728         } else {
729                 lu->sdev = sdev;
730                 scsi_device_put(sdev);
731         }
732  out:
733         sbp2_target_put(lu->tgt);
734 }
735
736 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
737 {
738         struct sbp2_logical_unit *lu;
739
740         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
741         if (!lu)
742                 return -ENOMEM;
743
744         lu->address_handler.length           = 0x100;
745         lu->address_handler.address_callback = sbp2_status_write;
746         lu->address_handler.callback_data    = lu;
747
748         if (fw_core_add_address_handler(&lu->address_handler,
749                                         &fw_high_memory_region) < 0) {
750                 kfree(lu);
751                 return -ENOMEM;
752         }
753
754         lu->tgt  = tgt;
755         lu->sdev = NULL;
756         lu->lun  = lun_entry & 0xffff;
757         lu->retries = 0;
758         INIT_LIST_HEAD(&lu->orb_list);
759         INIT_DELAYED_WORK(&lu->work, sbp2_login);
760
761         list_add_tail(&lu->link, &tgt->lu_list);
762         return 0;
763 }
764
765 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
766 {
767         struct fw_csr_iterator ci;
768         int key, value;
769
770         fw_csr_iterator_init(&ci, directory);
771         while (fw_csr_iterator_next(&ci, &key, &value))
772                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
773                     sbp2_add_logical_unit(tgt, value) < 0)
774                         return -ENOMEM;
775         return 0;
776 }
777
778 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
779                               u32 *model, u32 *firmware_revision)
780 {
781         struct fw_csr_iterator ci;
782         int key, value;
783         unsigned int timeout;
784
785         fw_csr_iterator_init(&ci, directory);
786         while (fw_csr_iterator_next(&ci, &key, &value)) {
787                 switch (key) {
788
789                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
790                         tgt->management_agent_address =
791                                         CSR_REGISTER_BASE + 4 * value;
792                         break;
793
794                 case CSR_DIRECTORY_ID:
795                         tgt->directory_id = value;
796                         break;
797
798                 case CSR_MODEL:
799                         *model = value;
800                         break;
801
802                 case SBP2_CSR_FIRMWARE_REVISION:
803                         *firmware_revision = value;
804                         break;
805
806                 case SBP2_CSR_UNIT_CHARACTERISTICS:
807                         /* the timeout value is stored in 500ms units */
808                         timeout = ((unsigned int) value >> 8 & 0xff) * 500;
809                         timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
810                         tgt->mgt_orb_timeout =
811                                   min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
812
813                         if (timeout > tgt->mgt_orb_timeout)
814                                 fw_notify("%s: config rom contains %ds "
815                                           "management ORB timeout, limiting "
816                                           "to %ds\n", tgt->unit->device.bus_id,
817                                           timeout / 1000,
818                                           tgt->mgt_orb_timeout / 1000);
819                         break;
820
821                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
822                         if (sbp2_add_logical_unit(tgt, value) < 0)
823                                 return -ENOMEM;
824                         break;
825
826                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
827                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
828                                 return -ENOMEM;
829                         break;
830                 }
831         }
832         return 0;
833 }
834
835 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
836                                   u32 firmware_revision)
837 {
838         int i;
839         unsigned w = sbp2_param_workarounds;
840
841         if (w)
842                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
843                           "if you need the workarounds parameter for %s\n",
844                           tgt->unit->device.bus_id);
845
846         if (w & SBP2_WORKAROUND_OVERRIDE)
847                 goto out;
848
849         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
850
851                 if (sbp2_workarounds_table[i].firmware_revision !=
852                     (firmware_revision & 0xffffff00))
853                         continue;
854
855                 if (sbp2_workarounds_table[i].model != model &&
856                     sbp2_workarounds_table[i].model != ~0)
857                         continue;
858
859                 w |= sbp2_workarounds_table[i].workarounds;
860                 break;
861         }
862  out:
863         if (w)
864                 fw_notify("Workarounds for %s: 0x%x "
865                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
866                           tgt->unit->device.bus_id,
867                           w, firmware_revision, model);
868         tgt->workarounds = w;
869 }
870
871 static struct scsi_host_template scsi_driver_template;
872
873 static int sbp2_probe(struct device *dev)
874 {
875         struct fw_unit *unit = fw_unit(dev);
876         struct fw_device *device = fw_device(unit->device.parent);
877         struct sbp2_target *tgt;
878         struct sbp2_logical_unit *lu;
879         struct Scsi_Host *shost;
880         u32 model, firmware_revision;
881
882         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
883         if (shost == NULL)
884                 return -ENOMEM;
885
886         tgt = (struct sbp2_target *)shost->hostdata;
887         unit->device.driver_data = tgt;
888         tgt->unit = unit;
889         kref_init(&tgt->kref);
890         INIT_LIST_HEAD(&tgt->lu_list);
891
892         if (fw_device_enable_phys_dma(device) < 0)
893                 goto fail_shost_put;
894
895         if (scsi_add_host(shost, &unit->device) < 0)
896                 goto fail_shost_put;
897
898         /* Initialize to values that won't match anything in our table. */
899         firmware_revision = 0xff000000;
900         model = 0xff000000;
901
902         /* implicit directory ID */
903         tgt->directory_id = ((unit->directory - device->config_rom) * 4
904                              + CSR_CONFIG_ROM) & 0xffffff;
905
906         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
907                                &firmware_revision) < 0)
908                 goto fail_tgt_put;
909
910         sbp2_init_workarounds(tgt, model, firmware_revision);
911
912         get_device(&unit->device);
913
914         /* Do the login in a workqueue so we can easily reschedule retries. */
915         list_for_each_entry(lu, &tgt->lu_list, link)
916                 sbp2_queue_work(lu, 0);
917         return 0;
918
919  fail_tgt_put:
920         sbp2_target_put(tgt);
921         return -ENOMEM;
922
923  fail_shost_put:
924         scsi_host_put(shost);
925         return -ENOMEM;
926 }
927
928 static int sbp2_remove(struct device *dev)
929 {
930         struct fw_unit *unit = fw_unit(dev);
931         struct sbp2_target *tgt = unit->device.driver_data;
932
933         sbp2_target_put(tgt);
934         return 0;
935 }
936
937 static void sbp2_reconnect(struct work_struct *work)
938 {
939         struct sbp2_logical_unit *lu =
940                 container_of(work, struct sbp2_logical_unit, work.work);
941         struct fw_unit *unit = lu->tgt->unit;
942         struct fw_device *device = fw_device(unit->device.parent);
943         int generation, node_id, local_node_id;
944
945         generation    = device->generation;
946         smp_rmb();    /* node_id must not be older than generation */
947         node_id       = device->node_id;
948         local_node_id = device->card->node_id;
949
950         if (sbp2_send_management_orb(lu, node_id, generation,
951                                      SBP2_RECONNECT_REQUEST,
952                                      lu->login_id, NULL) < 0) {
953                 if (lu->retries++ >= 5) {
954                         fw_error("failed to reconnect to %s\n",
955                                  unit->device.bus_id);
956                         /* Fall back and try to log in again. */
957                         lu->retries = 0;
958                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
959                 }
960                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
961                 goto out;
962         }
963
964         lu->generation        = generation;
965         lu->tgt->node_id      = node_id;
966         lu->tgt->address_high = local_node_id << 16;
967
968         fw_notify("reconnected to %s LUN %04x (%d retries)\n",
969                   unit->device.bus_id, lu->lun, lu->retries);
970
971         sbp2_agent_reset(lu);
972         sbp2_cancel_orbs(lu);
973  out:
974         sbp2_target_put(lu->tgt);
975 }
976
977 static void sbp2_update(struct fw_unit *unit)
978 {
979         struct sbp2_target *tgt = unit->device.driver_data;
980         struct sbp2_logical_unit *lu;
981
982         fw_device_enable_phys_dma(fw_device(unit->device.parent));
983
984         /*
985          * Fw-core serializes sbp2_update() against sbp2_remove().
986          * Iteration over tgt->lu_list is therefore safe here.
987          */
988         list_for_each_entry(lu, &tgt->lu_list, link) {
989                 lu->retries = 0;
990                 sbp2_queue_work(lu, 0);
991         }
992 }
993
994 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
995 #define SBP2_SW_VERSION_ENTRY   0x00010483
996
997 static const struct fw_device_id sbp2_id_table[] = {
998         {
999                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1000                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1001                 .version      = SBP2_SW_VERSION_ENTRY,
1002         },
1003         { }
1004 };
1005
1006 static struct fw_driver sbp2_driver = {
1007         .driver   = {
1008                 .owner  = THIS_MODULE,
1009                 .name   = sbp2_driver_name,
1010                 .bus    = &fw_bus_type,
1011                 .probe  = sbp2_probe,
1012                 .remove = sbp2_remove,
1013         },
1014         .update   = sbp2_update,
1015         .id_table = sbp2_id_table,
1016 };
1017
1018 static unsigned int
1019 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1020 {
1021         int sam_status;
1022
1023         sense_data[0] = 0x70;
1024         sense_data[1] = 0x0;
1025         sense_data[2] = sbp2_status[1];
1026         sense_data[3] = sbp2_status[4];
1027         sense_data[4] = sbp2_status[5];
1028         sense_data[5] = sbp2_status[6];
1029         sense_data[6] = sbp2_status[7];
1030         sense_data[7] = 10;
1031         sense_data[8] = sbp2_status[8];
1032         sense_data[9] = sbp2_status[9];
1033         sense_data[10] = sbp2_status[10];
1034         sense_data[11] = sbp2_status[11];
1035         sense_data[12] = sbp2_status[2];
1036         sense_data[13] = sbp2_status[3];
1037         sense_data[14] = sbp2_status[12];
1038         sense_data[15] = sbp2_status[13];
1039
1040         sam_status = sbp2_status[0] & 0x3f;
1041
1042         switch (sam_status) {
1043         case SAM_STAT_GOOD:
1044         case SAM_STAT_CHECK_CONDITION:
1045         case SAM_STAT_CONDITION_MET:
1046         case SAM_STAT_BUSY:
1047         case SAM_STAT_RESERVATION_CONFLICT:
1048         case SAM_STAT_COMMAND_TERMINATED:
1049                 return DID_OK << 16 | sam_status;
1050
1051         default:
1052                 return DID_ERROR << 16;
1053         }
1054 }
1055
1056 static void
1057 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1058 {
1059         struct sbp2_command_orb *orb =
1060                 container_of(base_orb, struct sbp2_command_orb, base);
1061         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1062         int result;
1063
1064         if (status != NULL) {
1065                 if (STATUS_GET_DEAD(*status))
1066                         sbp2_agent_reset(orb->lu);
1067
1068                 switch (STATUS_GET_RESPONSE(*status)) {
1069                 case SBP2_STATUS_REQUEST_COMPLETE:
1070                         result = DID_OK << 16;
1071                         break;
1072                 case SBP2_STATUS_TRANSPORT_FAILURE:
1073                         result = DID_BUS_BUSY << 16;
1074                         break;
1075                 case SBP2_STATUS_ILLEGAL_REQUEST:
1076                 case SBP2_STATUS_VENDOR_DEPENDENT:
1077                 default:
1078                         result = DID_ERROR << 16;
1079                         break;
1080                 }
1081
1082                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1083                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1084                                                            orb->cmd->sense_buffer);
1085         } else {
1086                 /*
1087                  * If the orb completes with status == NULL, something
1088                  * went wrong, typically a bus reset happened mid-orb
1089                  * or when sending the write (less likely).
1090                  */
1091                 result = DID_BUS_BUSY << 16;
1092         }
1093
1094         dma_unmap_single(device->card->device, orb->base.request_bus,
1095                          sizeof(orb->request), DMA_TO_DEVICE);
1096
1097         if (scsi_sg_count(orb->cmd) > 0)
1098                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1099                              scsi_sg_count(orb->cmd),
1100                              orb->cmd->sc_data_direction);
1101
1102         if (orb->page_table_bus != 0)
1103                 dma_unmap_single(device->card->device, orb->page_table_bus,
1104                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1105
1106         orb->cmd->result = result;
1107         orb->done(orb->cmd);
1108 }
1109
1110 static int
1111 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1112                      struct sbp2_logical_unit *lu)
1113 {
1114         struct scatterlist *sg;
1115         int sg_len, l, i, j, count;
1116         dma_addr_t sg_addr;
1117
1118         sg = scsi_sglist(orb->cmd);
1119         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1120                            orb->cmd->sc_data_direction);
1121         if (count == 0)
1122                 goto fail;
1123
1124         /*
1125          * Handle the special case where there is only one element in
1126          * the scatter list by converting it to an immediate block
1127          * request. This is also a workaround for broken devices such
1128          * as the second generation iPod which doesn't support page
1129          * tables.
1130          */
1131         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1132                 orb->request.data_descriptor.high = lu->tgt->address_high;
1133                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1134                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1135                 return 0;
1136         }
1137
1138         /*
1139          * Convert the scatterlist to an sbp2 page table.  If any
1140          * scatterlist entries are too big for sbp2, we split them as we
1141          * go.  Even if we ask the block I/O layer to not give us sg
1142          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1143          * during DMA mapping, and Linux currently doesn't prevent this.
1144          */
1145         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1146                 sg_len = sg_dma_len(sg);
1147                 sg_addr = sg_dma_address(sg);
1148                 while (sg_len) {
1149                         /* FIXME: This won't get us out of the pinch. */
1150                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1151                                 fw_error("page table overflow\n");
1152                                 goto fail_page_table;
1153                         }
1154                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1155                         orb->page_table[j].low = sg_addr;
1156                         orb->page_table[j].high = (l << 16);
1157                         sg_addr += l;
1158                         sg_len -= l;
1159                         j++;
1160                 }
1161         }
1162
1163         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1164                           sizeof(orb->page_table[0]) * j);
1165         orb->page_table_bus =
1166                 dma_map_single(device->card->device, orb->page_table,
1167                                sizeof(orb->page_table), DMA_TO_DEVICE);
1168         if (dma_mapping_error(orb->page_table_bus))
1169                 goto fail_page_table;
1170
1171         /*
1172          * The data_descriptor pointer is the one case where we need
1173          * to fill in the node ID part of the address.  All other
1174          * pointers assume that the data referenced reside on the
1175          * initiator (i.e. us), but data_descriptor can refer to data
1176          * on other nodes so we need to put our ID in descriptor.high.
1177          */
1178         orb->request.data_descriptor.high = lu->tgt->address_high;
1179         orb->request.data_descriptor.low  = orb->page_table_bus;
1180         orb->request.misc |=
1181                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1182                 COMMAND_ORB_DATA_SIZE(j);
1183
1184         return 0;
1185
1186  fail_page_table:
1187         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1188                      orb->cmd->sc_data_direction);
1189  fail:
1190         return -ENOMEM;
1191 }
1192
1193 /* SCSI stack integration */
1194
1195 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1196 {
1197         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1198         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1199         struct sbp2_command_orb *orb;
1200         unsigned max_payload;
1201         int retval = SCSI_MLQUEUE_HOST_BUSY;
1202
1203         /*
1204          * Bidirectional commands are not yet implemented, and unknown
1205          * transfer direction not handled.
1206          */
1207         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1208                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1209                 cmd->result = DID_ERROR << 16;
1210                 done(cmd);
1211                 return 0;
1212         }
1213
1214         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1215         if (orb == NULL) {
1216                 fw_notify("failed to alloc orb\n");
1217                 return SCSI_MLQUEUE_HOST_BUSY;
1218         }
1219
1220         /* Initialize rcode to something not RCODE_COMPLETE. */
1221         orb->base.rcode = -1;
1222         kref_init(&orb->base.kref);
1223
1224         orb->lu   = lu;
1225         orb->done = done;
1226         orb->cmd  = cmd;
1227
1228         orb->request.next.high   = SBP2_ORB_NULL;
1229         orb->request.next.low    = 0x0;
1230         /*
1231          * At speed 100 we can do 512 bytes per packet, at speed 200,
1232          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1233          * specifies the max payload size as 2 ^ (max_payload + 2), so
1234          * if we set this to max_speed + 7, we get the right value.
1235          */
1236         max_payload = min(device->max_speed + 7,
1237                           device->card->max_receive - 1);
1238         orb->request.misc =
1239                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1240                 COMMAND_ORB_SPEED(device->max_speed) |
1241                 COMMAND_ORB_NOTIFY;
1242
1243         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1244                 orb->request.misc |=
1245                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1246         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1247                 orb->request.misc |=
1248                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1249
1250         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1251                 goto out;
1252
1253         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1254
1255         memset(orb->request.command_block,
1256                0, sizeof(orb->request.command_block));
1257         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1258
1259         orb->base.callback = complete_command_orb;
1260         orb->base.request_bus =
1261                 dma_map_single(device->card->device, &orb->request,
1262                                sizeof(orb->request), DMA_TO_DEVICE);
1263         if (dma_mapping_error(orb->base.request_bus))
1264                 goto out;
1265
1266         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1267                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1268         retval = 0;
1269  out:
1270         kref_put(&orb->base.kref, free_orb);
1271         return retval;
1272 }
1273
1274 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1275 {
1276         struct sbp2_logical_unit *lu = sdev->hostdata;
1277
1278         sdev->allow_restart = 1;
1279
1280         /*
1281          * Update the dma alignment (minimum alignment requirements for
1282          * start and end of DMA transfers) to be a sector
1283          */
1284         blk_queue_update_dma_alignment(sdev->request_queue, 511);
1285
1286         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1287                 sdev->inquiry_len = 36;
1288
1289         return 0;
1290 }
1291
1292 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1293 {
1294         struct sbp2_logical_unit *lu = sdev->hostdata;
1295
1296         sdev->use_10_for_rw = 1;
1297
1298         if (sdev->type == TYPE_ROM)
1299                 sdev->use_10_for_ms = 1;
1300
1301         if (sdev->type == TYPE_DISK &&
1302             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1303                 sdev->skip_ms_page_8 = 1;
1304
1305         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1306                 sdev->fix_capacity = 1;
1307
1308         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1309                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1310
1311         return 0;
1312 }
1313
1314 /*
1315  * Called by scsi stack when something has really gone wrong.  Usually
1316  * called when a command has timed-out for some reason.
1317  */
1318 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1319 {
1320         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1321
1322         fw_notify("sbp2_scsi_abort\n");
1323         sbp2_agent_reset(lu);
1324         sbp2_cancel_orbs(lu);
1325
1326         return SUCCESS;
1327 }
1328
1329 /*
1330  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1331  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1332  *
1333  * This is the concatenation of target port identifier and logical unit
1334  * identifier as per SAM-2...SAM-4 annex A.
1335  */
1336 static ssize_t
1337 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1338                             char *buf)
1339 {
1340         struct scsi_device *sdev = to_scsi_device(dev);
1341         struct sbp2_logical_unit *lu;
1342         struct fw_device *device;
1343
1344         if (!sdev)
1345                 return 0;
1346
1347         lu = sdev->hostdata;
1348         device = fw_device(lu->tgt->unit->device.parent);
1349
1350         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1351                         device->config_rom[3], device->config_rom[4],
1352                         lu->tgt->directory_id, lu->lun);
1353 }
1354
1355 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1356
1357 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1358         &dev_attr_ieee1394_id,
1359         NULL
1360 };
1361
1362 static struct scsi_host_template scsi_driver_template = {
1363         .module                 = THIS_MODULE,
1364         .name                   = "SBP-2 IEEE-1394",
1365         .proc_name              = sbp2_driver_name,
1366         .queuecommand           = sbp2_scsi_queuecommand,
1367         .slave_alloc            = sbp2_scsi_slave_alloc,
1368         .slave_configure        = sbp2_scsi_slave_configure,
1369         .eh_abort_handler       = sbp2_scsi_abort,
1370         .this_id                = -1,
1371         .sg_tablesize           = SG_ALL,
1372         .use_clustering         = ENABLE_CLUSTERING,
1373         .cmd_per_lun            = 1,
1374         .can_queue              = 1,
1375         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1376 };
1377
1378 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1379 MODULE_DESCRIPTION("SCSI over IEEE1394");
1380 MODULE_LICENSE("GPL");
1381 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1382
1383 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1384 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1385 MODULE_ALIAS("sbp2");
1386 #endif
1387
1388 static int __init sbp2_init(void)
1389 {
1390         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1391         if (!sbp2_wq)
1392                 return -ENOMEM;
1393
1394         return driver_register(&sbp2_driver.driver);
1395 }
1396
1397 static void __exit sbp2_cleanup(void)
1398 {
1399         driver_unregister(&sbp2_driver.driver);
1400         destroy_workqueue(sbp2_wq);
1401 }
1402
1403 module_init(sbp2_init);
1404 module_exit(sbp2_cleanup);