Auto merge with /home/aegl/GIT/linus
[linux-2.6] / arch / arm / mach-versatile / core.c
1 /*
2  *  linux/arch/arm/mach-versatile/core.c
3  *
4  *  Copyright (C) 1999 - 2003 ARM Limited
5  *  Copyright (C) 2000 Deep Blue Solutions Ltd
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
27
28 #include <asm/system.h>
29 #include <asm/hardware.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/leds.h>
33 #include <asm/mach-types.h>
34 #include <asm/hardware/amba.h>
35 #include <asm/hardware/amba_clcd.h>
36 #include <asm/hardware/icst307.h>
37
38 #include <asm/mach/arch.h>
39 #include <asm/mach/flash.h>
40 #include <asm/mach/irq.h>
41 #include <asm/mach/time.h>
42 #include <asm/mach/map.h>
43 #include <asm/mach/mmc.h>
44
45 #include "core.h"
46 #include "clock.h"
47
48 /*
49  * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
50  * is the (PA >> 12).
51  *
52  * Setup a VA for the Versatile Vectored Interrupt Controller.
53  */
54 #define VA_VIC_BASE              IO_ADDRESS(VERSATILE_VIC_BASE)
55 #define VA_SIC_BASE              IO_ADDRESS(VERSATILE_SIC_BASE)
56
57 static void vic_mask_irq(unsigned int irq)
58 {
59         irq -= IRQ_VIC_START;
60         writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
61 }
62
63 static void vic_unmask_irq(unsigned int irq)
64 {
65         irq -= IRQ_VIC_START;
66         writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
67 }
68
69 static struct irqchip vic_chip = {
70         .ack    = vic_mask_irq,
71         .mask   = vic_mask_irq,
72         .unmask = vic_unmask_irq,
73 };
74
75 static void sic_mask_irq(unsigned int irq)
76 {
77         irq -= IRQ_SIC_START;
78         writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
79 }
80
81 static void sic_unmask_irq(unsigned int irq)
82 {
83         irq -= IRQ_SIC_START;
84         writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
85 }
86
87 static struct irqchip sic_chip = {
88         .ack    = sic_mask_irq,
89         .mask   = sic_mask_irq,
90         .unmask = sic_unmask_irq,
91 };
92
93 static void
94 sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
95 {
96         unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
97
98         if (status == 0) {
99                 do_bad_IRQ(irq, desc, regs);
100                 return;
101         }
102
103         do {
104                 irq = ffs(status) - 1;
105                 status &= ~(1 << irq);
106
107                 irq += IRQ_SIC_START;
108
109                 desc = irq_desc + irq;
110                 desc->handle(irq, desc, regs);
111         } while (status);
112 }
113
114 #if 1
115 #define IRQ_MMCI0A      IRQ_VICSOURCE22
116 #define IRQ_AACI        IRQ_VICSOURCE24
117 #define IRQ_ETH         IRQ_VICSOURCE25
118 #define PIC_MASK        0xFFD00000
119 #else
120 #define IRQ_MMCI0A      IRQ_SIC_MMCI0A
121 #define IRQ_AACI        IRQ_SIC_AACI
122 #define IRQ_ETH         IRQ_SIC_ETH
123 #define PIC_MASK        0
124 #endif
125
126 void __init versatile_init_irq(void)
127 {
128         unsigned int i, value;
129
130         /* Disable all interrupts initially. */
131
132         writel(0, VA_VIC_BASE + VIC_INT_SELECT);
133         writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
134         writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
135         writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
136         writel(0, VA_VIC_BASE + VIC_ITCR);
137         writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
138
139         /*
140          * Make sure we clear all existing interrupts
141          */
142         writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
143         for (i = 0; i < 19; i++) {
144                 value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
145                 writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
146         }
147
148         for (i = 0; i < 16; i++) {
149                 value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
150                 writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
151         }
152
153         writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
154
155         for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
156                 if (i != IRQ_VICSOURCE31) {
157                         set_irq_chip(i, &vic_chip);
158                         set_irq_handler(i, do_level_IRQ);
159                         set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
160                 }
161         }
162
163         set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
164         vic_unmask_irq(IRQ_VICSOURCE31);
165
166         /* Do second interrupt controller */
167         writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
168
169         for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
170                 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
171                         set_irq_chip(i, &sic_chip);
172                         set_irq_handler(i, do_level_IRQ);
173                         set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
174                 }
175         }
176
177         /*
178          * Interrupts on secondary controller from 0 to 8 are routed to
179          * source 31 on PIC.
180          * Interrupts from 21 to 31 are routed directly to the VIC on
181          * the corresponding number on primary controller. This is controlled
182          * by setting PIC_ENABLEx.
183          */
184         writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
185 }
186
187 static struct map_desc versatile_io_desc[] __initdata = {
188  { IO_ADDRESS(VERSATILE_SYS_BASE),   VERSATILE_SYS_BASE,   SZ_4K,      MT_DEVICE },
189  { IO_ADDRESS(VERSATILE_SIC_BASE),   VERSATILE_SIC_BASE,   SZ_4K,      MT_DEVICE },
190  { IO_ADDRESS(VERSATILE_VIC_BASE),   VERSATILE_VIC_BASE,   SZ_4K,      MT_DEVICE },
191  { IO_ADDRESS(VERSATILE_SCTL_BASE),  VERSATILE_SCTL_BASE,  SZ_4K * 9,  MT_DEVICE },
192 #ifdef CONFIG_MACH_VERSATILE_AB
193  { IO_ADDRESS(VERSATILE_GPIO0_BASE), VERSATILE_GPIO0_BASE, SZ_4K,      MT_DEVICE },
194  { IO_ADDRESS(VERSATILE_IB2_BASE),   VERSATILE_IB2_BASE,   SZ_64M,     MT_DEVICE },
195 #endif
196 #ifdef CONFIG_DEBUG_LL
197  { IO_ADDRESS(VERSATILE_UART0_BASE), VERSATILE_UART0_BASE, SZ_4K,      MT_DEVICE },
198 #endif
199 #ifdef FIXME
200  { PCI_MEMORY_VADDR,                 PHYS_PCI_MEM_BASE,    SZ_16M,     MT_DEVICE },
201  { PCI_CONFIG_VADDR,                 PHYS_PCI_CONFIG_BASE, SZ_16M,     MT_DEVICE },
202  { PCI_V3_VADDR,                     PHYS_PCI_V3_BASE,     SZ_512K,    MT_DEVICE },
203  { PCI_IO_VADDR,                     PHYS_PCI_IO_BASE,     SZ_64K,     MT_DEVICE },
204 #endif
205 };
206
207 void __init versatile_map_io(void)
208 {
209         iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
210 }
211
212 #define VERSATILE_REFCOUNTER    (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
213
214 /*
215  * This is the Versatile sched_clock implementation.  This has
216  * a resolution of 41.7ns, and a maximum value of about 179s.
217  */
218 unsigned long long sched_clock(void)
219 {
220         unsigned long long v;
221
222         v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
223         do_div(v, 3);
224
225         return v;
226 }
227
228
229 #define VERSATILE_FLASHCTRL    (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
230
231 static int versatile_flash_init(void)
232 {
233         u32 val;
234
235         val = __raw_readl(VERSATILE_FLASHCTRL);
236         val &= ~VERSATILE_FLASHPROG_FLVPPEN;
237         __raw_writel(val, VERSATILE_FLASHCTRL);
238
239         return 0;
240 }
241
242 static void versatile_flash_exit(void)
243 {
244         u32 val;
245
246         val = __raw_readl(VERSATILE_FLASHCTRL);
247         val &= ~VERSATILE_FLASHPROG_FLVPPEN;
248         __raw_writel(val, VERSATILE_FLASHCTRL);
249 }
250
251 static void versatile_flash_set_vpp(int on)
252 {
253         u32 val;
254
255         val = __raw_readl(VERSATILE_FLASHCTRL);
256         if (on)
257                 val |= VERSATILE_FLASHPROG_FLVPPEN;
258         else
259                 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
260         __raw_writel(val, VERSATILE_FLASHCTRL);
261 }
262
263 static struct flash_platform_data versatile_flash_data = {
264         .map_name               = "cfi_probe",
265         .width                  = 4,
266         .init                   = versatile_flash_init,
267         .exit                   = versatile_flash_exit,
268         .set_vpp                = versatile_flash_set_vpp,
269 };
270
271 static struct resource versatile_flash_resource = {
272         .start                  = VERSATILE_FLASH_BASE,
273         .end                    = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
274         .flags                  = IORESOURCE_MEM,
275 };
276
277 static struct platform_device versatile_flash_device = {
278         .name                   = "armflash",
279         .id                     = 0,
280         .dev                    = {
281                 .platform_data  = &versatile_flash_data,
282         },
283         .num_resources          = 1,
284         .resource               = &versatile_flash_resource,
285 };
286
287 static struct resource smc91x_resources[] = {
288         [0] = {
289                 .start          = VERSATILE_ETH_BASE,
290                 .end            = VERSATILE_ETH_BASE + SZ_64K - 1,
291                 .flags          = IORESOURCE_MEM,
292         },
293         [1] = {
294                 .start          = IRQ_ETH,
295                 .end            = IRQ_ETH,
296                 .flags          = IORESOURCE_IRQ,
297         },
298 };
299
300 static struct platform_device smc91x_device = {
301         .name           = "smc91x",
302         .id             = 0,
303         .num_resources  = ARRAY_SIZE(smc91x_resources),
304         .resource       = smc91x_resources,
305 };
306
307 #define VERSATILE_SYSMCI        (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
308
309 unsigned int mmc_status(struct device *dev)
310 {
311         struct amba_device *adev = container_of(dev, struct amba_device, dev);
312         u32 mask;
313
314         if (adev->res.start == VERSATILE_MMCI0_BASE)
315                 mask = 1;
316         else
317                 mask = 2;
318
319         return readl(VERSATILE_SYSMCI) & mask;
320 }
321
322 static struct mmc_platform_data mmc0_plat_data = {
323         .ocr_mask       = MMC_VDD_32_33|MMC_VDD_33_34,
324         .status         = mmc_status,
325 };
326
327 /*
328  * Clock handling
329  */
330 static const struct icst307_params versatile_oscvco_params = {
331         .ref            = 24000,
332         .vco_max        = 200000,
333         .vd_min         = 4 + 8,
334         .vd_max         = 511 + 8,
335         .rd_min         = 1 + 2,
336         .rd_max         = 127 + 2,
337 };
338
339 static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
340 {
341         unsigned long sys_lock = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
342 #if defined(CONFIG_ARCH_VERSATILE_PB)
343         unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
344 #elif defined(CONFIG_MACH_VERSATILE_AB)
345         unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
346 #endif
347         u32 val;
348
349         val = readl(sys_osc) & ~0x7ffff;
350         val |= vco.v | (vco.r << 9) | (vco.s << 16);
351
352         writel(0xa05f, sys_lock);
353         writel(val, sys_osc);
354         writel(0, sys_lock);
355 }
356
357 static struct clk versatile_clcd_clk = {
358         .name   = "CLCDCLK",
359         .params = &versatile_oscvco_params,
360         .setvco = versatile_oscvco_set,
361 };
362
363 /*
364  * CLCD support.
365  */
366 #define SYS_CLCD_MODE_MASK      (3 << 0)
367 #define SYS_CLCD_MODE_888       (0 << 0)
368 #define SYS_CLCD_MODE_5551      (1 << 0)
369 #define SYS_CLCD_MODE_565_RLSB  (2 << 0)
370 #define SYS_CLCD_MODE_565_BLSB  (3 << 0)
371 #define SYS_CLCD_NLCDIOON       (1 << 2)
372 #define SYS_CLCD_VDDPOSSWITCH   (1 << 3)
373 #define SYS_CLCD_PWR3V5SWITCH   (1 << 4)
374 #define SYS_CLCD_ID_MASK        (0x1f << 8)
375 #define SYS_CLCD_ID_SANYO_3_8   (0x00 << 8)
376 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
377 #define SYS_CLCD_ID_EPSON_2_2   (0x02 << 8)
378 #define SYS_CLCD_ID_SANYO_2_5   (0x07 << 8)
379 #define SYS_CLCD_ID_VGA         (0x1f << 8)
380
381 static struct clcd_panel vga = {
382         .mode           = {
383                 .name           = "VGA",
384                 .refresh        = 60,
385                 .xres           = 640,
386                 .yres           = 480,
387                 .pixclock       = 39721,
388                 .left_margin    = 40,
389                 .right_margin   = 24,
390                 .upper_margin   = 32,
391                 .lower_margin   = 11,
392                 .hsync_len      = 96,
393                 .vsync_len      = 2,
394                 .sync           = 0,
395                 .vmode          = FB_VMODE_NONINTERLACED,
396         },
397         .width          = -1,
398         .height         = -1,
399         .tim2           = TIM2_BCD | TIM2_IPC,
400         .cntl           = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
401         .bpp            = 16,
402 };
403
404 static struct clcd_panel sanyo_3_8_in = {
405         .mode           = {
406                 .name           = "Sanyo QVGA",
407                 .refresh        = 116,
408                 .xres           = 320,
409                 .yres           = 240,
410                 .pixclock       = 100000,
411                 .left_margin    = 6,
412                 .right_margin   = 6,
413                 .upper_margin   = 5,
414                 .lower_margin   = 5,
415                 .hsync_len      = 6,
416                 .vsync_len      = 6,
417                 .sync           = 0,
418                 .vmode          = FB_VMODE_NONINTERLACED,
419         },
420         .width          = -1,
421         .height         = -1,
422         .tim2           = TIM2_BCD,
423         .cntl           = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
424         .bpp            = 16,
425 };
426
427 static struct clcd_panel sanyo_2_5_in = {
428         .mode           = {
429                 .name           = "Sanyo QVGA Portrait",
430                 .refresh        = 116,
431                 .xres           = 240,
432                 .yres           = 320,
433                 .pixclock       = 100000,
434                 .left_margin    = 20,
435                 .right_margin   = 10,
436                 .upper_margin   = 2,
437                 .lower_margin   = 2,
438                 .hsync_len      = 10,
439                 .vsync_len      = 2,
440                 .sync           = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
441                 .vmode          = FB_VMODE_NONINTERLACED,
442         },
443         .width          = -1,
444         .height         = -1,
445         .tim2           = TIM2_IVS | TIM2_IHS | TIM2_IPC,
446         .cntl           = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
447         .bpp            = 16,
448 };
449
450 static struct clcd_panel epson_2_2_in = {
451         .mode           = {
452                 .name           = "Epson QCIF",
453                 .refresh        = 390,
454                 .xres           = 176,
455                 .yres           = 220,
456                 .pixclock       = 62500,
457                 .left_margin    = 3,
458                 .right_margin   = 2,
459                 .upper_margin   = 1,
460                 .lower_margin   = 0,
461                 .hsync_len      = 3,
462                 .vsync_len      = 2,
463                 .sync           = 0,
464                 .vmode          = FB_VMODE_NONINTERLACED,
465         },
466         .width          = -1,
467         .height         = -1,
468         .tim2           = TIM2_BCD | TIM2_IPC,
469         .cntl           = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
470         .bpp            = 16,
471 };
472
473 /*
474  * Detect which LCD panel is connected, and return the appropriate
475  * clcd_panel structure.  Note: we do not have any information on
476  * the required timings for the 8.4in panel, so we presently assume
477  * VGA timings.
478  */
479 static struct clcd_panel *versatile_clcd_panel(void)
480 {
481         unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
482         struct clcd_panel *panel = &vga;
483         u32 val;
484
485         val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
486         if (val == SYS_CLCD_ID_SANYO_3_8)
487                 panel = &sanyo_3_8_in;
488         else if (val == SYS_CLCD_ID_SANYO_2_5)
489                 panel = &sanyo_2_5_in;
490         else if (val == SYS_CLCD_ID_EPSON_2_2)
491                 panel = &epson_2_2_in;
492         else if (val == SYS_CLCD_ID_VGA)
493                 panel = &vga;
494         else {
495                 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
496                         val);
497                 panel = &vga;
498         }
499
500         return panel;
501 }
502
503 /*
504  * Disable all display connectors on the interface module.
505  */
506 static void versatile_clcd_disable(struct clcd_fb *fb)
507 {
508         unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
509         u32 val;
510
511         val = readl(sys_clcd);
512         val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
513         writel(val, sys_clcd);
514
515 #ifdef CONFIG_MACH_VERSATILE_AB
516         /*
517          * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
518          */
519         if (fb->panel == &sanyo_2_5_in) {
520                 unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
521                 unsigned long ctrl;
522
523                 ctrl = readl(versatile_ib2_ctrl);
524                 ctrl &= ~0x01;
525                 writel(ctrl, versatile_ib2_ctrl);
526         }
527 #endif
528 }
529
530 /*
531  * Enable the relevant connector on the interface module.
532  */
533 static void versatile_clcd_enable(struct clcd_fb *fb)
534 {
535         unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
536         u32 val;
537
538         val = readl(sys_clcd);
539         val &= ~SYS_CLCD_MODE_MASK;
540
541         switch (fb->fb.var.green.length) {
542         case 5:
543                 val |= SYS_CLCD_MODE_5551;
544                 break;
545         case 6:
546                 val |= SYS_CLCD_MODE_565_RLSB;
547                 break;
548         case 8:
549                 val |= SYS_CLCD_MODE_888;
550                 break;
551         }
552
553         /*
554          * Set the MUX
555          */
556         writel(val, sys_clcd);
557
558         /*
559          * And now enable the PSUs
560          */
561         val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
562         writel(val, sys_clcd);
563
564 #ifdef CONFIG_MACH_VERSATILE_AB
565         /*
566          * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
567          */
568         if (fb->panel == &sanyo_2_5_in) {
569                 unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
570                 unsigned long ctrl;
571
572                 ctrl = readl(versatile_ib2_ctrl);
573                 ctrl |= 0x01;
574                 writel(ctrl, versatile_ib2_ctrl);
575         }
576 #endif
577 }
578
579 static unsigned long framesize = SZ_1M;
580
581 static int versatile_clcd_setup(struct clcd_fb *fb)
582 {
583         dma_addr_t dma;
584
585         fb->panel               = versatile_clcd_panel();
586
587         fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
588                                                     &dma, GFP_KERNEL);
589         if (!fb->fb.screen_base) {
590                 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
591                 return -ENOMEM;
592         }
593
594         fb->fb.fix.smem_start   = dma;
595         fb->fb.fix.smem_len     = framesize;
596
597         return 0;
598 }
599
600 static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
601 {
602         return dma_mmap_writecombine(&fb->dev->dev, vma,
603                                      fb->fb.screen_base,
604                                      fb->fb.fix.smem_start,
605                                      fb->fb.fix.smem_len);
606 }
607
608 static void versatile_clcd_remove(struct clcd_fb *fb)
609 {
610         dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
611                               fb->fb.screen_base, fb->fb.fix.smem_start);
612 }
613
614 static struct clcd_board clcd_plat_data = {
615         .name           = "Versatile",
616         .check          = clcdfb_check,
617         .decode         = clcdfb_decode,
618         .disable        = versatile_clcd_disable,
619         .enable         = versatile_clcd_enable,
620         .setup          = versatile_clcd_setup,
621         .mmap           = versatile_clcd_mmap,
622         .remove         = versatile_clcd_remove,
623 };
624
625 #define AACI_IRQ        { IRQ_AACI, NO_IRQ }
626 #define AACI_DMA        { 0x80, 0x81 }
627 #define MMCI0_IRQ       { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
628 #define MMCI0_DMA       { 0x84, 0 }
629 #define KMI0_IRQ        { IRQ_SIC_KMI0, NO_IRQ }
630 #define KMI0_DMA        { 0, 0 }
631 #define KMI1_IRQ        { IRQ_SIC_KMI1, NO_IRQ }
632 #define KMI1_DMA        { 0, 0 }
633
634 /*
635  * These devices are connected directly to the multi-layer AHB switch
636  */
637 #define SMC_IRQ         { NO_IRQ, NO_IRQ }
638 #define SMC_DMA         { 0, 0 }
639 #define MPMC_IRQ        { NO_IRQ, NO_IRQ }
640 #define MPMC_DMA        { 0, 0 }
641 #define CLCD_IRQ        { IRQ_CLCDINT, NO_IRQ }
642 #define CLCD_DMA        { 0, 0 }
643 #define DMAC_IRQ        { IRQ_DMAINT, NO_IRQ }
644 #define DMAC_DMA        { 0, 0 }
645
646 /*
647  * These devices are connected via the core APB bridge
648  */
649 #define SCTL_IRQ        { NO_IRQ, NO_IRQ }
650 #define SCTL_DMA        { 0, 0 }
651 #define WATCHDOG_IRQ    { IRQ_WDOGINT, NO_IRQ }
652 #define WATCHDOG_DMA    { 0, 0 }
653 #define GPIO0_IRQ       { IRQ_GPIOINT0, NO_IRQ }
654 #define GPIO0_DMA       { 0, 0 }
655 #define GPIO1_IRQ       { IRQ_GPIOINT1, NO_IRQ }
656 #define GPIO1_DMA       { 0, 0 }
657 #define RTC_IRQ         { IRQ_RTCINT, NO_IRQ }
658 #define RTC_DMA         { 0, 0 }
659
660 /*
661  * These devices are connected via the DMA APB bridge
662  */
663 #define SCI_IRQ         { IRQ_SCIINT, NO_IRQ }
664 #define SCI_DMA         { 7, 6 }
665 #define UART0_IRQ       { IRQ_UARTINT0, NO_IRQ }
666 #define UART0_DMA       { 15, 14 }
667 #define UART1_IRQ       { IRQ_UARTINT1, NO_IRQ }
668 #define UART1_DMA       { 13, 12 }
669 #define UART2_IRQ       { IRQ_UARTINT2, NO_IRQ }
670 #define UART2_DMA       { 11, 10 }
671 #define SSP_IRQ         { IRQ_SSPINT, NO_IRQ }
672 #define SSP_DMA         { 9, 8 }
673
674 /* FPGA Primecells */
675 AMBA_DEVICE(aaci,  "fpga:04", AACI,     NULL);
676 AMBA_DEVICE(mmc0,  "fpga:05", MMCI0,    &mmc0_plat_data);
677 AMBA_DEVICE(kmi0,  "fpga:06", KMI0,     NULL);
678 AMBA_DEVICE(kmi1,  "fpga:07", KMI1,     NULL);
679
680 /* DevChip Primecells */
681 AMBA_DEVICE(smc,   "dev:00",  SMC,      NULL);
682 AMBA_DEVICE(mpmc,  "dev:10",  MPMC,     NULL);
683 AMBA_DEVICE(clcd,  "dev:20",  CLCD,     &clcd_plat_data);
684 AMBA_DEVICE(dmac,  "dev:30",  DMAC,     NULL);
685 AMBA_DEVICE(sctl,  "dev:e0",  SCTL,     NULL);
686 AMBA_DEVICE(wdog,  "dev:e1",  WATCHDOG, NULL);
687 AMBA_DEVICE(gpio0, "dev:e4",  GPIO0,    NULL);
688 AMBA_DEVICE(gpio1, "dev:e5",  GPIO1,    NULL);
689 AMBA_DEVICE(rtc,   "dev:e8",  RTC,      NULL);
690 AMBA_DEVICE(sci0,  "dev:f0",  SCI,      NULL);
691 AMBA_DEVICE(uart0, "dev:f1",  UART0,    NULL);
692 AMBA_DEVICE(uart1, "dev:f2",  UART1,    NULL);
693 AMBA_DEVICE(uart2, "dev:f3",  UART2,    NULL);
694 AMBA_DEVICE(ssp0,  "dev:f4",  SSP,      NULL);
695
696 static struct amba_device *amba_devs[] __initdata = {
697         &dmac_device,
698         &uart0_device,
699         &uart1_device,
700         &uart2_device,
701         &smc_device,
702         &mpmc_device,
703         &clcd_device,
704         &sctl_device,
705         &wdog_device,
706         &gpio0_device,
707         &gpio1_device,
708         &rtc_device,
709         &sci0_device,
710         &ssp0_device,
711         &aaci_device,
712         &mmc0_device,
713         &kmi0_device,
714         &kmi1_device,
715 };
716
717 #ifdef CONFIG_LEDS
718 #define VA_LEDS_BASE (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
719
720 static void versatile_leds_event(led_event_t ledevt)
721 {
722         unsigned long flags;
723         u32 val;
724
725         local_irq_save(flags);
726         val = readl(VA_LEDS_BASE);
727
728         switch (ledevt) {
729         case led_idle_start:
730                 val = val & ~VERSATILE_SYS_LED0;
731                 break;
732
733         case led_idle_end:
734                 val = val | VERSATILE_SYS_LED0;
735                 break;
736
737         case led_timer:
738                 val = val ^ VERSATILE_SYS_LED1;
739                 break;
740
741         case led_halted:
742                 val = 0;
743                 break;
744
745         default:
746                 break;
747         }
748
749         writel(val, VA_LEDS_BASE);
750         local_irq_restore(flags);
751 }
752 #endif  /* CONFIG_LEDS */
753
754 void __init versatile_init(void)
755 {
756         int i;
757
758         clk_register(&versatile_clcd_clk);
759
760         platform_device_register(&versatile_flash_device);
761         platform_device_register(&smc91x_device);
762
763         for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
764                 struct amba_device *d = amba_devs[i];
765                 amba_device_register(d, &iomem_resource);
766         }
767
768 #ifdef CONFIG_LEDS
769         leds_event = versatile_leds_event;
770 #endif
771 }
772
773 /*
774  * Where is the timer (VA)?
775  */
776 #define TIMER0_VA_BASE           IO_ADDRESS(VERSATILE_TIMER0_1_BASE)
777 #define TIMER1_VA_BASE          (IO_ADDRESS(VERSATILE_TIMER0_1_BASE) + 0x20)
778 #define TIMER2_VA_BASE           IO_ADDRESS(VERSATILE_TIMER2_3_BASE)
779 #define TIMER3_VA_BASE          (IO_ADDRESS(VERSATILE_TIMER2_3_BASE) + 0x20)
780 #define VA_IC_BASE               IO_ADDRESS(VERSATILE_VIC_BASE) 
781
782 /*
783  * How long is the timer interval?
784  */
785 #define TIMER_INTERVAL  (TICKS_PER_uSEC * mSEC_10)
786 #if TIMER_INTERVAL >= 0x100000
787 #define TIMER_RELOAD    (TIMER_INTERVAL >> 8)           /* Divide by 256 */
788 #define TIMER_CTRL      0x88                            /* Enable, Clock / 256 */
789 #define TICKS2USECS(x)  (256 * (x) / TICKS_PER_uSEC)
790 #elif TIMER_INTERVAL >= 0x10000
791 #define TIMER_RELOAD    (TIMER_INTERVAL >> 4)           /* Divide by 16 */
792 #define TIMER_CTRL      0x84                            /* Enable, Clock / 16 */
793 #define TICKS2USECS(x)  (16 * (x) / TICKS_PER_uSEC)
794 #else
795 #define TIMER_RELOAD    (TIMER_INTERVAL)
796 #define TIMER_CTRL      0x80                            /* Enable */
797 #define TICKS2USECS(x)  ((x) / TICKS_PER_uSEC)
798 #endif
799
800 #define TIMER_CTRL_IE   (1 << 5)        /* Interrupt Enable */
801
802 /*
803  * What does it look like?
804  */
805 typedef struct TimerStruct {
806         unsigned long TimerLoad;
807         unsigned long TimerValue;
808         unsigned long TimerControl;
809         unsigned long TimerClear;
810 } TimerStruct_t;
811
812 /*
813  * Returns number of ms since last clock interrupt.  Note that interrupts
814  * will have been disabled by do_gettimeoffset()
815  */
816 static unsigned long versatile_gettimeoffset(void)
817 {
818         volatile TimerStruct_t *timer0 = (TimerStruct_t *)TIMER0_VA_BASE;
819         unsigned long ticks1, ticks2, status;
820
821         /*
822          * Get the current number of ticks.  Note that there is a race
823          * condition between us reading the timer and checking for
824          * an interrupt.  We get around this by ensuring that the
825          * counter has not reloaded between our two reads.
826          */
827         ticks2 = timer0->TimerValue & 0xffff;
828         do {
829                 ticks1 = ticks2;
830                 status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
831                 ticks2 = timer0->TimerValue & 0xffff;
832         } while (ticks2 > ticks1);
833
834         /*
835          * Number of ticks since last interrupt.
836          */
837         ticks1 = TIMER_RELOAD - ticks2;
838
839         /*
840          * Interrupt pending?  If so, we've reloaded once already.
841          *
842          * FIXME: Need to check this is effectively timer 0 that expires
843          */
844         if (status & IRQMASK_TIMERINT0_1)
845                 ticks1 += TIMER_RELOAD;
846
847         /*
848          * Convert the ticks to usecs
849          */
850         return TICKS2USECS(ticks1);
851 }
852
853 /*
854  * IRQ handler for the timer
855  */
856 static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
857 {
858         volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
859
860         write_seqlock(&xtime_lock);
861
862         // ...clear the interrupt
863         timer0->TimerClear = 1;
864
865         timer_tick(regs);
866
867         write_sequnlock(&xtime_lock);
868
869         return IRQ_HANDLED;
870 }
871
872 static struct irqaction versatile_timer_irq = {
873         .name           = "Versatile Timer Tick",
874         .flags          = SA_INTERRUPT,
875         .handler        = versatile_timer_interrupt
876 };
877
878 /*
879  * Set up timer interrupt, and return the current time in seconds.
880  */
881 static void __init versatile_timer_init(void)
882 {
883         volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
884         volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
885         volatile TimerStruct_t *timer2 = (volatile TimerStruct_t *)TIMER2_VA_BASE;
886         volatile TimerStruct_t *timer3 = (volatile TimerStruct_t *)TIMER3_VA_BASE;
887
888         /* 
889          * set clock frequency: 
890          *      VERSATILE_REFCLK is 32KHz
891          *      VERSATILE_TIMCLK is 1MHz
892          */
893         *(volatile unsigned int *)IO_ADDRESS(VERSATILE_SCTL_BASE) |= 
894           ((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) | 
895            (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel));
896
897         /*
898          * Initialise to a known state (all timers off)
899          */
900         timer0->TimerControl = 0;
901         timer1->TimerControl = 0;
902         timer2->TimerControl = 0;
903         timer3->TimerControl = 0;
904
905         timer0->TimerLoad    = TIMER_RELOAD;
906         timer0->TimerValue   = TIMER_RELOAD;
907         timer0->TimerControl = TIMER_CTRL | 0x40 | TIMER_CTRL_IE;  /* periodic + IE */
908
909         /* 
910          * Make irqs happen for the system timer
911          */
912         setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
913 }
914
915 struct sys_timer versatile_timer = {
916         .init           = versatile_timer_init,
917         .offset         = versatile_gettimeoffset,
918 };