sch_netem: Replace ->requeue() method with open code
[linux-2.6] / drivers / spi / spi_imx.c
1 /*
2  * drivers/spi/spi_imx.c
3  *
4  * Copyright (C) 2006 SWAPP
5  *      Andrea Paterniani <a.paterniani@swapp-eng.it>
6  *
7  * Initial version inspired by:
8  *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  */
20
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/device.h>
24 #include <linux/ioport.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/spi/spi.h>
30 #include <linux/workqueue.h>
31 #include <linux/delay.h>
32 #include <linux/clk.h>
33
34 #include <asm/io.h>
35 #include <asm/irq.h>
36 #include <asm/delay.h>
37
38 #include <mach/hardware.h>
39 #include <mach/imx-dma.h>
40 #include <mach/spi_imx.h>
41
42 /*-------------------------------------------------------------------------*/
43 /* SPI Registers offsets from peripheral base address */
44 #define SPI_RXDATA              (0x00)
45 #define SPI_TXDATA              (0x04)
46 #define SPI_CONTROL             (0x08)
47 #define SPI_INT_STATUS          (0x0C)
48 #define SPI_TEST                (0x10)
49 #define SPI_PERIOD              (0x14)
50 #define SPI_DMA                 (0x18)
51 #define SPI_RESET               (0x1C)
52
53 /* SPI Control Register Bit Fields & Masks */
54 #define SPI_CONTROL_BITCOUNT_MASK       (0xF)           /* Bit Count Mask */
55 #define SPI_CONTROL_BITCOUNT(n)         (((n) - 1) & SPI_CONTROL_BITCOUNT_MASK)
56 #define SPI_CONTROL_POL                 (0x1 << 4)      /* Clock Polarity Mask */
57 #define SPI_CONTROL_POL_ACT_HIGH        (0x0 << 4)      /* Active high pol. (0=idle) */
58 #define SPI_CONTROL_POL_ACT_LOW         (0x1 << 4)      /* Active low pol. (1=idle) */
59 #define SPI_CONTROL_PHA                 (0x1 << 5)      /* Clock Phase Mask */
60 #define SPI_CONTROL_PHA_0               (0x0 << 5)      /* Clock Phase 0 */
61 #define SPI_CONTROL_PHA_1               (0x1 << 5)      /* Clock Phase 1 */
62 #define SPI_CONTROL_SSCTL               (0x1 << 6)      /* /SS Waveform Select Mask */
63 #define SPI_CONTROL_SSCTL_0             (0x0 << 6)      /* Master: /SS stays low between SPI burst
64                                                            Slave: RXFIFO advanced by BIT_COUNT */
65 #define SPI_CONTROL_SSCTL_1             (0x1 << 6)      /* Master: /SS insert pulse between SPI burst
66                                                            Slave: RXFIFO advanced by /SS rising edge */
67 #define SPI_CONTROL_SSPOL               (0x1 << 7)      /* /SS Polarity Select Mask */
68 #define SPI_CONTROL_SSPOL_ACT_LOW       (0x0 << 7)      /* /SS Active low */
69 #define SPI_CONTROL_SSPOL_ACT_HIGH      (0x1 << 7)      /* /SS Active high */
70 #define SPI_CONTROL_XCH                 (0x1 << 8)      /* Exchange */
71 #define SPI_CONTROL_SPIEN               (0x1 << 9)      /* SPI Module Enable */
72 #define SPI_CONTROL_MODE                (0x1 << 10)     /* SPI Mode Select Mask */
73 #define SPI_CONTROL_MODE_SLAVE          (0x0 << 10)     /* SPI Mode Slave */
74 #define SPI_CONTROL_MODE_MASTER         (0x1 << 10)     /* SPI Mode Master */
75 #define SPI_CONTROL_DRCTL               (0x3 << 11)     /* /SPI_RDY Control Mask */
76 #define SPI_CONTROL_DRCTL_0             (0x0 << 11)     /* Ignore /SPI_RDY */
77 #define SPI_CONTROL_DRCTL_1             (0x1 << 11)     /* /SPI_RDY falling edge triggers input */
78 #define SPI_CONTROL_DRCTL_2             (0x2 << 11)     /* /SPI_RDY active low level triggers input */
79 #define SPI_CONTROL_DATARATE            (0x7 << 13)     /* Data Rate Mask */
80 #define SPI_PERCLK2_DIV_MIN             (0)             /* PERCLK2:4 */
81 #define SPI_PERCLK2_DIV_MAX             (7)             /* PERCLK2:512 */
82 #define SPI_CONTROL_DATARATE_MIN        (SPI_PERCLK2_DIV_MAX << 13)
83 #define SPI_CONTROL_DATARATE_MAX        (SPI_PERCLK2_DIV_MIN << 13)
84 #define SPI_CONTROL_DATARATE_BAD        (SPI_CONTROL_DATARATE_MIN + 1)
85
86 /* SPI Interrupt/Status Register Bit Fields & Masks */
87 #define SPI_STATUS_TE   (0x1 << 0)      /* TXFIFO Empty Status */
88 #define SPI_STATUS_TH   (0x1 << 1)      /* TXFIFO Half Status */
89 #define SPI_STATUS_TF   (0x1 << 2)      /* TXFIFO Full Status */
90 #define SPI_STATUS_RR   (0x1 << 3)      /* RXFIFO Data Ready Status */
91 #define SPI_STATUS_RH   (0x1 << 4)      /* RXFIFO Half Status */
92 #define SPI_STATUS_RF   (0x1 << 5)      /* RXFIFO Full Status */
93 #define SPI_STATUS_RO   (0x1 << 6)      /* RXFIFO Overflow */
94 #define SPI_STATUS_BO   (0x1 << 7)      /* Bit Count Overflow */
95 #define SPI_STATUS      (0xFF)          /* SPI Status Mask */
96 #define SPI_INTEN_TE    (0x1 << 8)      /* TXFIFO Empty Interrupt Enable */
97 #define SPI_INTEN_TH    (0x1 << 9)      /* TXFIFO Half Interrupt Enable */
98 #define SPI_INTEN_TF    (0x1 << 10)     /* TXFIFO Full Interrupt Enable */
99 #define SPI_INTEN_RE    (0x1 << 11)     /* RXFIFO Data Ready Interrupt Enable */
100 #define SPI_INTEN_RH    (0x1 << 12)     /* RXFIFO Half Interrupt Enable */
101 #define SPI_INTEN_RF    (0x1 << 13)     /* RXFIFO Full Interrupt Enable */
102 #define SPI_INTEN_RO    (0x1 << 14)     /* RXFIFO Overflow Interrupt Enable */
103 #define SPI_INTEN_BO    (0x1 << 15)     /* Bit Count Overflow Interrupt Enable */
104 #define SPI_INTEN       (0xFF << 8)     /* SPI Interrupt Enable Mask */
105
106 /* SPI Test Register Bit Fields & Masks */
107 #define SPI_TEST_TXCNT          (0xF << 0)      /* TXFIFO Counter */
108 #define SPI_TEST_RXCNT_LSB      (4)             /* RXFIFO Counter LSB */
109 #define SPI_TEST_RXCNT          (0xF << 4)      /* RXFIFO Counter */
110 #define SPI_TEST_SSTATUS        (0xF << 8)      /* State Machine Status */
111 #define SPI_TEST_LBC            (0x1 << 14)     /* Loop Back Control */
112
113 /* SPI Period Register Bit Fields & Masks */
114 #define SPI_PERIOD_WAIT         (0x7FFF << 0)   /* Wait Between Transactions */
115 #define SPI_PERIOD_MAX_WAIT     (0x7FFF)        /* Max Wait Between
116                                                         Transactions */
117 #define SPI_PERIOD_CSRC         (0x1 << 15)     /* Period Clock Source Mask */
118 #define SPI_PERIOD_CSRC_BCLK    (0x0 << 15)     /* Period Clock Source is
119                                                         Bit Clock */
120 #define SPI_PERIOD_CSRC_32768   (0x1 << 15)     /* Period Clock Source is
121                                                         32.768 KHz Clock */
122
123 /* SPI DMA Register Bit Fields & Masks */
124 #define SPI_DMA_RHDMA   (0x1 << 4)      /* RXFIFO Half Status */
125 #define SPI_DMA_RFDMA   (0x1 << 5)      /* RXFIFO Full Status */
126 #define SPI_DMA_TEDMA   (0x1 << 6)      /* TXFIFO Empty Status */
127 #define SPI_DMA_THDMA   (0x1 << 7)      /* TXFIFO Half Status */
128 #define SPI_DMA_RHDEN   (0x1 << 12)     /* RXFIFO Half DMA Request Enable */
129 #define SPI_DMA_RFDEN   (0x1 << 13)     /* RXFIFO Full DMA Request Enable */
130 #define SPI_DMA_TEDEN   (0x1 << 14)     /* TXFIFO Empty DMA Request Enable */
131 #define SPI_DMA_THDEN   (0x1 << 15)     /* TXFIFO Half DMA Request Enable */
132
133 /* SPI Soft Reset Register Bit Fields & Masks */
134 #define SPI_RESET_START (0x1)           /* Start */
135
136 /* Default SPI configuration values */
137 #define SPI_DEFAULT_CONTROL             \
138 (                                       \
139         SPI_CONTROL_BITCOUNT(16) |      \
140         SPI_CONTROL_POL_ACT_HIGH |      \
141         SPI_CONTROL_PHA_0 |             \
142         SPI_CONTROL_SPIEN |             \
143         SPI_CONTROL_SSCTL_1 |           \
144         SPI_CONTROL_MODE_MASTER |       \
145         SPI_CONTROL_DRCTL_0 |           \
146         SPI_CONTROL_DATARATE_MIN        \
147 )
148 #define SPI_DEFAULT_ENABLE_LOOPBACK     (0)
149 #define SPI_DEFAULT_ENABLE_DMA          (0)
150 #define SPI_DEFAULT_PERIOD_WAIT         (8)
151 /*-------------------------------------------------------------------------*/
152
153
154 /*-------------------------------------------------------------------------*/
155 /* TX/RX SPI FIFO size */
156 #define SPI_FIFO_DEPTH                  (8)
157 #define SPI_FIFO_BYTE_WIDTH             (2)
158 #define SPI_FIFO_OVERFLOW_MARGIN        (2)
159
160 /* DMA burst length for half full/empty request trigger */
161 #define SPI_DMA_BLR                     (SPI_FIFO_DEPTH * SPI_FIFO_BYTE_WIDTH / 2)
162
163 /* Dummy char output to achieve reads.
164    Choosing something different from all zeroes may help pattern recogition
165    for oscilloscope analysis, but may break some drivers. */
166 #define SPI_DUMMY_u8                    0
167 #define SPI_DUMMY_u16                   ((SPI_DUMMY_u8 << 8) | SPI_DUMMY_u8)
168 #define SPI_DUMMY_u32                   ((SPI_DUMMY_u16 << 16) | SPI_DUMMY_u16)
169
170 /**
171  * Macro to change a u32 field:
172  * @r : register to edit
173  * @m : bit mask
174  * @v : new value for the field correctly bit-alligned
175 */
176 #define u32_EDIT(r, m, v)               r = (r & ~(m)) | (v)
177
178 /* Message state */
179 #define START_STATE                     ((void*)0)
180 #define RUNNING_STATE                   ((void*)1)
181 #define DONE_STATE                      ((void*)2)
182 #define ERROR_STATE                     ((void*)-1)
183
184 /* Queue state */
185 #define QUEUE_RUNNING                   (0)
186 #define QUEUE_STOPPED                   (1)
187
188 #define IS_DMA_ALIGNED(x)               (((u32)(x) & 0x03) == 0)
189 /*-------------------------------------------------------------------------*/
190
191
192 /*-------------------------------------------------------------------------*/
193 /* Driver data structs */
194
195 /* Context */
196 struct driver_data {
197         /* Driver model hookup */
198         struct platform_device *pdev;
199
200         /* SPI framework hookup */
201         struct spi_master *master;
202
203         /* IMX hookup */
204         struct spi_imx_master *master_info;
205
206         /* Memory resources and SPI regs virtual address */
207         struct resource *ioarea;
208         void __iomem *regs;
209
210         /* SPI RX_DATA physical address */
211         dma_addr_t rd_data_phys;
212
213         /* Driver message queue */
214         struct workqueue_struct *workqueue;
215         struct work_struct work;
216         spinlock_t lock;
217         struct list_head queue;
218         int busy;
219         int run;
220
221         /* Message Transfer pump */
222         struct tasklet_struct pump_transfers;
223
224         /* Current message, transfer and state */
225         struct spi_message *cur_msg;
226         struct spi_transfer *cur_transfer;
227         struct chip_data *cur_chip;
228
229         /* Rd / Wr buffers pointers */
230         size_t len;
231         void *tx;
232         void *tx_end;
233         void *rx;
234         void *rx_end;
235
236         u8 rd_only;
237         u8 n_bytes;
238         int cs_change;
239
240         /* Function pointers */
241         irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
242         void (*cs_control)(u32 command);
243
244         /* DMA setup */
245         int rx_channel;
246         int tx_channel;
247         dma_addr_t rx_dma;
248         dma_addr_t tx_dma;
249         int rx_dma_needs_unmap;
250         int tx_dma_needs_unmap;
251         size_t tx_map_len;
252         u32 dummy_dma_buf ____cacheline_aligned;
253
254         struct clk *clk;
255 };
256
257 /* Runtime state */
258 struct chip_data {
259         u32 control;
260         u32 period;
261         u32 test;
262
263         u8 enable_dma:1;
264         u8 bits_per_word;
265         u8 n_bytes;
266         u32 max_speed_hz;
267
268         void (*cs_control)(u32 command);
269 };
270 /*-------------------------------------------------------------------------*/
271
272
273 static void pump_messages(struct work_struct *work);
274
275 static void flush(struct driver_data *drv_data)
276 {
277         void __iomem *regs = drv_data->regs;
278         u32 control;
279
280         dev_dbg(&drv_data->pdev->dev, "flush\n");
281
282         /* Wait for end of transaction */
283         do {
284                 control = readl(regs + SPI_CONTROL);
285         } while (control & SPI_CONTROL_XCH);
286
287         /* Release chip select if requested, transfer delays are
288            handled in pump_transfers */
289         if (drv_data->cs_change)
290                 drv_data->cs_control(SPI_CS_DEASSERT);
291
292         /* Disable SPI to flush FIFOs */
293         writel(control & ~SPI_CONTROL_SPIEN, regs + SPI_CONTROL);
294         writel(control, regs + SPI_CONTROL);
295 }
296
297 static void restore_state(struct driver_data *drv_data)
298 {
299         void __iomem *regs = drv_data->regs;
300         struct chip_data *chip = drv_data->cur_chip;
301
302         /* Load chip registers */
303         dev_dbg(&drv_data->pdev->dev,
304                 "restore_state\n"
305                 "    test    = 0x%08X\n"
306                 "    control = 0x%08X\n",
307                 chip->test,
308                 chip->control);
309         writel(chip->test, regs + SPI_TEST);
310         writel(chip->period, regs + SPI_PERIOD);
311         writel(0, regs + SPI_INT_STATUS);
312         writel(chip->control, regs + SPI_CONTROL);
313 }
314
315 static void null_cs_control(u32 command)
316 {
317 }
318
319 static inline u32 data_to_write(struct driver_data *drv_data)
320 {
321         return ((u32)(drv_data->tx_end - drv_data->tx)) / drv_data->n_bytes;
322 }
323
324 static inline u32 data_to_read(struct driver_data *drv_data)
325 {
326         return ((u32)(drv_data->rx_end - drv_data->rx)) / drv_data->n_bytes;
327 }
328
329 static int write(struct driver_data *drv_data)
330 {
331         void __iomem *regs = drv_data->regs;
332         void *tx = drv_data->tx;
333         void *tx_end = drv_data->tx_end;
334         u8 n_bytes = drv_data->n_bytes;
335         u32 remaining_writes;
336         u32 fifo_avail_space;
337         u32 n;
338         u16 d;
339
340         /* Compute how many fifo writes to do */
341         remaining_writes = (u32)(tx_end - tx) / n_bytes;
342         fifo_avail_space = SPI_FIFO_DEPTH -
343                                 (readl(regs + SPI_TEST) & SPI_TEST_TXCNT);
344         if (drv_data->rx && (fifo_avail_space > SPI_FIFO_OVERFLOW_MARGIN))
345                 /* Fix misunderstood receive overflow */
346                 fifo_avail_space -= SPI_FIFO_OVERFLOW_MARGIN;
347         n = min(remaining_writes, fifo_avail_space);
348
349         dev_dbg(&drv_data->pdev->dev,
350                 "write type %s\n"
351                 "    remaining writes = %d\n"
352                 "    fifo avail space = %d\n"
353                 "    fifo writes      = %d\n",
354                 (n_bytes == 1) ? "u8" : "u16",
355                 remaining_writes,
356                 fifo_avail_space,
357                 n);
358
359         if (n > 0) {
360                 /* Fill SPI TXFIFO */
361                 if (drv_data->rd_only) {
362                         tx += n * n_bytes;
363                         while (n--)
364                                 writel(SPI_DUMMY_u16, regs + SPI_TXDATA);
365                 } else {
366                         if (n_bytes == 1) {
367                                 while (n--) {
368                                         d = *(u8*)tx;
369                                         writel(d, regs + SPI_TXDATA);
370                                         tx += 1;
371                                 }
372                         } else {
373                                 while (n--) {
374                                         d = *(u16*)tx;
375                                         writel(d, regs + SPI_TXDATA);
376                                         tx += 2;
377                                 }
378                         }
379                 }
380
381                 /* Trigger transfer */
382                 writel(readl(regs + SPI_CONTROL) | SPI_CONTROL_XCH,
383                         regs + SPI_CONTROL);
384
385                 /* Update tx pointer */
386                 drv_data->tx = tx;
387         }
388
389         return (tx >= tx_end);
390 }
391
392 static int read(struct driver_data *drv_data)
393 {
394         void __iomem *regs = drv_data->regs;
395         void *rx = drv_data->rx;
396         void *rx_end = drv_data->rx_end;
397         u8 n_bytes = drv_data->n_bytes;
398         u32 remaining_reads;
399         u32 fifo_rxcnt;
400         u32 n;
401         u16 d;
402
403         /* Compute how many fifo reads to do */
404         remaining_reads = (u32)(rx_end - rx) / n_bytes;
405         fifo_rxcnt = (readl(regs + SPI_TEST) & SPI_TEST_RXCNT) >>
406                         SPI_TEST_RXCNT_LSB;
407         n = min(remaining_reads, fifo_rxcnt);
408
409         dev_dbg(&drv_data->pdev->dev,
410                 "read type %s\n"
411                 "    remaining reads = %d\n"
412                 "    fifo rx count   = %d\n"
413                 "    fifo reads      = %d\n",
414                 (n_bytes == 1) ? "u8" : "u16",
415                 remaining_reads,
416                 fifo_rxcnt,
417                 n);
418
419         if (n > 0) {
420                 /* Read SPI RXFIFO */
421                 if (n_bytes == 1) {
422                         while (n--) {
423                                 d = readl(regs + SPI_RXDATA);
424                                 *((u8*)rx) = d;
425                                 rx += 1;
426                         }
427                 } else {
428                         while (n--) {
429                                 d = readl(regs + SPI_RXDATA);
430                                 *((u16*)rx) = d;
431                                 rx += 2;
432                         }
433                 }
434
435                 /* Update rx pointer */
436                 drv_data->rx = rx;
437         }
438
439         return (rx >= rx_end);
440 }
441
442 static void *next_transfer(struct driver_data *drv_data)
443 {
444         struct spi_message *msg = drv_data->cur_msg;
445         struct spi_transfer *trans = drv_data->cur_transfer;
446
447         /* Move to next transfer */
448         if (trans->transfer_list.next != &msg->transfers) {
449                 drv_data->cur_transfer =
450                         list_entry(trans->transfer_list.next,
451                                         struct spi_transfer,
452                                         transfer_list);
453                 return RUNNING_STATE;
454         }
455
456         return DONE_STATE;
457 }
458
459 static int map_dma_buffers(struct driver_data *drv_data)
460 {
461         struct spi_message *msg;
462         struct device *dev;
463         void *buf;
464
465         drv_data->rx_dma_needs_unmap = 0;
466         drv_data->tx_dma_needs_unmap = 0;
467
468         if (!drv_data->master_info->enable_dma ||
469                 !drv_data->cur_chip->enable_dma)
470                         return -1;
471
472         msg = drv_data->cur_msg;
473         dev = &msg->spi->dev;
474         if (msg->is_dma_mapped) {
475                 if (drv_data->tx_dma)
476                         /* The caller provided at least dma and cpu virtual
477                            address for write; pump_transfers() will consider the
478                            transfer as write only if cpu rx virtual address is
479                            NULL */
480                         return 0;
481
482                 if (drv_data->rx_dma) {
483                         /* The caller provided dma and cpu virtual address to
484                            performe read only transfer -->
485                            use drv_data->dummy_dma_buf for dummy writes to
486                            achive reads */
487                         buf = &drv_data->dummy_dma_buf;
488                         drv_data->tx_map_len = sizeof(drv_data->dummy_dma_buf);
489                         drv_data->tx_dma = dma_map_single(dev,
490                                                         buf,
491                                                         drv_data->tx_map_len,
492                                                         DMA_TO_DEVICE);
493                         if (dma_mapping_error(dev, drv_data->tx_dma))
494                                 return -1;
495
496                         drv_data->tx_dma_needs_unmap = 1;
497
498                         /* Flags transfer as rd_only for pump_transfers() DMA
499                            regs programming (should be redundant) */
500                         drv_data->tx = NULL;
501
502                         return 0;
503                 }
504         }
505
506         if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
507                 return -1;
508
509         /* NULL rx means write-only transfer and no map needed
510            since rx DMA will not be used */
511         if (drv_data->rx) {
512                 buf = drv_data->rx;
513                 drv_data->rx_dma = dma_map_single(
514                                         dev,
515                                         buf,
516                                         drv_data->len,
517                                         DMA_FROM_DEVICE);
518                 if (dma_mapping_error(dev, drv_data->rx_dma))
519                         return -1;
520                 drv_data->rx_dma_needs_unmap = 1;
521         }
522
523         if (drv_data->tx == NULL) {
524                 /* Read only message --> use drv_data->dummy_dma_buf for dummy
525                    writes to achive reads */
526                 buf = &drv_data->dummy_dma_buf;
527                 drv_data->tx_map_len = sizeof(drv_data->dummy_dma_buf);
528         } else {
529                 buf = drv_data->tx;
530                 drv_data->tx_map_len = drv_data->len;
531         }
532         drv_data->tx_dma = dma_map_single(dev,
533                                         buf,
534                                         drv_data->tx_map_len,
535                                         DMA_TO_DEVICE);
536         if (dma_mapping_error(dev, drv_data->tx_dma)) {
537                 if (drv_data->rx_dma) {
538                         dma_unmap_single(dev,
539                                         drv_data->rx_dma,
540                                         drv_data->len,
541                                         DMA_FROM_DEVICE);
542                         drv_data->rx_dma_needs_unmap = 0;
543                 }
544                 return -1;
545         }
546         drv_data->tx_dma_needs_unmap = 1;
547
548         return 0;
549 }
550
551 static void unmap_dma_buffers(struct driver_data *drv_data)
552 {
553         struct spi_message *msg = drv_data->cur_msg;
554         struct device *dev = &msg->spi->dev;
555
556         if (drv_data->rx_dma_needs_unmap) {
557                 dma_unmap_single(dev,
558                                 drv_data->rx_dma,
559                                 drv_data->len,
560                                 DMA_FROM_DEVICE);
561                 drv_data->rx_dma_needs_unmap = 0;
562         }
563         if (drv_data->tx_dma_needs_unmap) {
564                 dma_unmap_single(dev,
565                                 drv_data->tx_dma,
566                                 drv_data->tx_map_len,
567                                 DMA_TO_DEVICE);
568                 drv_data->tx_dma_needs_unmap = 0;
569         }
570 }
571
572 /* Caller already set message->status (dma is already blocked) */
573 static void giveback(struct spi_message *message, struct driver_data *drv_data)
574 {
575         void __iomem *regs = drv_data->regs;
576
577         /* Bring SPI to sleep; restore_state() and pump_transfer()
578            will do new setup */
579         writel(0, regs + SPI_INT_STATUS);
580         writel(0, regs + SPI_DMA);
581
582         /* Unconditioned deselct */
583         drv_data->cs_control(SPI_CS_DEASSERT);
584
585         message->state = NULL;
586         if (message->complete)
587                 message->complete(message->context);
588
589         drv_data->cur_msg = NULL;
590         drv_data->cur_transfer = NULL;
591         drv_data->cur_chip = NULL;
592         queue_work(drv_data->workqueue, &drv_data->work);
593 }
594
595 static void dma_err_handler(int channel, void *data, int errcode)
596 {
597         struct driver_data *drv_data = data;
598         struct spi_message *msg = drv_data->cur_msg;
599
600         dev_dbg(&drv_data->pdev->dev, "dma_err_handler\n");
601
602         /* Disable both rx and tx dma channels */
603         imx_dma_disable(drv_data->rx_channel);
604         imx_dma_disable(drv_data->tx_channel);
605         unmap_dma_buffers(drv_data);
606
607         flush(drv_data);
608
609         msg->state = ERROR_STATE;
610         tasklet_schedule(&drv_data->pump_transfers);
611 }
612
613 static void dma_tx_handler(int channel, void *data)
614 {
615         struct driver_data *drv_data = data;
616
617         dev_dbg(&drv_data->pdev->dev, "dma_tx_handler\n");
618
619         imx_dma_disable(channel);
620
621         /* Now waits for TX FIFO empty */
622         writel(SPI_INTEN_TE, drv_data->regs + SPI_INT_STATUS);
623 }
624
625 static irqreturn_t dma_transfer(struct driver_data *drv_data)
626 {
627         u32 status;
628         struct spi_message *msg = drv_data->cur_msg;
629         void __iomem *regs = drv_data->regs;
630
631         status = readl(regs + SPI_INT_STATUS);
632
633         if ((status & (SPI_INTEN_RO | SPI_STATUS_RO))
634                         == (SPI_INTEN_RO | SPI_STATUS_RO)) {
635                 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
636
637                 imx_dma_disable(drv_data->tx_channel);
638                 imx_dma_disable(drv_data->rx_channel);
639                 unmap_dma_buffers(drv_data);
640
641                 flush(drv_data);
642
643                 dev_warn(&drv_data->pdev->dev,
644                                 "dma_transfer - fifo overun\n");
645
646                 msg->state = ERROR_STATE;
647                 tasklet_schedule(&drv_data->pump_transfers);
648
649                 return IRQ_HANDLED;
650         }
651
652         if (status & SPI_STATUS_TE) {
653                 writel(status & ~SPI_INTEN_TE, regs + SPI_INT_STATUS);
654
655                 if (drv_data->rx) {
656                         /* Wait end of transfer before read trailing data */
657                         while (readl(regs + SPI_CONTROL) & SPI_CONTROL_XCH)
658                                 cpu_relax();
659
660                         imx_dma_disable(drv_data->rx_channel);
661                         unmap_dma_buffers(drv_data);
662
663                         /* Release chip select if requested, transfer delays are
664                            handled in pump_transfers() */
665                         if (drv_data->cs_change)
666                                 drv_data->cs_control(SPI_CS_DEASSERT);
667
668                         /* Calculate number of trailing data and read them */
669                         dev_dbg(&drv_data->pdev->dev,
670                                 "dma_transfer - test = 0x%08X\n",
671                                 readl(regs + SPI_TEST));
672                         drv_data->rx = drv_data->rx_end -
673                                         ((readl(regs + SPI_TEST) &
674                                         SPI_TEST_RXCNT) >>
675                                         SPI_TEST_RXCNT_LSB)*drv_data->n_bytes;
676                         read(drv_data);
677                 } else {
678                         /* Write only transfer */
679                         unmap_dma_buffers(drv_data);
680
681                         flush(drv_data);
682                 }
683
684                 /* End of transfer, update total byte transfered */
685                 msg->actual_length += drv_data->len;
686
687                 /* Move to next transfer */
688                 msg->state = next_transfer(drv_data);
689
690                 /* Schedule transfer tasklet */
691                 tasklet_schedule(&drv_data->pump_transfers);
692
693                 return IRQ_HANDLED;
694         }
695
696         /* Opps problem detected */
697         return IRQ_NONE;
698 }
699
700 static irqreturn_t interrupt_wronly_transfer(struct driver_data *drv_data)
701 {
702         struct spi_message *msg = drv_data->cur_msg;
703         void __iomem *regs = drv_data->regs;
704         u32 status;
705         irqreturn_t handled = IRQ_NONE;
706
707         status = readl(regs + SPI_INT_STATUS);
708
709         if (status & SPI_INTEN_TE) {
710                 /* TXFIFO Empty Interrupt on the last transfered word */
711                 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
712                 dev_dbg(&drv_data->pdev->dev,
713                         "interrupt_wronly_transfer - end of tx\n");
714
715                 flush(drv_data);
716
717                 /* Update total byte transfered */
718                 msg->actual_length += drv_data->len;
719
720                 /* Move to next transfer */
721                 msg->state = next_transfer(drv_data);
722
723                 /* Schedule transfer tasklet */
724                 tasklet_schedule(&drv_data->pump_transfers);
725
726                 return IRQ_HANDLED;
727         } else {
728                 while (status & SPI_STATUS_TH) {
729                         dev_dbg(&drv_data->pdev->dev,
730                                 "interrupt_wronly_transfer - status = 0x%08X\n",
731                                 status);
732
733                         /* Pump data */
734                         if (write(drv_data)) {
735                                 /* End of TXFIFO writes,
736                                    now wait until TXFIFO is empty */
737                                 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
738                                 return IRQ_HANDLED;
739                         }
740
741                         status = readl(regs + SPI_INT_STATUS);
742
743                         /* We did something */
744                         handled = IRQ_HANDLED;
745                 }
746         }
747
748         return handled;
749 }
750
751 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
752 {
753         struct spi_message *msg = drv_data->cur_msg;
754         void __iomem *regs = drv_data->regs;
755         u32 status, control;
756         irqreturn_t handled = IRQ_NONE;
757         unsigned long limit;
758
759         status = readl(regs + SPI_INT_STATUS);
760
761         if (status & SPI_INTEN_TE) {
762                 /* TXFIFO Empty Interrupt on the last transfered word */
763                 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
764                 dev_dbg(&drv_data->pdev->dev,
765                         "interrupt_transfer - end of tx\n");
766
767                 if (msg->state == ERROR_STATE) {
768                         /* RXFIFO overrun was detected and message aborted */
769                         flush(drv_data);
770                 } else {
771                         /* Wait for end of transaction */
772                         do {
773                                 control = readl(regs + SPI_CONTROL);
774                         } while (control & SPI_CONTROL_XCH);
775
776                         /* Release chip select if requested, transfer delays are
777                            handled in pump_transfers */
778                         if (drv_data->cs_change)
779                                 drv_data->cs_control(SPI_CS_DEASSERT);
780
781                         /* Read trailing bytes */
782                         limit = loops_per_jiffy << 1;
783                         while ((read(drv_data) == 0) && limit--);
784
785                         if (limit == 0)
786                                 dev_err(&drv_data->pdev->dev,
787                                         "interrupt_transfer - "
788                                         "trailing byte read failed\n");
789                         else
790                                 dev_dbg(&drv_data->pdev->dev,
791                                         "interrupt_transfer - end of rx\n");
792
793                         /* Update total byte transfered */
794                         msg->actual_length += drv_data->len;
795
796                         /* Move to next transfer */
797                         msg->state = next_transfer(drv_data);
798                 }
799
800                 /* Schedule transfer tasklet */
801                 tasklet_schedule(&drv_data->pump_transfers);
802
803                 return IRQ_HANDLED;
804         } else {
805                 while (status & (SPI_STATUS_TH | SPI_STATUS_RO)) {
806                         dev_dbg(&drv_data->pdev->dev,
807                                 "interrupt_transfer - status = 0x%08X\n",
808                                 status);
809
810                         if (status & SPI_STATUS_RO) {
811                                 /* RXFIFO overrun, abort message end wait
812                                    until TXFIFO is empty */
813                                 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
814
815                                 dev_warn(&drv_data->pdev->dev,
816                                         "interrupt_transfer - fifo overun\n"
817                                         "    data not yet written = %d\n"
818                                         "    data not yet read    = %d\n",
819                                         data_to_write(drv_data),
820                                         data_to_read(drv_data));
821
822                                 msg->state = ERROR_STATE;
823
824                                 return IRQ_HANDLED;
825                         }
826
827                         /* Pump data */
828                         read(drv_data);
829                         if (write(drv_data)) {
830                                 /* End of TXFIFO writes,
831                                    now wait until TXFIFO is empty */
832                                 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
833                                 return IRQ_HANDLED;
834                         }
835
836                         status = readl(regs + SPI_INT_STATUS);
837
838                         /* We did something */
839                         handled = IRQ_HANDLED;
840                 }
841         }
842
843         return handled;
844 }
845
846 static irqreturn_t spi_int(int irq, void *dev_id)
847 {
848         struct driver_data *drv_data = (struct driver_data *)dev_id;
849
850         if (!drv_data->cur_msg) {
851                 dev_err(&drv_data->pdev->dev,
852                         "spi_int - bad message state\n");
853                 /* Never fail */
854                 return IRQ_HANDLED;
855         }
856
857         return drv_data->transfer_handler(drv_data);
858 }
859
860 static inline u32 spi_speed_hz(struct driver_data *drv_data, u32 data_rate)
861 {
862         return clk_get_rate(drv_data->clk) / (4 << ((data_rate) >> 13));
863 }
864
865 static u32 spi_data_rate(struct driver_data *drv_data, u32 speed_hz)
866 {
867         u32 div;
868         u32 quantized_hz = clk_get_rate(drv_data->clk) >> 2;
869
870         for (div = SPI_PERCLK2_DIV_MIN;
871                 div <= SPI_PERCLK2_DIV_MAX;
872                 div++, quantized_hz >>= 1) {
873                         if (quantized_hz <= speed_hz)
874                                 /* Max available speed LEQ required speed */
875                                 return div << 13;
876         }
877         return SPI_CONTROL_DATARATE_BAD;
878 }
879
880 static void pump_transfers(unsigned long data)
881 {
882         struct driver_data *drv_data = (struct driver_data *)data;
883         struct spi_message *message;
884         struct spi_transfer *transfer, *previous;
885         struct chip_data *chip;
886         void __iomem *regs;
887         u32 tmp, control;
888
889         dev_dbg(&drv_data->pdev->dev, "pump_transfer\n");
890
891         message = drv_data->cur_msg;
892
893         /* Handle for abort */
894         if (message->state == ERROR_STATE) {
895                 message->status = -EIO;
896                 giveback(message, drv_data);
897                 return;
898         }
899
900         /* Handle end of message */
901         if (message->state == DONE_STATE) {
902                 message->status = 0;
903                 giveback(message, drv_data);
904                 return;
905         }
906
907         chip = drv_data->cur_chip;
908
909         /* Delay if requested at end of transfer*/
910         transfer = drv_data->cur_transfer;
911         if (message->state == RUNNING_STATE) {
912                 previous = list_entry(transfer->transfer_list.prev,
913                                         struct spi_transfer,
914                                         transfer_list);
915                 if (previous->delay_usecs)
916                         udelay(previous->delay_usecs);
917         } else {
918                 /* START_STATE */
919                 message->state = RUNNING_STATE;
920                 drv_data->cs_control = chip->cs_control;
921         }
922
923         transfer = drv_data->cur_transfer;
924         drv_data->tx = (void *)transfer->tx_buf;
925         drv_data->tx_end = drv_data->tx + transfer->len;
926         drv_data->rx = transfer->rx_buf;
927         drv_data->rx_end = drv_data->rx + transfer->len;
928         drv_data->rx_dma = transfer->rx_dma;
929         drv_data->tx_dma = transfer->tx_dma;
930         drv_data->len = transfer->len;
931         drv_data->cs_change = transfer->cs_change;
932         drv_data->rd_only = (drv_data->tx == NULL);
933
934         regs = drv_data->regs;
935         control = readl(regs + SPI_CONTROL);
936
937         /* Bits per word setup */
938         tmp = transfer->bits_per_word;
939         if (tmp == 0) {
940                 /* Use device setup */
941                 tmp = chip->bits_per_word;
942                 drv_data->n_bytes = chip->n_bytes;
943         } else
944                 /* Use per-transfer setup */
945                 drv_data->n_bytes = (tmp <= 8) ? 1 : 2;
946         u32_EDIT(control, SPI_CONTROL_BITCOUNT_MASK, tmp - 1);
947
948         /* Speed setup (surely valid because already checked) */
949         tmp = transfer->speed_hz;
950         if (tmp == 0)
951                 tmp = chip->max_speed_hz;
952         tmp = spi_data_rate(drv_data, tmp);
953         u32_EDIT(control, SPI_CONTROL_DATARATE, tmp);
954
955         writel(control, regs + SPI_CONTROL);
956
957         /* Assert device chip-select */
958         drv_data->cs_control(SPI_CS_ASSERT);
959
960         /* DMA cannot read/write SPI FIFOs other than 16 bits at a time; hence
961            if bits_per_word is less or equal 8 PIO transfers are performed.
962            Moreover DMA is convinient for transfer length bigger than FIFOs
963            byte size. */
964         if ((drv_data->n_bytes == 2) &&
965                 (drv_data->len > SPI_FIFO_DEPTH*SPI_FIFO_BYTE_WIDTH) &&
966                 (map_dma_buffers(drv_data) == 0)) {
967                 dev_dbg(&drv_data->pdev->dev,
968                         "pump dma transfer\n"
969                         "    tx      = %p\n"
970                         "    tx_dma  = %08X\n"
971                         "    rx      = %p\n"
972                         "    rx_dma  = %08X\n"
973                         "    len     = %d\n",
974                         drv_data->tx,
975                         (unsigned int)drv_data->tx_dma,
976                         drv_data->rx,
977                         (unsigned int)drv_data->rx_dma,
978                         drv_data->len);
979
980                 /* Ensure we have the correct interrupt handler */
981                 drv_data->transfer_handler = dma_transfer;
982
983                 /* Trigger transfer */
984                 writel(readl(regs + SPI_CONTROL) | SPI_CONTROL_XCH,
985                         regs + SPI_CONTROL);
986
987                 /* Setup tx DMA */
988                 if (drv_data->tx)
989                         /* Linear source address */
990                         CCR(drv_data->tx_channel) =
991                                 CCR_DMOD_FIFO |
992                                 CCR_SMOD_LINEAR |
993                                 CCR_SSIZ_32 | CCR_DSIZ_16 |
994                                 CCR_REN;
995                 else
996                         /* Read only transfer -> fixed source address for
997                            dummy write to achive read */
998                         CCR(drv_data->tx_channel) =
999                                 CCR_DMOD_FIFO |
1000                                 CCR_SMOD_FIFO |
1001                                 CCR_SSIZ_32 | CCR_DSIZ_16 |
1002                                 CCR_REN;
1003
1004                 imx_dma_setup_single(
1005                         drv_data->tx_channel,
1006                         drv_data->tx_dma,
1007                         drv_data->len,
1008                         drv_data->rd_data_phys + 4,
1009                         DMA_MODE_WRITE);
1010
1011                 if (drv_data->rx) {
1012                         /* Setup rx DMA for linear destination address */
1013                         CCR(drv_data->rx_channel) =
1014                                 CCR_DMOD_LINEAR |
1015                                 CCR_SMOD_FIFO |
1016                                 CCR_DSIZ_32 | CCR_SSIZ_16 |
1017                                 CCR_REN;
1018                         imx_dma_setup_single(
1019                                 drv_data->rx_channel,
1020                                 drv_data->rx_dma,
1021                                 drv_data->len,
1022                                 drv_data->rd_data_phys,
1023                                 DMA_MODE_READ);
1024                         imx_dma_enable(drv_data->rx_channel);
1025
1026                         /* Enable SPI interrupt */
1027                         writel(SPI_INTEN_RO, regs + SPI_INT_STATUS);
1028
1029                         /* Set SPI to request DMA service on both
1030                            Rx and Tx half fifo watermark */
1031                         writel(SPI_DMA_RHDEN | SPI_DMA_THDEN, regs + SPI_DMA);
1032                 } else
1033                         /* Write only access -> set SPI to request DMA
1034                            service on Tx half fifo watermark */
1035                         writel(SPI_DMA_THDEN, regs + SPI_DMA);
1036
1037                 imx_dma_enable(drv_data->tx_channel);
1038         } else {
1039                 dev_dbg(&drv_data->pdev->dev,
1040                         "pump pio transfer\n"
1041                         "    tx      = %p\n"
1042                         "    rx      = %p\n"
1043                         "    len     = %d\n",
1044                         drv_data->tx,
1045                         drv_data->rx,
1046                         drv_data->len);
1047
1048                 /* Ensure we have the correct interrupt handler */
1049                 if (drv_data->rx)
1050                         drv_data->transfer_handler = interrupt_transfer;
1051                 else
1052                         drv_data->transfer_handler = interrupt_wronly_transfer;
1053
1054                 /* Enable SPI interrupt */
1055                 if (drv_data->rx)
1056                         writel(SPI_INTEN_TH | SPI_INTEN_RO,
1057                                 regs + SPI_INT_STATUS);
1058                 else
1059                         writel(SPI_INTEN_TH, regs + SPI_INT_STATUS);
1060         }
1061 }
1062
1063 static void pump_messages(struct work_struct *work)
1064 {
1065         struct driver_data *drv_data =
1066                                 container_of(work, struct driver_data, work);
1067         unsigned long flags;
1068
1069         /* Lock queue and check for queue work */
1070         spin_lock_irqsave(&drv_data->lock, flags);
1071         if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1072                 drv_data->busy = 0;
1073                 spin_unlock_irqrestore(&drv_data->lock, flags);
1074                 return;
1075         }
1076
1077         /* Make sure we are not already running a message */
1078         if (drv_data->cur_msg) {
1079                 spin_unlock_irqrestore(&drv_data->lock, flags);
1080                 return;
1081         }
1082
1083         /* Extract head of queue */
1084         drv_data->cur_msg = list_entry(drv_data->queue.next,
1085                                         struct spi_message, queue);
1086         list_del_init(&drv_data->cur_msg->queue);
1087         drv_data->busy = 1;
1088         spin_unlock_irqrestore(&drv_data->lock, flags);
1089
1090         /* Initial message state */
1091         drv_data->cur_msg->state = START_STATE;
1092         drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1093                                                 struct spi_transfer,
1094                                                 transfer_list);
1095
1096         /* Setup the SPI using the per chip configuration */
1097         drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1098         restore_state(drv_data);
1099
1100         /* Mark as busy and launch transfers */
1101         tasklet_schedule(&drv_data->pump_transfers);
1102 }
1103
1104 static int transfer(struct spi_device *spi, struct spi_message *msg)
1105 {
1106         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1107         u32 min_speed_hz, max_speed_hz, tmp;
1108         struct spi_transfer *trans;
1109         unsigned long flags;
1110
1111         msg->actual_length = 0;
1112
1113         /* Per transfer setup check */
1114         min_speed_hz = spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN);
1115         max_speed_hz = spi->max_speed_hz;
1116         list_for_each_entry(trans, &msg->transfers, transfer_list) {
1117                 tmp = trans->bits_per_word;
1118                 if (tmp > 16) {
1119                         dev_err(&drv_data->pdev->dev,
1120                                 "message rejected : "
1121                                 "invalid transfer bits_per_word (%d bits)\n",
1122                                 tmp);
1123                         goto msg_rejected;
1124                 }
1125                 tmp = trans->speed_hz;
1126                 if (tmp) {
1127                         if (tmp < min_speed_hz) {
1128                                 dev_err(&drv_data->pdev->dev,
1129                                         "message rejected : "
1130                                         "device min speed (%d Hz) exceeds "
1131                                         "required transfer speed (%d Hz)\n",
1132                                         min_speed_hz,
1133                                         tmp);
1134                                 goto msg_rejected;
1135                         } else if (tmp > max_speed_hz) {
1136                                 dev_err(&drv_data->pdev->dev,
1137                                         "message rejected : "
1138                                         "transfer speed (%d Hz) exceeds "
1139                                         "device max speed (%d Hz)\n",
1140                                         tmp,
1141                                         max_speed_hz);
1142                                 goto msg_rejected;
1143                         }
1144                 }
1145         }
1146
1147         /* Message accepted */
1148         msg->status = -EINPROGRESS;
1149         msg->state = START_STATE;
1150
1151         spin_lock_irqsave(&drv_data->lock, flags);
1152         if (drv_data->run == QUEUE_STOPPED) {
1153                 spin_unlock_irqrestore(&drv_data->lock, flags);
1154                 return -ESHUTDOWN;
1155         }
1156
1157         list_add_tail(&msg->queue, &drv_data->queue);
1158         if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1159                 queue_work(drv_data->workqueue, &drv_data->work);
1160
1161         spin_unlock_irqrestore(&drv_data->lock, flags);
1162         return 0;
1163
1164 msg_rejected:
1165         /* Message rejected and not queued */
1166         msg->status = -EINVAL;
1167         msg->state = ERROR_STATE;
1168         if (msg->complete)
1169                 msg->complete(msg->context);
1170         return -EINVAL;
1171 }
1172
1173 /* the spi->mode bits understood by this driver: */
1174 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH)
1175
1176 /* On first setup bad values must free chip_data memory since will cause
1177    spi_new_device to fail. Bad value setup from protocol driver are simply not
1178    applied and notified to the calling driver. */
1179 static int setup(struct spi_device *spi)
1180 {
1181         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1182         struct spi_imx_chip *chip_info;
1183         struct chip_data *chip;
1184         int first_setup = 0;
1185         u32 tmp;
1186         int status = 0;
1187
1188         if (spi->mode & ~MODEBITS) {
1189                 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
1190                         spi->mode & ~MODEBITS);
1191                 return -EINVAL;
1192         }
1193
1194         /* Get controller data */
1195         chip_info = spi->controller_data;
1196
1197         /* Get controller_state */
1198         chip = spi_get_ctldata(spi);
1199         if (chip == NULL) {
1200                 first_setup = 1;
1201
1202                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1203                 if (!chip) {
1204                         dev_err(&spi->dev,
1205                                 "setup - cannot allocate controller state\n");
1206                         return -ENOMEM;
1207                 }
1208                 chip->control = SPI_DEFAULT_CONTROL;
1209
1210                 if (chip_info == NULL) {
1211                         /* spi_board_info.controller_data not is supplied */
1212                         chip_info = kzalloc(sizeof(struct spi_imx_chip),
1213                                                 GFP_KERNEL);
1214                         if (!chip_info) {
1215                                 dev_err(&spi->dev,
1216                                         "setup - "
1217                                         "cannot allocate controller data\n");
1218                                 status = -ENOMEM;
1219                                 goto err_first_setup;
1220                         }
1221                         /* Set controller data default value */
1222                         chip_info->enable_loopback =
1223                                                 SPI_DEFAULT_ENABLE_LOOPBACK;
1224                         chip_info->enable_dma = SPI_DEFAULT_ENABLE_DMA;
1225                         chip_info->ins_ss_pulse = 1;
1226                         chip_info->bclk_wait = SPI_DEFAULT_PERIOD_WAIT;
1227                         chip_info->cs_control = null_cs_control;
1228                 }
1229         }
1230
1231         /* Now set controller state based on controller data */
1232
1233         if (first_setup) {
1234                 /* SPI loopback */
1235                 if (chip_info->enable_loopback)
1236                         chip->test = SPI_TEST_LBC;
1237                 else
1238                         chip->test = 0;
1239
1240                 /* SPI dma driven */
1241                 chip->enable_dma = chip_info->enable_dma;
1242
1243                 /* SPI /SS pulse between spi burst */
1244                 if (chip_info->ins_ss_pulse)
1245                         u32_EDIT(chip->control,
1246                                 SPI_CONTROL_SSCTL, SPI_CONTROL_SSCTL_1);
1247                 else
1248                         u32_EDIT(chip->control,
1249                                 SPI_CONTROL_SSCTL, SPI_CONTROL_SSCTL_0);
1250
1251                 /* SPI bclk waits between each bits_per_word spi burst */
1252                 if (chip_info->bclk_wait > SPI_PERIOD_MAX_WAIT) {
1253                         dev_err(&spi->dev,
1254                                 "setup - "
1255                                 "bclk_wait exceeds max allowed (%d)\n",
1256                                 SPI_PERIOD_MAX_WAIT);
1257                         goto err_first_setup;
1258                 }
1259                 chip->period = SPI_PERIOD_CSRC_BCLK |
1260                                 (chip_info->bclk_wait & SPI_PERIOD_WAIT);
1261         }
1262
1263         /* SPI mode */
1264         tmp = spi->mode;
1265         if (tmp & SPI_CS_HIGH) {
1266                 u32_EDIT(chip->control,
1267                                 SPI_CONTROL_SSPOL, SPI_CONTROL_SSPOL_ACT_HIGH);
1268         }
1269         switch (tmp & SPI_MODE_3) {
1270         case SPI_MODE_0:
1271                 tmp = 0;
1272                 break;
1273         case SPI_MODE_1:
1274                 tmp = SPI_CONTROL_PHA_1;
1275                 break;
1276         case SPI_MODE_2:
1277                 tmp = SPI_CONTROL_POL_ACT_LOW;
1278                 break;
1279         default:
1280                 /* SPI_MODE_3 */
1281                 tmp = SPI_CONTROL_PHA_1 | SPI_CONTROL_POL_ACT_LOW;
1282                 break;
1283         }
1284         u32_EDIT(chip->control, SPI_CONTROL_POL | SPI_CONTROL_PHA, tmp);
1285
1286         /* SPI word width */
1287         tmp = spi->bits_per_word;
1288         if (tmp == 0) {
1289                 tmp = 8;
1290                 spi->bits_per_word = 8;
1291         } else if (tmp > 16) {
1292                 status = -EINVAL;
1293                 dev_err(&spi->dev,
1294                         "setup - "
1295                         "invalid bits_per_word (%d)\n",
1296                         tmp);
1297                 if (first_setup)
1298                         goto err_first_setup;
1299                 else {
1300                         /* Undo setup using chip as backup copy */
1301                         tmp = chip->bits_per_word;
1302                         spi->bits_per_word = tmp;
1303                 }
1304         }
1305         chip->bits_per_word = tmp;
1306         u32_EDIT(chip->control, SPI_CONTROL_BITCOUNT_MASK, tmp - 1);
1307         chip->n_bytes = (tmp <= 8) ? 1 : 2;
1308
1309         /* SPI datarate */
1310         tmp = spi_data_rate(drv_data, spi->max_speed_hz);
1311         if (tmp == SPI_CONTROL_DATARATE_BAD) {
1312                 status = -EINVAL;
1313                 dev_err(&spi->dev,
1314                         "setup - "
1315                         "HW min speed (%d Hz) exceeds required "
1316                         "max speed (%d Hz)\n",
1317                         spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN),
1318                         spi->max_speed_hz);
1319                 if (first_setup)
1320                         goto err_first_setup;
1321                 else
1322                         /* Undo setup using chip as backup copy */
1323                         spi->max_speed_hz = chip->max_speed_hz;
1324         } else {
1325                 u32_EDIT(chip->control, SPI_CONTROL_DATARATE, tmp);
1326                 /* Actual rounded max_speed_hz */
1327                 tmp = spi_speed_hz(drv_data, tmp);
1328                 spi->max_speed_hz = tmp;
1329                 chip->max_speed_hz = tmp;
1330         }
1331
1332         /* SPI chip-select management */
1333         if (chip_info->cs_control)
1334                 chip->cs_control = chip_info->cs_control;
1335         else
1336                 chip->cs_control = null_cs_control;
1337
1338         /* Save controller_state */
1339         spi_set_ctldata(spi, chip);
1340
1341         /* Summary */
1342         dev_dbg(&spi->dev,
1343                 "setup succeded\n"
1344                 "    loopback enable   = %s\n"
1345                 "    dma enable        = %s\n"
1346                 "    insert /ss pulse  = %s\n"
1347                 "    period wait       = %d\n"
1348                 "    mode              = %d\n"
1349                 "    bits per word     = %d\n"
1350                 "    min speed         = %d Hz\n"
1351                 "    rounded max speed = %d Hz\n",
1352                 chip->test & SPI_TEST_LBC ? "Yes" : "No",
1353                 chip->enable_dma ? "Yes" : "No",
1354                 chip->control & SPI_CONTROL_SSCTL ? "Yes" : "No",
1355                 chip->period & SPI_PERIOD_WAIT,
1356                 spi->mode,
1357                 spi->bits_per_word,
1358                 spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN),
1359                 spi->max_speed_hz);
1360         return status;
1361
1362 err_first_setup:
1363         kfree(chip);
1364         return status;
1365 }
1366
1367 static void cleanup(struct spi_device *spi)
1368 {
1369         kfree(spi_get_ctldata(spi));
1370 }
1371
1372 static int __init init_queue(struct driver_data *drv_data)
1373 {
1374         INIT_LIST_HEAD(&drv_data->queue);
1375         spin_lock_init(&drv_data->lock);
1376
1377         drv_data->run = QUEUE_STOPPED;
1378         drv_data->busy = 0;
1379
1380         tasklet_init(&drv_data->pump_transfers,
1381                         pump_transfers, (unsigned long)drv_data);
1382
1383         INIT_WORK(&drv_data->work, pump_messages);
1384         drv_data->workqueue = create_singlethread_workqueue(
1385                                         drv_data->master->dev.parent->bus_id);
1386         if (drv_data->workqueue == NULL)
1387                 return -EBUSY;
1388
1389         return 0;
1390 }
1391
1392 static int start_queue(struct driver_data *drv_data)
1393 {
1394         unsigned long flags;
1395
1396         spin_lock_irqsave(&drv_data->lock, flags);
1397
1398         if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1399                 spin_unlock_irqrestore(&drv_data->lock, flags);
1400                 return -EBUSY;
1401         }
1402
1403         drv_data->run = QUEUE_RUNNING;
1404         drv_data->cur_msg = NULL;
1405         drv_data->cur_transfer = NULL;
1406         drv_data->cur_chip = NULL;
1407         spin_unlock_irqrestore(&drv_data->lock, flags);
1408
1409         queue_work(drv_data->workqueue, &drv_data->work);
1410
1411         return 0;
1412 }
1413
1414 static int stop_queue(struct driver_data *drv_data)
1415 {
1416         unsigned long flags;
1417         unsigned limit = 500;
1418         int status = 0;
1419
1420         spin_lock_irqsave(&drv_data->lock, flags);
1421
1422         /* This is a bit lame, but is optimized for the common execution path.
1423          * A wait_queue on the drv_data->busy could be used, but then the common
1424          * execution path (pump_messages) would be required to call wake_up or
1425          * friends on every SPI message. Do this instead */
1426         drv_data->run = QUEUE_STOPPED;
1427         while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
1428                 spin_unlock_irqrestore(&drv_data->lock, flags);
1429                 msleep(10);
1430                 spin_lock_irqsave(&drv_data->lock, flags);
1431         }
1432
1433         if (!list_empty(&drv_data->queue) || drv_data->busy)
1434                 status = -EBUSY;
1435
1436         spin_unlock_irqrestore(&drv_data->lock, flags);
1437
1438         return status;
1439 }
1440
1441 static int destroy_queue(struct driver_data *drv_data)
1442 {
1443         int status;
1444
1445         status = stop_queue(drv_data);
1446         if (status != 0)
1447                 return status;
1448
1449         if (drv_data->workqueue)
1450                 destroy_workqueue(drv_data->workqueue);
1451
1452         return 0;
1453 }
1454
1455 static int __init spi_imx_probe(struct platform_device *pdev)
1456 {
1457         struct device *dev = &pdev->dev;
1458         struct spi_imx_master *platform_info;
1459         struct spi_master *master;
1460         struct driver_data *drv_data = NULL;
1461         struct resource *res;
1462         int irq, status = 0;
1463
1464         platform_info = dev->platform_data;
1465         if (platform_info == NULL) {
1466                 dev_err(&pdev->dev, "probe - no platform data supplied\n");
1467                 status = -ENODEV;
1468                 goto err_no_pdata;
1469         }
1470
1471         drv_data->clk = clk_get(&pdev->dev, "perclk2");
1472         if (IS_ERR(drv_data->clk)) {
1473                 dev_err(&pdev->dev, "probe - cannot get get\n");
1474                 status = PTR_ERR(drv_data->clk);
1475                 goto err_no_clk;
1476         }
1477         clk_enable(drv_data->clk);
1478
1479         /* Allocate master with space for drv_data */
1480         master = spi_alloc_master(dev, sizeof(struct driver_data));
1481         if (!master) {
1482                 dev_err(&pdev->dev, "probe - cannot alloc spi_master\n");
1483                 status = -ENOMEM;
1484                 goto err_no_mem;
1485         }
1486         drv_data = spi_master_get_devdata(master);
1487         drv_data->master = master;
1488         drv_data->master_info = platform_info;
1489         drv_data->pdev = pdev;
1490
1491         master->bus_num = pdev->id;
1492         master->num_chipselect = platform_info->num_chipselect;
1493         master->cleanup = cleanup;
1494         master->setup = setup;
1495         master->transfer = transfer;
1496
1497         drv_data->dummy_dma_buf = SPI_DUMMY_u32;
1498
1499         /* Find and map resources */
1500         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1501         if (!res) {
1502                 dev_err(&pdev->dev, "probe - MEM resources not defined\n");
1503                 status = -ENODEV;
1504                 goto err_no_iores;
1505         }
1506         drv_data->ioarea = request_mem_region(res->start,
1507                                                 res->end - res->start + 1,
1508                                                 pdev->name);
1509         if (drv_data->ioarea == NULL) {
1510                 dev_err(&pdev->dev, "probe - cannot reserve region\n");
1511                 status = -ENXIO;
1512                 goto err_no_iores;
1513         }
1514         drv_data->regs = ioremap(res->start, res->end - res->start + 1);
1515         if (drv_data->regs == NULL) {
1516                 dev_err(&pdev->dev, "probe - cannot map IO\n");
1517                 status = -ENXIO;
1518                 goto err_no_iomap;
1519         }
1520         drv_data->rd_data_phys = (dma_addr_t)res->start;
1521
1522         /* Attach to IRQ */
1523         irq = platform_get_irq(pdev, 0);
1524         if (irq < 0) {
1525                 dev_err(&pdev->dev, "probe - IRQ resource not defined\n");
1526                 status = -ENODEV;
1527                 goto err_no_irqres;
1528         }
1529         status = request_irq(irq, spi_int, IRQF_DISABLED, dev->bus_id, drv_data);
1530         if (status < 0) {
1531                 dev_err(&pdev->dev, "probe - cannot get IRQ (%d)\n", status);
1532                 goto err_no_irqres;
1533         }
1534
1535         /* Setup DMA if requested */
1536         drv_data->tx_channel = -1;
1537         drv_data->rx_channel = -1;
1538         if (platform_info->enable_dma) {
1539                 /* Get rx DMA channel */
1540                 drv_data->rx_channel = imx_dma_request_by_prio("spi_imx_rx",
1541                                                                DMA_PRIO_HIGH);
1542                 if (drv_data->rx_channel < 0) {
1543                         dev_err(dev,
1544                                 "probe - problem (%d) requesting rx channel\n",
1545                                 drv_data->rx_channel);
1546                         goto err_no_rxdma;
1547                 } else
1548                         imx_dma_setup_handlers(drv_data->rx_channel, NULL,
1549                                                 dma_err_handler, drv_data);
1550
1551                 /* Get tx DMA channel */
1552                 drv_data->tx_channel = imx_dma_request_by_prio("spi_imx_tx",
1553                                                                DMA_PRIO_MEDIUM);
1554                 if (drv_data->tx_channel < 0) {
1555                         dev_err(dev,
1556                                 "probe - problem (%d) requesting tx channel\n",
1557                                 drv_data->tx_channel);
1558                         imx_dma_free(drv_data->rx_channel);
1559                         goto err_no_txdma;
1560                 } else
1561                         imx_dma_setup_handlers(drv_data->tx_channel,
1562                                                 dma_tx_handler, dma_err_handler,
1563                                                 drv_data);
1564
1565                 /* Set request source and burst length for allocated channels */
1566                 switch (drv_data->pdev->id) {
1567                 case 1:
1568                         /* Using SPI1 */
1569                         RSSR(drv_data->rx_channel) = DMA_REQ_SPI1_R;
1570                         RSSR(drv_data->tx_channel) = DMA_REQ_SPI1_T;
1571                         break;
1572                 case 2:
1573                         /* Using SPI2 */
1574                         RSSR(drv_data->rx_channel) = DMA_REQ_SPI2_R;
1575                         RSSR(drv_data->tx_channel) = DMA_REQ_SPI2_T;
1576                         break;
1577                 default:
1578                         dev_err(dev, "probe - bad SPI Id\n");
1579                         imx_dma_free(drv_data->rx_channel);
1580                         imx_dma_free(drv_data->tx_channel);
1581                         status = -ENODEV;
1582                         goto err_no_devid;
1583                 }
1584                 BLR(drv_data->rx_channel) = SPI_DMA_BLR;
1585                 BLR(drv_data->tx_channel) = SPI_DMA_BLR;
1586         }
1587
1588         /* Load default SPI configuration */
1589         writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1590         writel(0, drv_data->regs + SPI_RESET);
1591         writel(SPI_DEFAULT_CONTROL, drv_data->regs + SPI_CONTROL);
1592
1593         /* Initial and start queue */
1594         status = init_queue(drv_data);
1595         if (status != 0) {
1596                 dev_err(&pdev->dev, "probe - problem initializing queue\n");
1597                 goto err_init_queue;
1598         }
1599         status = start_queue(drv_data);
1600         if (status != 0) {
1601                 dev_err(&pdev->dev, "probe - problem starting queue\n");
1602                 goto err_start_queue;
1603         }
1604
1605         /* Register with the SPI framework */
1606         platform_set_drvdata(pdev, drv_data);
1607         status = spi_register_master(master);
1608         if (status != 0) {
1609                 dev_err(&pdev->dev, "probe - problem registering spi master\n");
1610                 goto err_spi_register;
1611         }
1612
1613         dev_dbg(dev, "probe succeded\n");
1614         return 0;
1615
1616 err_init_queue:
1617 err_start_queue:
1618 err_spi_register:
1619         destroy_queue(drv_data);
1620
1621 err_no_rxdma:
1622 err_no_txdma:
1623 err_no_devid:
1624         free_irq(irq, drv_data);
1625
1626 err_no_irqres:
1627         iounmap(drv_data->regs);
1628
1629 err_no_iomap:
1630         release_resource(drv_data->ioarea);
1631         kfree(drv_data->ioarea);
1632
1633 err_no_iores:
1634         spi_master_put(master);
1635
1636 err_no_pdata:
1637         clk_disable(drv_data->clk);
1638         clk_put(drv_data->clk);
1639 err_no_clk:
1640 err_no_mem:
1641         return status;
1642 }
1643
1644 static int __exit spi_imx_remove(struct platform_device *pdev)
1645 {
1646         struct driver_data *drv_data = platform_get_drvdata(pdev);
1647         int irq;
1648         int status = 0;
1649
1650         if (!drv_data)
1651                 return 0;
1652
1653         tasklet_kill(&drv_data->pump_transfers);
1654
1655         /* Remove the queue */
1656         status = destroy_queue(drv_data);
1657         if (status != 0) {
1658                 dev_err(&pdev->dev, "queue remove failed (%d)\n", status);
1659                 return status;
1660         }
1661
1662         /* Reset SPI */
1663         writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1664         writel(0, drv_data->regs + SPI_RESET);
1665
1666         /* Release DMA */
1667         if (drv_data->master_info->enable_dma) {
1668                 RSSR(drv_data->rx_channel) = 0;
1669                 RSSR(drv_data->tx_channel) = 0;
1670                 imx_dma_free(drv_data->tx_channel);
1671                 imx_dma_free(drv_data->rx_channel);
1672         }
1673
1674         /* Release IRQ */
1675         irq = platform_get_irq(pdev, 0);
1676         if (irq >= 0)
1677                 free_irq(irq, drv_data);
1678
1679         clk_disable(drv_data->clk);
1680         clk_put(drv_data->clk);
1681
1682         /* Release map resources */
1683         iounmap(drv_data->regs);
1684         release_resource(drv_data->ioarea);
1685         kfree(drv_data->ioarea);
1686
1687         /* Disconnect from the SPI framework */
1688         spi_unregister_master(drv_data->master);
1689         spi_master_put(drv_data->master);
1690
1691         /* Prevent double remove */
1692         platform_set_drvdata(pdev, NULL);
1693
1694         dev_dbg(&pdev->dev, "remove succeded\n");
1695
1696         return 0;
1697 }
1698
1699 static void spi_imx_shutdown(struct platform_device *pdev)
1700 {
1701         struct driver_data *drv_data = platform_get_drvdata(pdev);
1702
1703         /* Reset SPI */
1704         writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1705         writel(0, drv_data->regs + SPI_RESET);
1706
1707         dev_dbg(&pdev->dev, "shutdown succeded\n");
1708 }
1709
1710 #ifdef CONFIG_PM
1711
1712 static int spi_imx_suspend(struct platform_device *pdev, pm_message_t state)
1713 {
1714         struct driver_data *drv_data = platform_get_drvdata(pdev);
1715         int status = 0;
1716
1717         status = stop_queue(drv_data);
1718         if (status != 0) {
1719                 dev_warn(&pdev->dev, "suspend cannot stop queue\n");
1720                 return status;
1721         }
1722
1723         dev_dbg(&pdev->dev, "suspended\n");
1724
1725         return 0;
1726 }
1727
1728 static int spi_imx_resume(struct platform_device *pdev)
1729 {
1730         struct driver_data *drv_data = platform_get_drvdata(pdev);
1731         int status = 0;
1732
1733         /* Start the queue running */
1734         status = start_queue(drv_data);
1735         if (status != 0)
1736                 dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
1737         else
1738                 dev_dbg(&pdev->dev, "resumed\n");
1739
1740         return status;
1741 }
1742 #else
1743 #define spi_imx_suspend NULL
1744 #define spi_imx_resume NULL
1745 #endif /* CONFIG_PM */
1746
1747 /* work with hotplug and coldplug */
1748 MODULE_ALIAS("platform:spi_imx");
1749
1750 static struct platform_driver driver = {
1751         .driver = {
1752                 .name = "spi_imx",
1753                 .owner = THIS_MODULE,
1754         },
1755         .remove = __exit_p(spi_imx_remove),
1756         .shutdown = spi_imx_shutdown,
1757         .suspend = spi_imx_suspend,
1758         .resume = spi_imx_resume,
1759 };
1760
1761 static int __init spi_imx_init(void)
1762 {
1763         return platform_driver_probe(&driver, spi_imx_probe);
1764 }
1765 module_init(spi_imx_init);
1766
1767 static void __exit spi_imx_exit(void)
1768 {
1769         platform_driver_unregister(&driver);
1770 }
1771 module_exit(spi_imx_exit);
1772
1773 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
1774 MODULE_DESCRIPTION("iMX SPI Controller Driver");
1775 MODULE_LICENSE("GPL");