2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 /*****************************\
25 Reset functions and helpers
26 \*****************************/
28 #include <linux/pci.h>
35 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
37 * @ah: the &struct ath5k_hw
38 * @channel: the currently set channel upon reset
40 * Write the OFDM timings for the AR5212 upon reset. This is a helper for
41 * ath5k_hw_reset(). This seems to tune the PLL a specified frequency
42 * depending on the bandwidth of the channel.
45 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
46 struct ieee80211_channel *channel)
48 /* Get exponent and mantissa and set it */
49 u32 coef_scaled, coef_exp, coef_man,
50 ds_coef_exp, ds_coef_man, clock;
52 if (!(ah->ah_version == AR5K_AR5212) ||
53 !(channel->hw_value & CHANNEL_OFDM))
56 /* Seems there are two PLLs, one for baseband sampling and one
57 * for tuning. Tuning basebands are 40 MHz or 80MHz when in
59 clock = channel->hw_value & CHANNEL_TURBO ? 80 : 40;
60 coef_scaled = ((5 * (clock << 24)) / 2) /
63 for (coef_exp = 31; coef_exp > 0; coef_exp--)
64 if ((coef_scaled >> coef_exp) & 0x1)
70 coef_exp = 14 - (coef_exp - 24);
71 coef_man = coef_scaled +
72 (1 << (24 - coef_exp - 1));
73 ds_coef_man = coef_man >> (24 - coef_exp);
74 ds_coef_exp = coef_exp - 16;
76 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
77 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
78 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
79 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
86 * index into rates for control rates, we can set it up like this because
87 * this is only used for AR5212 and we know it supports G mode
89 static int control_rates[] =
90 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
93 * ath5k_hw_write_rate_duration - set rate duration during hw resets
95 * @ah: the &struct ath5k_hw
96 * @mode: one of enum ath5k_driver_mode
98 * Write the rate duration table upon hw reset. This is a helper for
99 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout for
100 * the hardware for the current mode for each rate. The rates which are capable
101 * of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have another
102 * register for the short preamble ACK timeout calculation.
104 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
107 struct ath5k_softc *sc = ah->ah_sc;
108 struct ieee80211_rate *rate;
111 /* Write rate duration table */
112 for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
116 rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
118 /* Set ACK timeout */
119 reg = AR5K_RATE_DUR(rate->hw_value);
121 /* An ACK frame consists of 10 bytes. If you add the FCS,
122 * which ieee80211_generic_frame_duration() adds,
123 * its 14 bytes. Note we use the control rate and not the
124 * actual rate for this rate. See mac80211 tx.c
125 * ieee80211_duration() for a brief description of
126 * what rate we should choose to TX ACKs. */
127 tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
130 ath5k_hw_reg_write(ah, tx_time, reg);
132 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
136 * We're not distinguishing short preamble here,
137 * This is true, all we'll get is a longer value here
138 * which is not necessarilly bad. We could use
139 * export ieee80211_frame_duration() but that needs to be
140 * fixed first to be properly used by mac802111 drivers:
142 * - remove erp stuff and let the routine figure ofdm
144 * - remove passing argument ieee80211_local as
145 * drivers don't have access to it
146 * - move drivers using ieee80211_generic_frame_duration()
149 ath5k_hw_reg_write(ah, tx_time,
150 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
157 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
160 u32 mask = val ? val : ~0U;
162 ATH5K_TRACE(ah->ah_sc);
164 /* Read-and-clear RX Descriptor Pointer*/
165 ath5k_hw_reg_read(ah, AR5K_RXDP);
168 * Reset the device and wait until success
170 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
172 /* Wait at least 128 PCI clocks */
175 if (ah->ah_version == AR5K_AR5210) {
176 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
177 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
178 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
179 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
181 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
182 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
185 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
188 * Reset configuration register (for hw byte-swap). Note that this
189 * is only set for big endian. We do the necessary magic in
192 if ((val & AR5K_RESET_CTL_PCU) == 0)
193 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
201 int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
202 bool set_chip, u16 sleep_duration)
207 ATH5K_TRACE(ah->ah_sc);
208 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
212 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
214 case AR5K_PM_NETWORK_SLEEP:
216 ath5k_hw_reg_write(ah,
217 AR5K_SLEEP_CTL_SLE_ALLOW |
221 staid |= AR5K_STA_ID1_PWR_SV;
224 case AR5K_PM_FULL_SLEEP:
226 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
229 staid |= AR5K_STA_ID1_PWR_SV;
234 staid &= ~AR5K_STA_ID1_PWR_SV;
239 /* Preserve sleep duration */
240 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
241 if (data & 0xffc00000)
244 data = data & 0xfffcffff;
246 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
249 for (i = 50; i > 0; i--) {
250 /* Check if the chip did wake up */
251 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
252 AR5K_PCICFG_SPWR_DN) == 0)
255 /* Wait a bit and retry */
257 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
260 /* Fail if the chip didn't wake up */
271 ah->ah_power_mode = mode;
272 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
278 * Bring up MAC + PHY Chips
280 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
282 struct pci_dev *pdev = ah->ah_sc->pdev;
283 u32 turbo, mode, clock, bus_flags;
290 ATH5K_TRACE(ah->ah_sc);
292 /* Wakeup the device */
293 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
295 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
299 if (ah->ah_version != AR5K_AR5210) {
301 * Get channel mode flags
304 if (ah->ah_radio >= AR5K_RF5112) {
305 mode = AR5K_PHY_MODE_RAD_RF5112;
306 clock = AR5K_PHY_PLL_RF5112;
308 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
309 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
312 if (flags & CHANNEL_2GHZ) {
313 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
314 clock |= AR5K_PHY_PLL_44MHZ;
316 if (flags & CHANNEL_CCK) {
317 mode |= AR5K_PHY_MODE_MOD_CCK;
318 } else if (flags & CHANNEL_OFDM) {
319 /* XXX Dynamic OFDM/CCK is not supported by the
320 * AR5211 so we set MOD_OFDM for plain g (no
321 * CCK headers) operation. We need to test
322 * this, 5211 might support ofdm-only g after
323 * all, there are also initial register values
324 * in the code for g mode (see initvals.c). */
325 if (ah->ah_version == AR5K_AR5211)
326 mode |= AR5K_PHY_MODE_MOD_OFDM;
328 mode |= AR5K_PHY_MODE_MOD_DYN;
331 "invalid radio modulation mode\n");
334 } else if (flags & CHANNEL_5GHZ) {
335 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
336 clock |= AR5K_PHY_PLL_40MHZ;
338 if (flags & CHANNEL_OFDM)
339 mode |= AR5K_PHY_MODE_MOD_OFDM;
342 "invalid radio modulation mode\n");
346 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
350 if (flags & CHANNEL_TURBO)
351 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
352 } else { /* Reset the device */
354 /* ...enable Atheros turbo mode if requested */
355 if (flags & CHANNEL_TURBO)
356 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
360 /* reseting PCI on PCI-E cards results card to hang
361 * and always return 0xffff... so we ingore that flag
363 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
366 if (ah->ah_version == AR5K_AR5210) {
367 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
368 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
369 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
372 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
373 AR5K_RESET_CTL_BASEBAND | bus_flags);
376 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
380 /* ...wakeup again!*/
381 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
383 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
387 /* ...final warm reset */
388 if (ath5k_hw_nic_reset(ah, 0)) {
389 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
393 if (ah->ah_version != AR5K_AR5210) {
394 /* ...set the PHY operating mode */
395 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
398 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
399 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
406 * Main reset function
408 int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
409 struct ieee80211_channel *channel, bool change_channel)
411 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
412 struct pci_dev *pdev = ah->ah_sc->pdev;
413 u32 data, s_seq, s_ant, s_led[3], dma_size;
414 unsigned int i, mode, freq, ee_mode, ant[2];
417 ATH5K_TRACE(ah->ah_sc);
426 * Save some registers before a reset
428 /*DCU/Antenna selection not available on 5210*/
429 if (ah->ah_version != AR5K_AR5210) {
430 if (change_channel) {
431 /* Seq number for queue 0 -do this for all queues ? */
432 s_seq = ath5k_hw_reg_read(ah,
433 AR5K_QUEUE_DFS_SEQNUM(0));
435 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
440 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE;
441 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
442 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
444 if (change_channel && ah->ah_rf_banks != NULL)
445 ath5k_hw_get_rf_gain(ah);
448 /*Wakeup the device*/
449 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
454 * Initialize operating mode
456 ah->ah_op_mode = op_mode;
460 * 5210 only comes with RF5110
462 if (ah->ah_version != AR5K_AR5210) {
463 if (ah->ah_radio != AR5K_RF5111 &&
464 ah->ah_radio != AR5K_RF5112 &&
465 ah->ah_radio != AR5K_RF5413 &&
466 ah->ah_radio != AR5K_RF2413 &&
467 ah->ah_radio != AR5K_RF2425) {
469 "invalid phy radio: %u\n", ah->ah_radio);
473 switch (channel->hw_value & CHANNEL_MODES) {
475 mode = AR5K_MODE_11A;
476 freq = AR5K_INI_RFGAIN_5GHZ;
477 ee_mode = AR5K_EEPROM_MODE_11A;
480 mode = AR5K_MODE_11G;
481 freq = AR5K_INI_RFGAIN_2GHZ;
482 ee_mode = AR5K_EEPROM_MODE_11G;
485 mode = AR5K_MODE_11B;
486 freq = AR5K_INI_RFGAIN_2GHZ;
487 ee_mode = AR5K_EEPROM_MODE_11B;
490 mode = AR5K_MODE_11A_TURBO;
491 freq = AR5K_INI_RFGAIN_5GHZ;
492 ee_mode = AR5K_EEPROM_MODE_11A;
494 /*Is this ok on 5211 too ?*/
496 mode = AR5K_MODE_11G_TURBO;
497 freq = AR5K_INI_RFGAIN_2GHZ;
498 ee_mode = AR5K_EEPROM_MODE_11G;
501 if (ah->ah_version == AR5K_AR5211) {
503 "XR mode not available on 5211");
507 freq = AR5K_INI_RFGAIN_5GHZ;
508 ee_mode = AR5K_EEPROM_MODE_11A;
512 "invalid channel: %d\n", channel->center_freq);
516 /* PHY access enable */
517 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
521 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
528 if (ah->ah_version != AR5K_AR5210) {
530 * Write initial RF gain settings
531 * This should work for both 5111/5112
533 ret = ath5k_hw_rfgain(ah, freq);
540 * Write some more initial register settings for revised chips
542 if (ah->ah_version == AR5K_AR5212 &&
543 ah->ah_phy_revision > 0x41) {
544 ath5k_hw_reg_write(ah, 0x0002a002, 0x982c);
546 if (channel->hw_value == CHANNEL_G)
547 if (ah->ah_mac_srev < AR5K_SREV_AR2413)
548 ath5k_hw_reg_write(ah, 0x00f80d80,
550 else if (ah->ah_mac_srev < AR5K_SREV_AR5424)
551 ath5k_hw_reg_write(ah, 0x00380140,
553 else if (ah->ah_mac_srev < AR5K_SREV_AR2425)
554 ath5k_hw_reg_write(ah, 0x00fc0ec0,
557 ath5k_hw_reg_write(ah, 0x00fc0fc0,
560 ath5k_hw_reg_write(ah, 0x00000000, 0x994c);
562 /* Got this from legacy-hal */
563 AR5K_REG_DISABLE_BITS(ah, 0xa228, 0x200);
565 AR5K_REG_MASKED_BITS(ah, 0xa228, 0x800, 0xfffe03ff);
567 /* Just write 0x9b5 ? */
568 /* ath5k_hw_reg_write(ah, 0x000009b5, 0xa228); */
569 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
570 ath5k_hw_reg_write(ah, 0x00000000, 0xa254);
571 ath5k_hw_reg_write(ah, 0x0000000e, AR5K_PHY_SCAL);
574 /* Fix for first revision of the RF5112 RF chipset */
575 if (ah->ah_radio >= AR5K_RF5112 &&
576 ah->ah_radio_5ghz_revision <
577 AR5K_SREV_RAD_5112A) {
578 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
580 if (channel->hw_value & CHANNEL_5GHZ)
584 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
589 * Set TX power (FIXME)
591 ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER);
595 /* Write rate duration table only on AR5212 and if
596 * virtual interface has already been brought up
597 * XXX: rethink this after new mode changes to
598 * mac80211 are integrated */
599 if (ah->ah_version == AR5K_AR5212 &&
600 ah->ah_sc->vif != NULL)
601 ath5k_hw_write_rate_duration(ah, mode);
606 ret = ath5k_hw_rfregs(ah, channel, mode);
611 * Configure additional registers
614 /* Write OFDM timings on 5212*/
615 if (ah->ah_version == AR5K_AR5212 &&
616 channel->hw_value & CHANNEL_OFDM) {
617 ret = ath5k_hw_write_ofdm_timings(ah, channel);
622 /*Enable/disable 802.11b mode on 5111
623 (enable 2111 frequency converter + CCK)*/
624 if (ah->ah_radio == AR5K_RF5111) {
625 if (mode == AR5K_MODE_11B)
626 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
629 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
634 * Set channel and calibrate the PHY
636 ret = ath5k_hw_channel(ah, channel);
640 /* Set antenna mode */
641 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_ANT_CTL,
642 ah->ah_antenna[ee_mode][0], 0xfffffc06);
645 * In case a fixed antenna was set as default
646 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
650 if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
651 ant[0] = ant[1] = AR5K_ANT_FIXED_A;
653 ant[0] = ant[1] = AR5K_ANT_FIXED_B;
655 ant[0] = AR5K_ANT_FIXED_A;
656 ant[1] = AR5K_ANT_FIXED_B;
659 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
660 AR5K_PHY_ANT_SWITCH_TABLE_0);
661 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
662 AR5K_PHY_ANT_SWITCH_TABLE_1);
664 /* Commit values from EEPROM */
665 if (ah->ah_radio == AR5K_RF5111)
666 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
667 AR5K_PHY_FRAME_CTL_TX_CLIP, ee->ee_tx_clip);
669 ath5k_hw_reg_write(ah,
670 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
673 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_SETTLING,
674 (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80,
676 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_GAIN,
677 (ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000,
679 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_DESIRED_SIZE,
680 (ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
681 ((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00),
684 ath5k_hw_reg_write(ah,
685 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
686 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
687 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
688 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
690 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_RF_CTL3,
691 ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff);
692 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_NF,
693 (ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff);
694 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_OFDM_SELFCORR, 4, 0xffffff01);
696 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
697 AR5K_PHY_IQ_CORR_ENABLE |
698 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
699 ee->ee_q_cal[ee_mode]);
701 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
702 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
703 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
704 ee->ee_margin_tx_rx[ee_mode]);
708 /* Disable phy and wait */
709 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
714 * Restore saved values
716 /*DCU/Antenna selection not available on 5210*/
717 if (ah->ah_version != AR5K_AR5210) {
718 ath5k_hw_reg_write(ah, s_seq, AR5K_QUEUE_DFS_SEQNUM(0));
719 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
721 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
722 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
723 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
728 /* XXX: add ah->aid once mac80211 gives this to us */
729 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
731 ath5k_hw_set_opmode(ah);
732 /*PISR/SISR Not available on 5210*/
733 if (ah->ah_version != AR5K_AR5210) {
734 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
735 /* If we later allow tuning for this, store into sc structure */
736 data = AR5K_TUNE_RSSI_THRES |
737 AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S;
738 ath5k_hw_reg_write(ah, data, AR5K_RSSI_THR);
742 * Set Rx/Tx DMA Configuration
744 * Set maximum DMA size (512) except for PCI-E cards since
745 * it causes rx overruns and tx errors (tested on 5424 but since
746 * rx overruns also occur on 5416/5418 with madwifi we set 128
747 * for all PCI-E cards to be safe).
749 * In dumps this is 128 for allchips.
751 * XXX: need to check 5210 for this
752 * TODO: Check out tx triger level, it's always 64 on dumps but I
753 * guess we can tweak it and see how it goes ;-)
755 dma_size = (pdev->is_pcie) ? AR5K_DMASIZE_128B : AR5K_DMASIZE_512B;
756 if (ah->ah_version != AR5K_AR5210) {
757 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
758 AR5K_TXCFG_SDMAMR, dma_size);
759 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
760 AR5K_RXCFG_SDMAMW, dma_size);
764 * Enable the PHY and wait until completion
766 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
769 * On 5211+ read activation -> rx delay
772 if (ah->ah_version != AR5K_AR5210) {
773 data = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
775 data = (channel->hw_value & CHANNEL_CCK) ?
776 ((data << 2) / 22) : (data / 10);
778 udelay(100 + (2 * data));
785 * Perform ADC test (?)
787 data = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
788 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
789 for (i = 0; i <= 20; i++) {
790 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
794 ath5k_hw_reg_write(ah, data, AR5K_PHY_TST1);
798 * Start automatic gain calibration
800 * During AGC calibration RX path is re-routed to
801 * a signal detector so we don't receive anything.
803 * This method is used to calibrate some static offsets
804 * used together with on-the fly I/Q calibration (the
805 * one performed via ath5k_hw_phy_calibrate), that doesn't
808 * If we are in a noisy environment AGC calibration may time
811 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
812 AR5K_PHY_AGCCTL_CAL);
814 /* At the same time start I/Q calibration for QAM constellation
815 * -no need for CCK- */
816 ah->ah_calibration = false;
817 if (!(mode == AR5K_MODE_11B)) {
818 ah->ah_calibration = true;
819 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
820 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
821 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
825 /* Wait for gain calibration to finish (we check for I/Q calibration
826 * during ath5k_phy_calibrate) */
827 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
828 AR5K_PHY_AGCCTL_CAL, 0, false)) {
829 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
830 channel->center_freq);
835 * Start noise floor calibration
837 * If we run NF calibration before AGC, it always times out.
838 * Binary HAL starts NF and AGC calibration at the same time
839 * and only waits for AGC to finish. I believe that's wrong because
840 * during NF calibration, rx path is also routed to a detector, so if
841 * it doesn't finish we won't have RX.
843 * XXX: Find an interval that's OK for all cards...
845 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
848 * Reset queues and start beacon timers at the end of the reset routine
850 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
852 if (ah->ah_version != AR5K_AR5210)
853 AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(i), i);
855 ret = ath5k_hw_reset_tx_queue(ah, i);
858 "failed to reset TX queue #%d\n", i);
863 /* Pre-enable interrupts on 5211/5212*/
864 if (ah->ah_version != AR5K_AR5210)
865 ath5k_hw_set_imr(ah, ah->ah_imr);
868 * Set RF kill flags if supported by the device (read from the EEPROM)
869 * Disable gpio_intr for now since it results system hang.
870 * TODO: Handle this in ath5k_intr
873 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
874 ath5k_hw_set_gpio_input(ah, 0);
875 ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
876 if (ah->ah_gpio[0] == 0)
877 ath5k_hw_set_gpio_intr(ah, 0, 1);
879 ath5k_hw_set_gpio_intr(ah, 0, 0);
884 * Set the 32MHz reference clock on 5212 phy clock sleep register
886 * TODO: Find out how to switch to external 32Khz clock to save power
888 if (ah->ah_version == AR5K_AR5212) {
889 ath5k_hw_reg_write(ah, AR5K_PHY_SCR_32MHZ, AR5K_PHY_SCR);
890 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
891 ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ, AR5K_PHY_SCAL);
892 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
893 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
894 ath5k_hw_reg_write(ah, ah->ah_phy_spending, AR5K_PHY_SPENDING);
896 data = ath5k_hw_reg_read(ah, AR5K_USEC_5211) & 0xffffc07f ;
897 data |= (ah->ah_phy_spending == AR5K_PHY_SPENDING_18) ?
898 0x00000f80 : 0x00001380 ;
899 ath5k_hw_reg_write(ah, data, AR5K_USEC_5211);
903 if (ah->ah_version == AR5K_AR5212) {
904 ath5k_hw_reg_write(ah, 0x000100aa, 0x8118);
905 ath5k_hw_reg_write(ah, 0x00003210, 0x811c);
906 ath5k_hw_reg_write(ah, 0x00000052, 0x8108);
907 if (ah->ah_mac_srev >= AR5K_SREV_AR2413)
908 ath5k_hw_reg_write(ah, 0x00000004, 0x8120);
912 * Disable beacons and reset the register
914 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
915 AR5K_BEACON_RESET_TSF);