2 * Routines for doing kexec-based kdump.
4 * Copyright (C) 2005, IBM Corp.
6 * Created by: Michael Ellerman
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
14 #include <linux/crash_dump.h>
15 #include <linux/bootmem.h>
16 #include <linux/lmb.h>
17 #include <asm/code-patching.h>
18 #include <asm/kdump.h>
20 #include <asm/firmware.h>
21 #include <asm/uaccess.h>
25 #define DBG(fmt...) udbg_printf(fmt)
30 /* Stores the physical address of elf header of crash image. */
31 unsigned long long elfcorehdr_addr = ELFCORE_ADDR_MAX;
33 #ifndef CONFIG_RELOCATABLE
34 void __init reserve_kdump_trampoline(void)
36 lmb_reserve(0, KDUMP_RESERVE_LIMIT);
39 static void __init create_trampoline(unsigned long addr)
41 unsigned int *p = (unsigned int *)addr;
43 /* The maximum range of a single instruction branch, is the current
44 * instruction's address + (32 MB - 4) bytes. For the trampoline we
45 * need to branch to current address + 32 MB. So we insert a nop at
46 * the trampoline address, then the next instruction (+ 4 bytes)
47 * does a branch to (32 MB - 4). The net effect is that when we
48 * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
49 * two instructions it doesn't require any registers.
51 patch_instruction(p, PPC_NOP_INSTR);
52 patch_branch(++p, addr + PHYSICAL_START, 0);
55 void __init setup_kdump_trampoline(void)
59 DBG(" -> setup_kdump_trampoline()\n");
61 for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
65 #ifdef CONFIG_PPC_PSERIES
66 create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
67 create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
68 #endif /* CONFIG_PPC_PSERIES */
70 DBG(" <- setup_kdump_trampoline()\n");
72 #endif /* CONFIG_RELOCATABLE */
75 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
76 * is_kdump_kernel() to determine if we are booting after a panic. Hence
77 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
79 static int __init parse_elfcorehdr(char *p)
82 elfcorehdr_addr = memparse(p, &p);
86 __setup("elfcorehdr=", parse_elfcorehdr);
88 static int __init parse_savemaxmem(char *p)
91 saved_max_pfn = (memparse(p, &p) >> PAGE_SHIFT) - 1;
95 __setup("savemaxmem=", parse_savemaxmem);
98 static size_t copy_oldmem_vaddr(void *vaddr, char *buf, size_t csize,
99 unsigned long offset, int userbuf)
102 if (copy_to_user((char __user *)buf, (vaddr + offset), csize))
105 memcpy(buf, (vaddr + offset), csize);
111 * copy_oldmem_page - copy one page from "oldmem"
112 * @pfn: page frame number to be copied
113 * @buf: target memory address for the copy; this can be in kernel address
114 * space or user address space (see @userbuf)
115 * @csize: number of bytes to copy
116 * @offset: offset in bytes into the page (based on pfn) to begin the copy
117 * @userbuf: if set, @buf is in user address space, use copy_to_user(),
118 * otherwise @buf is in kernel address space, use memcpy().
120 * Copy a page from "oldmem". For this page, there is no pte mapped
121 * in the current kernel. We stitch up a pte, similar to kmap_atomic.
123 ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
124 size_t csize, unsigned long offset, int userbuf)
131 csize = min(csize, PAGE_SIZE);
134 vaddr = __va(pfn << PAGE_SHIFT);
135 csize = copy_oldmem_vaddr(vaddr, buf, csize, offset, userbuf);
137 vaddr = __ioremap(pfn << PAGE_SHIFT, PAGE_SIZE, 0);
138 csize = copy_oldmem_vaddr(vaddr, buf, csize, offset, userbuf);