2 * SMP boot-related support
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * Rohit Seth <rohit.seth@intel.com>
8 * Suresh Siddha <suresh.b.siddha@intel.com>
9 * Gordon Jin <gordon.jin@intel.com>
10 * Ashok Raj <ashok.raj@intel.com>
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 * Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 * Setup cpu_sibling_map and cpu_core_map
24 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/acpi.h>
28 #include <linux/bootmem.h>
29 #include <linux/cpu.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/irq.h>
34 #include <linux/kernel.h>
35 #include <linux/kernel_stat.h>
37 #include <linux/notifier.h>
38 #include <linux/smp.h>
39 #include <linux/smp_lock.h>
40 #include <linux/spinlock.h>
41 #include <linux/efi.h>
42 #include <linux/percpu.h>
43 #include <linux/bitops.h>
45 #include <asm/atomic.h>
46 #include <asm/cache.h>
47 #include <asm/current.h>
48 #include <asm/delay.h>
52 #include <asm/machvec.h>
55 #include <asm/pgalloc.h>
56 #include <asm/pgtable.h>
57 #include <asm/processor.h>
58 #include <asm/ptrace.h>
60 #include <asm/system.h>
61 #include <asm/tlbflush.h>
62 #include <asm/unistd.h>
67 #define Dprintk(x...) printk(x)
72 #ifdef CONFIG_HOTPLUG_CPU
74 * Store all idle threads, this can be reused instead of creating
75 * a new thread. Also avoids complicated thread destroy functionality
78 struct task_struct *idle_thread_array[NR_CPUS];
81 * Global array allocated for NR_CPUS at boot time
83 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
86 * start_ap in head.S uses this to store current booting cpu
89 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
91 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
93 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
94 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
98 #define get_idle_for_cpu(x) (NULL)
99 #define set_idle_for_cpu(x,p)
100 #define set_brendez_area(x)
105 * ITC synchronization related stuff:
108 #define SLAVE (SMP_CACHE_BYTES/8)
110 #define NUM_ROUNDS 64 /* magic value */
111 #define NUM_ITERS 5 /* likewise */
113 static DEFINE_SPINLOCK(itc_sync_lock);
114 static volatile unsigned long go[SLAVE + 1];
116 #define DEBUG_ITC_SYNC 0
118 extern void __devinit calibrate_delay (void);
119 extern void start_ap (void);
120 extern unsigned long ia64_iobase;
122 task_t *task_for_booting_cpu;
127 DEFINE_PER_CPU(int, cpu_state);
129 /* Bitmasks of currently online, and possible CPUs */
130 cpumask_t cpu_online_map;
131 EXPORT_SYMBOL(cpu_online_map);
132 cpumask_t cpu_possible_map;
133 EXPORT_SYMBOL(cpu_possible_map);
135 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
136 cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned;
137 int smp_num_siblings = 1;
138 int smp_num_cpucores = 1;
140 /* which logical CPU number maps to which CPU (physical APIC ID) */
141 volatile int ia64_cpu_to_sapicid[NR_CPUS];
142 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
144 static volatile cpumask_t cpu_callin_map;
146 struct smp_boot_data smp_boot_data __initdata;
148 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
150 char __initdata no_int_routing;
152 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
155 nointroute (char *str)
158 printk ("no_int_routing on\n");
162 __setup("nointroute", nointroute);
165 sync_master (void *arg)
167 unsigned long flags, i;
171 local_irq_save(flags);
173 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
177 go[SLAVE] = ia64_get_itc();
180 local_irq_restore(flags);
184 * Return the number of cycles by which our itc differs from the itc on the master
185 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
186 * negative that it is behind.
189 get_delta (long *rt, long *master)
191 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
192 unsigned long tcenter, t0, t1, tm;
195 for (i = 0; i < NUM_ITERS; ++i) {
198 while (!(tm = go[SLAVE]))
203 if (t1 - t0 < best_t1 - best_t0)
204 best_t0 = t0, best_t1 = t1, best_tm = tm;
207 *rt = best_t1 - best_t0;
208 *master = best_tm - best_t0;
210 /* average best_t0 and best_t1 without overflow: */
211 tcenter = (best_t0/2 + best_t1/2);
212 if (best_t0 % 2 + best_t1 % 2 == 2)
214 return tcenter - best_tm;
218 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
219 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
220 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
221 * step). The basic idea is for the slave to ask the master what itc value it has and to
222 * read its own itc before and after the master responds. Each iteration gives us three
236 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
237 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
238 * between the slave and the master is symmetric. Even if the interconnect were
239 * asymmetric, we would still know that the synchronization error is smaller than the
240 * roundtrip latency (t0 - t1).
242 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
243 * within one or two cycles. However, we can only *guarantee* that the synchronization is
244 * accurate to within a round-trip time, which is typically in the range of several
245 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
246 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
247 * than half a micro second or so.
250 ia64_sync_itc (unsigned int master)
252 long i, delta, adj, adjust_latency = 0, done = 0;
253 unsigned long flags, rt, master_time_stamp, bound;
256 long rt; /* roundtrip time */
257 long master; /* master's timestamp */
258 long diff; /* difference between midpoint and master's timestamp */
259 long lat; /* estimate of itc adjustment latency */
264 * Make sure local timer ticks are disabled while we sync. If
265 * they were enabled, we'd have to worry about nasty issues
266 * like setting the ITC ahead of (or a long time before) the
267 * next scheduled tick.
269 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
273 if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
274 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
279 cpu_relax(); /* wait for master to be ready */
281 spin_lock_irqsave(&itc_sync_lock, flags);
283 for (i = 0; i < NUM_ROUNDS; ++i) {
284 delta = get_delta(&rt, &master_time_stamp);
286 done = 1; /* let's lock on to this... */
292 adjust_latency += -delta;
293 adj = -delta + adjust_latency/4;
297 ia64_set_itc(ia64_get_itc() + adj);
301 t[i].master = master_time_stamp;
303 t[i].lat = adjust_latency/4;
307 spin_unlock_irqrestore(&itc_sync_lock, flags);
310 for (i = 0; i < NUM_ROUNDS; ++i)
311 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
312 t[i].rt, t[i].master, t[i].diff, t[i].lat);
315 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
316 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
320 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
322 static inline void __devinit
323 smp_setup_percpu_timer (void)
327 static void __devinit
331 extern void ia64_init_itm(void);
333 #ifdef CONFIG_PERFMON
334 extern void pfm_init_percpu(void);
337 cpuid = smp_processor_id();
338 phys_id = hard_smp_processor_id();
340 if (cpu_online(cpuid)) {
341 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
347 cpu_set(cpuid, cpu_online_map);
348 unlock_ipi_calllock();
349 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
351 smp_setup_percpu_timer();
353 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
355 #ifdef CONFIG_PERFMON
361 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
363 * Synchronize the ITC with the BP. Need to do this after irqs are
364 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
365 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
366 * local_bh_enable(), which bugs out if irqs are not enabled...
368 Dprintk("Going to syncup ITC with BP.\n");
377 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
379 #ifdef CONFIG_IA32_SUPPORT
384 * Allow the master to continue.
386 cpu_set(cpuid, cpu_callin_map);
387 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
392 * Activate a secondary processor. head.S calls this.
395 start_secondary (void *unused)
397 /* Early console may use I/O ports */
398 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
399 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
408 struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
414 struct task_struct *idle;
415 struct completion done;
420 do_fork_idle(void *_c_idle)
422 struct create_idle *c_idle = _c_idle;
424 c_idle->idle = fork_idle(c_idle->cpu);
425 complete(&c_idle->done);
429 do_boot_cpu (int sapicid, int cpu)
432 struct create_idle c_idle = {
434 .done = COMPLETION_INITIALIZER(c_idle.done),
436 DECLARE_WORK(work, do_fork_idle, &c_idle);
438 c_idle.idle = get_idle_for_cpu(cpu);
440 init_idle(c_idle.idle, cpu);
445 * We can't use kernel_thread since we must avoid to reschedule the child.
447 if (!keventd_up() || current_is_keventd())
448 work.func(work.data);
450 schedule_work(&work);
451 wait_for_completion(&c_idle.done);
454 if (IS_ERR(c_idle.idle))
455 panic("failed fork for CPU %d", cpu);
457 set_idle_for_cpu(cpu, c_idle.idle);
460 task_for_booting_cpu = c_idle.idle;
462 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
464 set_brendez_area(cpu);
465 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
468 * Wait 10s total for the AP to start
470 Dprintk("Waiting on callin_map ...");
471 for (timeout = 0; timeout < 100000; timeout++) {
472 if (cpu_isset(cpu, cpu_callin_map))
473 break; /* It has booted */
478 if (!cpu_isset(cpu, cpu_callin_map)) {
479 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
480 ia64_cpu_to_sapicid[cpu] = -1;
481 cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
491 get_option (&str, &ticks);
495 __setup("decay=", decay);
498 * Initialize the logical CPU number to SAPICID mapping
501 smp_build_cpu_map (void)
504 int boot_cpu_id = hard_smp_processor_id();
506 for (cpu = 0; cpu < NR_CPUS; cpu++) {
507 ia64_cpu_to_sapicid[cpu] = -1;
508 #ifdef CONFIG_HOTPLUG_CPU
509 cpu_set(cpu, cpu_possible_map);
513 ia64_cpu_to_sapicid[0] = boot_cpu_id;
514 cpus_clear(cpu_present_map);
515 cpu_set(0, cpu_present_map);
516 cpu_set(0, cpu_possible_map);
517 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
518 sapicid = smp_boot_data.cpu_phys_id[i];
519 if (sapicid == boot_cpu_id)
521 cpu_set(cpu, cpu_present_map);
522 cpu_set(cpu, cpu_possible_map);
523 ia64_cpu_to_sapicid[cpu] = sapicid;
530 /* on which node is each logical CPU (one cacheline even for 64 CPUs) */
531 u8 cpu_to_node_map[NR_CPUS] __cacheline_aligned;
532 EXPORT_SYMBOL(cpu_to_node_map);
533 /* which logical CPUs are on which nodes */
534 cpumask_t node_to_cpu_mask[MAX_NUMNODES] __cacheline_aligned;
537 * Build cpu to node mapping and initialize the per node cpu masks.
540 build_cpu_to_node_map (void)
544 for(node=0; node<MAX_NUMNODES; node++)
545 cpus_clear(node_to_cpu_mask[node]);
546 for(cpu = 0; cpu < NR_CPUS; ++cpu) {
548 * All Itanium NUMA platforms I know use ACPI, so maybe we
549 * can drop this ifdef completely. [EF]
551 #ifdef CONFIG_ACPI_NUMA
553 for (i = 0; i < NR_CPUS; ++i)
554 if (cpu_physical_id(cpu) == node_cpuid[i].phys_id) {
555 node = node_cpuid[i].nid;
559 # error Fixme: Dunno how to build CPU-to-node map.
561 cpu_to_node_map[cpu] = (node >= 0) ? node : 0;
563 cpu_set(cpu, node_to_cpu_mask[node]);
567 #endif /* CONFIG_NUMA */
570 * Cycle through the APs sending Wakeup IPIs to boot each.
573 smp_prepare_cpus (unsigned int max_cpus)
575 int boot_cpu_id = hard_smp_processor_id();
578 * Initialize the per-CPU profiling counter/multiplier
581 smp_setup_percpu_timer();
584 * We have the boot CPU online for sure.
586 cpu_set(0, cpu_online_map);
587 cpu_set(0, cpu_callin_map);
589 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
590 ia64_cpu_to_sapicid[0] = boot_cpu_id;
592 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
594 current_thread_info()->cpu = 0;
597 * If SMP should be disabled, then really disable it!
600 printk(KERN_INFO "SMP mode deactivated.\n");
601 cpus_clear(cpu_online_map);
602 cpus_clear(cpu_present_map);
603 cpus_clear(cpu_possible_map);
604 cpu_set(0, cpu_online_map);
605 cpu_set(0, cpu_present_map);
606 cpu_set(0, cpu_possible_map);
611 void __devinit smp_prepare_boot_cpu(void)
613 cpu_set(smp_processor_id(), cpu_online_map);
614 cpu_set(smp_processor_id(), cpu_callin_map);
615 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
619 * mt_info[] is a temporary store for all info returned by
620 * PAL_LOGICAL_TO_PHYSICAL, to be copied into cpuinfo_ia64 when the
621 * specific cpu comes.
627 __u16 proc_fixed_addr;
629 } mt_info[NR_CPUS] __devinitdata;
631 #ifdef CONFIG_HOTPLUG_CPU
633 remove_from_mtinfo(int cpu)
638 if (mt_info[i].valid && mt_info[i].socket_id ==
639 cpu_data(cpu)->socket_id)
640 mt_info[i].valid = 0;
644 clear_cpu_sibling_map(int cpu)
648 for_each_cpu_mask(i, cpu_sibling_map[cpu])
649 cpu_clear(cpu, cpu_sibling_map[i]);
650 for_each_cpu_mask(i, cpu_core_map[cpu])
651 cpu_clear(cpu, cpu_core_map[i]);
653 cpu_sibling_map[cpu] = cpu_core_map[cpu] = CPU_MASK_NONE;
657 remove_siblinginfo(int cpu)
661 if (cpu_data(cpu)->threads_per_core == 1 &&
662 cpu_data(cpu)->cores_per_socket == 1) {
663 cpu_clear(cpu, cpu_core_map[cpu]);
664 cpu_clear(cpu, cpu_sibling_map[cpu]);
668 last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
670 /* remove it from all sibling map's */
671 clear_cpu_sibling_map(cpu);
673 /* if this cpu is the last in the core group, remove all its info
674 * from mt_info structure
677 remove_from_mtinfo(cpu);
680 extern void fixup_irqs(void);
681 /* must be called with cpucontrol mutex held */
682 int __cpu_disable(void)
684 int cpu = smp_processor_id();
687 * dont permit boot processor for now
692 remove_siblinginfo(cpu);
693 cpu_clear(cpu, cpu_online_map);
695 local_flush_tlb_all();
696 cpu_clear(cpu, cpu_callin_map);
700 void __cpu_die(unsigned int cpu)
704 for (i = 0; i < 100; i++) {
705 /* They ack this in play_dead by setting CPU_DEAD */
706 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
708 printk ("CPU %d is now offline\n", cpu);
713 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
715 #else /* !CONFIG_HOTPLUG_CPU */
716 int __cpu_disable(void)
721 void __cpu_die(unsigned int cpu)
723 /* We said "no" in __cpu_disable */
726 #endif /* CONFIG_HOTPLUG_CPU */
729 smp_cpus_done (unsigned int dummy)
732 unsigned long bogosum = 0;
735 * Allow the user to impress friends.
738 for (cpu = 0; cpu < NR_CPUS; cpu++)
740 bogosum += cpu_data(cpu)->loops_per_jiffy;
742 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
743 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
746 static inline void __devinit
747 set_cpu_sibling_map(int cpu)
751 for_each_online_cpu(i) {
752 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
753 cpu_set(i, cpu_core_map[cpu]);
754 cpu_set(cpu, cpu_core_map[i]);
755 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
756 cpu_set(i, cpu_sibling_map[cpu]);
757 cpu_set(cpu, cpu_sibling_map[i]);
764 __cpu_up (unsigned int cpu)
769 sapicid = ia64_cpu_to_sapicid[cpu];
774 * Already booted cpu? not valid anymore since we dont
775 * do idle loop tightspin anymore.
777 if (cpu_isset(cpu, cpu_callin_map))
780 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
781 /* Processor goes to start_secondary(), sets online flag */
782 ret = do_boot_cpu(sapicid, cpu);
786 if (cpu_data(cpu)->threads_per_core == 1 &&
787 cpu_data(cpu)->cores_per_socket == 1) {
788 cpu_set(cpu, cpu_sibling_map[cpu]);
789 cpu_set(cpu, cpu_core_map[cpu]);
793 set_cpu_sibling_map(cpu);
799 * Assume that CPU's have been discovered by some platform-dependent interface. For
800 * SoftSDV/Lion, that would be ACPI.
802 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
805 init_smp_config(void)
813 /* Tell SAL where to drop the AP's. */
814 ap_startup = (struct fptr *) start_ap;
815 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
816 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
818 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
819 ia64_sal_strerror(sal_ret));
822 static inline int __devinit
823 check_for_mtinfo_index(void)
828 if (!mt_info[i].valid)
835 * Search the mt_info to find out if this socket's cid/tid information is
836 * cached or not. If the socket exists, fill in the core_id and thread_id
840 check_for_new_socket(__u16 logical_address, struct cpuinfo_ia64 *c)
843 __u32 sid = c->socket_id;
846 if (mt_info[i].valid && mt_info[i].proc_fixed_addr == logical_address
847 && mt_info[i].socket_id == sid) {
848 c->core_id = mt_info[i].core_id;
849 c->thread_id = mt_info[i].thread_id;
850 return 1; /* not a new socket */
857 * identify_siblings(cpu) gets called from identify_cpu. This populates the
858 * information related to logical execution units in per_cpu_data structure.
861 identify_siblings(struct cpuinfo_ia64 *c)
867 pal_logical_to_physical_t info;
869 if (smp_num_cpucores == 1 && smp_num_siblings == 1)
872 if ((status = ia64_pal_logical_to_phys(0, &info)) != PAL_STATUS_SUCCESS) {
873 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
877 if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
878 printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
881 if ((status = ia64_pal_fixed_addr(&proc_fixed_addr)) != PAL_STATUS_SUCCESS) {
882 printk(KERN_ERR "ia64_pal_fixed_addr failed with %ld\n", status);
886 c->socket_id = (pltid << 8) | info.overview_ppid;
887 c->cores_per_socket = info.overview_cpp;
888 c->threads_per_core = info.overview_tpc;
889 count = c->num_log = info.overview_num_log;
891 /* If the thread and core id information is already cached, then
892 * we will simply update cpu_info and return. Otherwise, we will
893 * do the PAL calls and cache core and thread id's of all the siblings.
895 if (check_for_new_socket(proc_fixed_addr, c))
898 for (i = 0; i < count; i++) {
901 if (i && (status = ia64_pal_logical_to_phys(i, &info))
902 != PAL_STATUS_SUCCESS) {
903 printk(KERN_ERR "ia64_pal_logical_to_phys failed"
904 " with %ld\n", status);
907 if (info.log2_la == proc_fixed_addr) {
908 c->core_id = info.log1_cid;
909 c->thread_id = info.log1_tid;
912 index = check_for_mtinfo_index();
913 /* We will not do the mt_info caching optimization in this case.
918 mt_info[index].valid = 1;
919 mt_info[index].socket_id = c->socket_id;
920 mt_info[index].core_id = info.log1_cid;
921 mt_info[index].thread_id = info.log1_tid;
922 mt_info[index].proc_fixed_addr = info.log2_la;