2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
47 #include <linux/interrupt.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
71 static kmem_cache_t *skbuff_head_cache __read_mostly;
72 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
74 struct timeval __read_mostly skb_tv_base;
77 * Keep out-of-line to prevent kernel bloat.
78 * __builtin_return_address is not used because it is not always
83 * skb_over_panic - private function
88 * Out of line support code for skb_put(). Not user callable.
90 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
92 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
93 "data:%p tail:%p end:%p dev:%s\n",
94 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
95 skb->dev ? skb->dev->name : "<NULL>");
100 * skb_under_panic - private function
105 * Out of line support code for skb_push(). Not user callable.
108 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
110 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
111 "data:%p tail:%p end:%p dev:%s\n",
112 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
113 skb->dev ? skb->dev->name : "<NULL>");
117 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
118 * 'private' fields and also do memory statistics to find all the
124 * __alloc_skb - allocate a network buffer
125 * @size: size to allocate
126 * @gfp_mask: allocation mask
128 * Allocate a new &sk_buff. The returned buffer has no headroom and a
129 * tail room of size bytes. The object has a reference count of one.
130 * The return is the buffer. On a failure the return is %NULL.
132 * Buffers may only be allocated from interrupts using a @gfp_mask of
135 struct sk_buff *__alloc_skb(unsigned int size, unsigned int __nocast gfp_mask,
143 skb = kmem_cache_alloc(skbuff_fclone_cache,
144 gfp_mask & ~__GFP_DMA);
146 skb = kmem_cache_alloc(skbuff_head_cache,
147 gfp_mask & ~__GFP_DMA);
152 /* Get the DATA. Size must match skb_add_mtu(). */
153 size = SKB_DATA_ALIGN(size);
154 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
158 memset(skb, 0, offsetof(struct sk_buff, truesize));
159 skb->truesize = size + sizeof(struct sk_buff);
160 atomic_set(&skb->users, 1);
164 skb->end = data + size;
166 struct sk_buff *child = skb + 1;
167 atomic_t *fclone_ref = (atomic_t *) (child + 1);
169 skb->fclone = SKB_FCLONE_ORIG;
170 atomic_set(fclone_ref, 1);
172 child->fclone = SKB_FCLONE_UNAVAILABLE;
174 atomic_set(&(skb_shinfo(skb)->dataref), 1);
175 skb_shinfo(skb)->nr_frags = 0;
176 skb_shinfo(skb)->tso_size = 0;
177 skb_shinfo(skb)->tso_segs = 0;
178 skb_shinfo(skb)->frag_list = NULL;
182 kmem_cache_free(skbuff_head_cache, skb);
188 * alloc_skb_from_cache - allocate a network buffer
189 * @cp: kmem_cache from which to allocate the data area
190 * (object size must be big enough for @size bytes + skb overheads)
191 * @size: size to allocate
192 * @gfp_mask: allocation mask
194 * Allocate a new &sk_buff. The returned buffer has no headroom and
195 * tail room of size bytes. The object has a reference count of one.
196 * The return is the buffer. On a failure the return is %NULL.
198 * Buffers may only be allocated from interrupts using a @gfp_mask of
201 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
203 unsigned int __nocast gfp_mask)
209 skb = kmem_cache_alloc(skbuff_head_cache,
210 gfp_mask & ~__GFP_DMA);
215 size = SKB_DATA_ALIGN(size);
216 data = kmem_cache_alloc(cp, gfp_mask);
220 memset(skb, 0, offsetof(struct sk_buff, truesize));
221 skb->truesize = size + sizeof(struct sk_buff);
222 atomic_set(&skb->users, 1);
226 skb->end = data + size;
228 atomic_set(&(skb_shinfo(skb)->dataref), 1);
229 skb_shinfo(skb)->nr_frags = 0;
230 skb_shinfo(skb)->tso_size = 0;
231 skb_shinfo(skb)->tso_segs = 0;
232 skb_shinfo(skb)->frag_list = NULL;
236 kmem_cache_free(skbuff_head_cache, skb);
242 static void skb_drop_fraglist(struct sk_buff *skb)
244 struct sk_buff *list = skb_shinfo(skb)->frag_list;
246 skb_shinfo(skb)->frag_list = NULL;
249 struct sk_buff *this = list;
255 static void skb_clone_fraglist(struct sk_buff *skb)
257 struct sk_buff *list;
259 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
263 void skb_release_data(struct sk_buff *skb)
266 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
267 &skb_shinfo(skb)->dataref)) {
268 if (skb_shinfo(skb)->nr_frags) {
270 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
271 put_page(skb_shinfo(skb)->frags[i].page);
274 if (skb_shinfo(skb)->frag_list)
275 skb_drop_fraglist(skb);
282 * Free an skbuff by memory without cleaning the state.
284 void kfree_skbmem(struct sk_buff *skb)
286 struct sk_buff *other;
287 atomic_t *fclone_ref;
289 skb_release_data(skb);
290 switch (skb->fclone) {
291 case SKB_FCLONE_UNAVAILABLE:
292 kmem_cache_free(skbuff_head_cache, skb);
295 case SKB_FCLONE_ORIG:
296 fclone_ref = (atomic_t *) (skb + 2);
297 if (atomic_dec_and_test(fclone_ref))
298 kmem_cache_free(skbuff_fclone_cache, skb);
301 case SKB_FCLONE_CLONE:
302 fclone_ref = (atomic_t *) (skb + 1);
305 /* The clone portion is available for
306 * fast-cloning again.
308 skb->fclone = SKB_FCLONE_UNAVAILABLE;
310 if (atomic_dec_and_test(fclone_ref))
311 kmem_cache_free(skbuff_fclone_cache, other);
317 * __kfree_skb - private function
320 * Free an sk_buff. Release anything attached to the buffer.
321 * Clean the state. This is an internal helper function. Users should
322 * always call kfree_skb
325 void __kfree_skb(struct sk_buff *skb)
327 dst_release(skb->dst);
329 secpath_put(skb->sp);
331 if (skb->destructor) {
333 skb->destructor(skb);
335 #ifdef CONFIG_NETFILTER
336 nf_conntrack_put(skb->nfct);
337 #ifdef CONFIG_BRIDGE_NETFILTER
338 nf_bridge_put(skb->nf_bridge);
341 /* XXX: IS this still necessary? - JHS */
342 #ifdef CONFIG_NET_SCHED
344 #ifdef CONFIG_NET_CLS_ACT
353 * skb_clone - duplicate an sk_buff
354 * @skb: buffer to clone
355 * @gfp_mask: allocation priority
357 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
358 * copies share the same packet data but not structure. The new
359 * buffer has a reference count of 1. If the allocation fails the
360 * function returns %NULL otherwise the new buffer is returned.
362 * If this function is called from an interrupt gfp_mask() must be
366 struct sk_buff *skb_clone(struct sk_buff *skb, unsigned int __nocast gfp_mask)
371 if (skb->fclone == SKB_FCLONE_ORIG &&
372 n->fclone == SKB_FCLONE_UNAVAILABLE) {
373 atomic_t *fclone_ref = (atomic_t *) (n + 1);
374 n->fclone = SKB_FCLONE_CLONE;
375 atomic_inc(fclone_ref);
377 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
380 n->fclone = SKB_FCLONE_UNAVAILABLE;
383 #define C(x) n->x = skb->x
385 n->next = n->prev = NULL;
396 secpath_get(skb->sp);
398 memcpy(n->cb, skb->cb, sizeof(skb->cb));
409 n->destructor = NULL;
410 #ifdef CONFIG_NETFILTER
413 nf_conntrack_get(skb->nfct);
415 #ifdef CONFIG_BRIDGE_NETFILTER
417 nf_bridge_get(skb->nf_bridge);
419 #endif /*CONFIG_NETFILTER*/
420 #ifdef CONFIG_NET_SCHED
422 #ifdef CONFIG_NET_CLS_ACT
423 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
424 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
425 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
431 atomic_set(&n->users, 1);
437 atomic_inc(&(skb_shinfo(skb)->dataref));
443 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
446 * Shift between the two data areas in bytes
448 unsigned long offset = new->data - old->data;
452 new->priority = old->priority;
453 new->protocol = old->protocol;
454 new->dst = dst_clone(old->dst);
456 new->sp = secpath_get(old->sp);
458 new->h.raw = old->h.raw + offset;
459 new->nh.raw = old->nh.raw + offset;
460 new->mac.raw = old->mac.raw + offset;
461 memcpy(new->cb, old->cb, sizeof(old->cb));
462 new->local_df = old->local_df;
463 new->fclone = SKB_FCLONE_UNAVAILABLE;
464 new->pkt_type = old->pkt_type;
465 new->tstamp = old->tstamp;
466 new->destructor = NULL;
467 #ifdef CONFIG_NETFILTER
468 new->nfmark = old->nfmark;
469 new->nfct = old->nfct;
470 nf_conntrack_get(old->nfct);
471 new->nfctinfo = old->nfctinfo;
472 #ifdef CONFIG_BRIDGE_NETFILTER
473 new->nf_bridge = old->nf_bridge;
474 nf_bridge_get(old->nf_bridge);
477 #ifdef CONFIG_NET_SCHED
478 #ifdef CONFIG_NET_CLS_ACT
479 new->tc_verd = old->tc_verd;
481 new->tc_index = old->tc_index;
483 atomic_set(&new->users, 1);
484 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
485 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
489 * skb_copy - create private copy of an sk_buff
490 * @skb: buffer to copy
491 * @gfp_mask: allocation priority
493 * Make a copy of both an &sk_buff and its data. This is used when the
494 * caller wishes to modify the data and needs a private copy of the
495 * data to alter. Returns %NULL on failure or the pointer to the buffer
496 * on success. The returned buffer has a reference count of 1.
498 * As by-product this function converts non-linear &sk_buff to linear
499 * one, so that &sk_buff becomes completely private and caller is allowed
500 * to modify all the data of returned buffer. This means that this
501 * function is not recommended for use in circumstances when only
502 * header is going to be modified. Use pskb_copy() instead.
505 struct sk_buff *skb_copy(const struct sk_buff *skb, unsigned int __nocast gfp_mask)
507 int headerlen = skb->data - skb->head;
509 * Allocate the copy buffer
511 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
516 /* Set the data pointer */
517 skb_reserve(n, headerlen);
518 /* Set the tail pointer and length */
519 skb_put(n, skb->len);
521 n->ip_summed = skb->ip_summed;
523 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
526 copy_skb_header(n, skb);
532 * pskb_copy - create copy of an sk_buff with private head.
533 * @skb: buffer to copy
534 * @gfp_mask: allocation priority
536 * Make a copy of both an &sk_buff and part of its data, located
537 * in header. Fragmented data remain shared. This is used when
538 * the caller wishes to modify only header of &sk_buff and needs
539 * private copy of the header to alter. Returns %NULL on failure
540 * or the pointer to the buffer on success.
541 * The returned buffer has a reference count of 1.
544 struct sk_buff *pskb_copy(struct sk_buff *skb, unsigned int __nocast gfp_mask)
547 * Allocate the copy buffer
549 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
554 /* Set the data pointer */
555 skb_reserve(n, skb->data - skb->head);
556 /* Set the tail pointer and length */
557 skb_put(n, skb_headlen(skb));
559 memcpy(n->data, skb->data, n->len);
561 n->ip_summed = skb->ip_summed;
563 n->data_len = skb->data_len;
566 if (skb_shinfo(skb)->nr_frags) {
569 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
570 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
571 get_page(skb_shinfo(n)->frags[i].page);
573 skb_shinfo(n)->nr_frags = i;
576 if (skb_shinfo(skb)->frag_list) {
577 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
578 skb_clone_fraglist(n);
581 copy_skb_header(n, skb);
587 * pskb_expand_head - reallocate header of &sk_buff
588 * @skb: buffer to reallocate
589 * @nhead: room to add at head
590 * @ntail: room to add at tail
591 * @gfp_mask: allocation priority
593 * Expands (or creates identical copy, if &nhead and &ntail are zero)
594 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
595 * reference count of 1. Returns zero in the case of success or error,
596 * if expansion failed. In the last case, &sk_buff is not changed.
598 * All the pointers pointing into skb header may change and must be
599 * reloaded after call to this function.
602 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
603 unsigned int __nocast gfp_mask)
607 int size = nhead + (skb->end - skb->head) + ntail;
613 size = SKB_DATA_ALIGN(size);
615 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
619 /* Copy only real data... and, alas, header. This should be
620 * optimized for the cases when header is void. */
621 memcpy(data + nhead, skb->head, skb->tail - skb->head);
622 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
624 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
625 get_page(skb_shinfo(skb)->frags[i].page);
627 if (skb_shinfo(skb)->frag_list)
628 skb_clone_fraglist(skb);
630 skb_release_data(skb);
632 off = (data + nhead) - skb->head;
635 skb->end = data + size;
643 atomic_set(&skb_shinfo(skb)->dataref, 1);
650 /* Make private copy of skb with writable head and some headroom */
652 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
654 struct sk_buff *skb2;
655 int delta = headroom - skb_headroom(skb);
658 skb2 = pskb_copy(skb, GFP_ATOMIC);
660 skb2 = skb_clone(skb, GFP_ATOMIC);
661 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
672 * skb_copy_expand - copy and expand sk_buff
673 * @skb: buffer to copy
674 * @newheadroom: new free bytes at head
675 * @newtailroom: new free bytes at tail
676 * @gfp_mask: allocation priority
678 * Make a copy of both an &sk_buff and its data and while doing so
679 * allocate additional space.
681 * This is used when the caller wishes to modify the data and needs a
682 * private copy of the data to alter as well as more space for new fields.
683 * Returns %NULL on failure or the pointer to the buffer
684 * on success. The returned buffer has a reference count of 1.
686 * You must pass %GFP_ATOMIC as the allocation priority if this function
687 * is called from an interrupt.
689 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
690 * only by netfilter in the cases when checksum is recalculated? --ANK
692 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
693 int newheadroom, int newtailroom,
694 unsigned int __nocast gfp_mask)
697 * Allocate the copy buffer
699 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
701 int head_copy_len, head_copy_off;
706 skb_reserve(n, newheadroom);
708 /* Set the tail pointer and length */
709 skb_put(n, skb->len);
711 head_copy_len = skb_headroom(skb);
713 if (newheadroom <= head_copy_len)
714 head_copy_len = newheadroom;
716 head_copy_off = newheadroom - head_copy_len;
718 /* Copy the linear header and data. */
719 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
720 skb->len + head_copy_len))
723 copy_skb_header(n, skb);
729 * skb_pad - zero pad the tail of an skb
730 * @skb: buffer to pad
733 * Ensure that a buffer is followed by a padding area that is zero
734 * filled. Used by network drivers which may DMA or transfer data
735 * beyond the buffer end onto the wire.
737 * May return NULL in out of memory cases.
740 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
742 struct sk_buff *nskb;
744 /* If the skbuff is non linear tailroom is always zero.. */
745 if (skb_tailroom(skb) >= pad) {
746 memset(skb->data+skb->len, 0, pad);
750 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
753 memset(nskb->data+nskb->len, 0, pad);
757 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
758 * If realloc==0 and trimming is impossible without change of data,
762 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
764 int offset = skb_headlen(skb);
765 int nfrags = skb_shinfo(skb)->nr_frags;
768 for (i = 0; i < nfrags; i++) {
769 int end = offset + skb_shinfo(skb)->frags[i].size;
771 if (skb_cloned(skb)) {
774 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
778 put_page(skb_shinfo(skb)->frags[i].page);
779 skb_shinfo(skb)->nr_frags--;
781 skb_shinfo(skb)->frags[i].size = len - offset;
788 skb->data_len -= skb->len - len;
791 if (len <= skb_headlen(skb)) {
794 skb->tail = skb->data + len;
795 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
796 skb_drop_fraglist(skb);
798 skb->data_len -= skb->len - len;
807 * __pskb_pull_tail - advance tail of skb header
808 * @skb: buffer to reallocate
809 * @delta: number of bytes to advance tail
811 * The function makes a sense only on a fragmented &sk_buff,
812 * it expands header moving its tail forward and copying necessary
813 * data from fragmented part.
815 * &sk_buff MUST have reference count of 1.
817 * Returns %NULL (and &sk_buff does not change) if pull failed
818 * or value of new tail of skb in the case of success.
820 * All the pointers pointing into skb header may change and must be
821 * reloaded after call to this function.
824 /* Moves tail of skb head forward, copying data from fragmented part,
825 * when it is necessary.
826 * 1. It may fail due to malloc failure.
827 * 2. It may change skb pointers.
829 * It is pretty complicated. Luckily, it is called only in exceptional cases.
831 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
833 /* If skb has not enough free space at tail, get new one
834 * plus 128 bytes for future expansions. If we have enough
835 * room at tail, reallocate without expansion only if skb is cloned.
837 int i, k, eat = (skb->tail + delta) - skb->end;
839 if (eat > 0 || skb_cloned(skb)) {
840 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
845 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
848 /* Optimization: no fragments, no reasons to preestimate
849 * size of pulled pages. Superb.
851 if (!skb_shinfo(skb)->frag_list)
854 /* Estimate size of pulled pages. */
856 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
857 if (skb_shinfo(skb)->frags[i].size >= eat)
859 eat -= skb_shinfo(skb)->frags[i].size;
862 /* If we need update frag list, we are in troubles.
863 * Certainly, it possible to add an offset to skb data,
864 * but taking into account that pulling is expected to
865 * be very rare operation, it is worth to fight against
866 * further bloating skb head and crucify ourselves here instead.
867 * Pure masohism, indeed. 8)8)
870 struct sk_buff *list = skb_shinfo(skb)->frag_list;
871 struct sk_buff *clone = NULL;
872 struct sk_buff *insp = NULL;
878 if (list->len <= eat) {
879 /* Eaten as whole. */
884 /* Eaten partially. */
886 if (skb_shared(list)) {
887 /* Sucks! We need to fork list. :-( */
888 clone = skb_clone(list, GFP_ATOMIC);
894 /* This may be pulled without
898 if (!pskb_pull(list, eat)) {
907 /* Free pulled out fragments. */
908 while ((list = skb_shinfo(skb)->frag_list) != insp) {
909 skb_shinfo(skb)->frag_list = list->next;
912 /* And insert new clone at head. */
915 skb_shinfo(skb)->frag_list = clone;
918 /* Success! Now we may commit changes to skb data. */
923 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
924 if (skb_shinfo(skb)->frags[i].size <= eat) {
925 put_page(skb_shinfo(skb)->frags[i].page);
926 eat -= skb_shinfo(skb)->frags[i].size;
928 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
930 skb_shinfo(skb)->frags[k].page_offset += eat;
931 skb_shinfo(skb)->frags[k].size -= eat;
937 skb_shinfo(skb)->nr_frags = k;
940 skb->data_len -= delta;
945 /* Copy some data bits from skb to kernel buffer. */
947 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
950 int start = skb_headlen(skb);
952 if (offset > (int)skb->len - len)
956 if ((copy = start - offset) > 0) {
959 memcpy(to, skb->data + offset, copy);
960 if ((len -= copy) == 0)
966 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
969 BUG_TRAP(start <= offset + len);
971 end = start + skb_shinfo(skb)->frags[i].size;
972 if ((copy = end - offset) > 0) {
978 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
980 vaddr + skb_shinfo(skb)->frags[i].page_offset+
981 offset - start, copy);
982 kunmap_skb_frag(vaddr);
984 if ((len -= copy) == 0)
992 if (skb_shinfo(skb)->frag_list) {
993 struct sk_buff *list = skb_shinfo(skb)->frag_list;
995 for (; list; list = list->next) {
998 BUG_TRAP(start <= offset + len);
1000 end = start + list->len;
1001 if ((copy = end - offset) > 0) {
1004 if (skb_copy_bits(list, offset - start,
1007 if ((len -= copy) == 0)
1023 * skb_store_bits - store bits from kernel buffer to skb
1024 * @skb: destination buffer
1025 * @offset: offset in destination
1026 * @from: source buffer
1027 * @len: number of bytes to copy
1029 * Copy the specified number of bytes from the source buffer to the
1030 * destination skb. This function handles all the messy bits of
1031 * traversing fragment lists and such.
1034 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1037 int start = skb_headlen(skb);
1039 if (offset > (int)skb->len - len)
1042 if ((copy = start - offset) > 0) {
1045 memcpy(skb->data + offset, from, copy);
1046 if ((len -= copy) == 0)
1052 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1053 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1056 BUG_TRAP(start <= offset + len);
1058 end = start + frag->size;
1059 if ((copy = end - offset) > 0) {
1065 vaddr = kmap_skb_frag(frag);
1066 memcpy(vaddr + frag->page_offset + offset - start,
1068 kunmap_skb_frag(vaddr);
1070 if ((len -= copy) == 0)
1078 if (skb_shinfo(skb)->frag_list) {
1079 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1081 for (; list; list = list->next) {
1084 BUG_TRAP(start <= offset + len);
1086 end = start + list->len;
1087 if ((copy = end - offset) > 0) {
1090 if (skb_store_bits(list, offset - start,
1093 if ((len -= copy) == 0)
1108 EXPORT_SYMBOL(skb_store_bits);
1110 /* Checksum skb data. */
1112 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1113 int len, unsigned int csum)
1115 int start = skb_headlen(skb);
1116 int i, copy = start - offset;
1119 /* Checksum header. */
1123 csum = csum_partial(skb->data + offset, copy, csum);
1124 if ((len -= copy) == 0)
1130 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1133 BUG_TRAP(start <= offset + len);
1135 end = start + skb_shinfo(skb)->frags[i].size;
1136 if ((copy = end - offset) > 0) {
1139 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1143 vaddr = kmap_skb_frag(frag);
1144 csum2 = csum_partial(vaddr + frag->page_offset +
1145 offset - start, copy, 0);
1146 kunmap_skb_frag(vaddr);
1147 csum = csum_block_add(csum, csum2, pos);
1156 if (skb_shinfo(skb)->frag_list) {
1157 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1159 for (; list; list = list->next) {
1162 BUG_TRAP(start <= offset + len);
1164 end = start + list->len;
1165 if ((copy = end - offset) > 0) {
1169 csum2 = skb_checksum(list, offset - start,
1171 csum = csum_block_add(csum, csum2, pos);
1172 if ((len -= copy) == 0)
1186 /* Both of above in one bottle. */
1188 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1189 u8 *to, int len, unsigned int csum)
1191 int start = skb_headlen(skb);
1192 int i, copy = start - offset;
1199 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1201 if ((len -= copy) == 0)
1208 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1211 BUG_TRAP(start <= offset + len);
1213 end = start + skb_shinfo(skb)->frags[i].size;
1214 if ((copy = end - offset) > 0) {
1217 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1221 vaddr = kmap_skb_frag(frag);
1222 csum2 = csum_partial_copy_nocheck(vaddr +
1226 kunmap_skb_frag(vaddr);
1227 csum = csum_block_add(csum, csum2, pos);
1237 if (skb_shinfo(skb)->frag_list) {
1238 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1240 for (; list; list = list->next) {
1244 BUG_TRAP(start <= offset + len);
1246 end = start + list->len;
1247 if ((copy = end - offset) > 0) {
1250 csum2 = skb_copy_and_csum_bits(list,
1253 csum = csum_block_add(csum, csum2, pos);
1254 if ((len -= copy) == 0)
1268 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1273 if (skb->ip_summed == CHECKSUM_HW)
1274 csstart = skb->h.raw - skb->data;
1276 csstart = skb_headlen(skb);
1278 if (csstart > skb_headlen(skb))
1281 memcpy(to, skb->data, csstart);
1284 if (csstart != skb->len)
1285 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1286 skb->len - csstart, 0);
1288 if (skb->ip_summed == CHECKSUM_HW) {
1289 long csstuff = csstart + skb->csum;
1291 *((unsigned short *)(to + csstuff)) = csum_fold(csum);
1296 * skb_dequeue - remove from the head of the queue
1297 * @list: list to dequeue from
1299 * Remove the head of the list. The list lock is taken so the function
1300 * may be used safely with other locking list functions. The head item is
1301 * returned or %NULL if the list is empty.
1304 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1306 unsigned long flags;
1307 struct sk_buff *result;
1309 spin_lock_irqsave(&list->lock, flags);
1310 result = __skb_dequeue(list);
1311 spin_unlock_irqrestore(&list->lock, flags);
1316 * skb_dequeue_tail - remove from the tail of the queue
1317 * @list: list to dequeue from
1319 * Remove the tail of the list. The list lock is taken so the function
1320 * may be used safely with other locking list functions. The tail item is
1321 * returned or %NULL if the list is empty.
1323 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1325 unsigned long flags;
1326 struct sk_buff *result;
1328 spin_lock_irqsave(&list->lock, flags);
1329 result = __skb_dequeue_tail(list);
1330 spin_unlock_irqrestore(&list->lock, flags);
1335 * skb_queue_purge - empty a list
1336 * @list: list to empty
1338 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1339 * the list and one reference dropped. This function takes the list
1340 * lock and is atomic with respect to other list locking functions.
1342 void skb_queue_purge(struct sk_buff_head *list)
1344 struct sk_buff *skb;
1345 while ((skb = skb_dequeue(list)) != NULL)
1350 * skb_queue_head - queue a buffer at the list head
1351 * @list: list to use
1352 * @newsk: buffer to queue
1354 * Queue a buffer at the start of the list. This function takes the
1355 * list lock and can be used safely with other locking &sk_buff functions
1358 * A buffer cannot be placed on two lists at the same time.
1360 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1362 unsigned long flags;
1364 spin_lock_irqsave(&list->lock, flags);
1365 __skb_queue_head(list, newsk);
1366 spin_unlock_irqrestore(&list->lock, flags);
1370 * skb_queue_tail - queue a buffer at the list tail
1371 * @list: list to use
1372 * @newsk: buffer to queue
1374 * Queue a buffer at the tail of the list. This function takes the
1375 * list lock and can be used safely with other locking &sk_buff functions
1378 * A buffer cannot be placed on two lists at the same time.
1380 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1382 unsigned long flags;
1384 spin_lock_irqsave(&list->lock, flags);
1385 __skb_queue_tail(list, newsk);
1386 spin_unlock_irqrestore(&list->lock, flags);
1390 * skb_unlink - remove a buffer from a list
1391 * @skb: buffer to remove
1392 * @list: list to use
1394 * Remove a packet from a list. The list locks are taken and this
1395 * function is atomic with respect to other list locked calls
1397 * You must know what list the SKB is on.
1399 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1401 unsigned long flags;
1403 spin_lock_irqsave(&list->lock, flags);
1404 __skb_unlink(skb, list);
1405 spin_unlock_irqrestore(&list->lock, flags);
1409 * skb_append - append a buffer
1410 * @old: buffer to insert after
1411 * @newsk: buffer to insert
1412 * @list: list to use
1414 * Place a packet after a given packet in a list. The list locks are taken
1415 * and this function is atomic with respect to other list locked calls.
1416 * A buffer cannot be placed on two lists at the same time.
1418 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1420 unsigned long flags;
1422 spin_lock_irqsave(&list->lock, flags);
1423 __skb_append(old, newsk, list);
1424 spin_unlock_irqrestore(&list->lock, flags);
1429 * skb_insert - insert a buffer
1430 * @old: buffer to insert before
1431 * @newsk: buffer to insert
1432 * @list: list to use
1434 * Place a packet before a given packet in a list. The list locks are
1435 * taken and this function is atomic with respect to other list locked
1438 * A buffer cannot be placed on two lists at the same time.
1440 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1442 unsigned long flags;
1444 spin_lock_irqsave(&list->lock, flags);
1445 __skb_insert(newsk, old->prev, old, list);
1446 spin_unlock_irqrestore(&list->lock, flags);
1451 * Tune the memory allocator for a new MTU size.
1453 void skb_add_mtu(int mtu)
1455 /* Must match allocation in alloc_skb */
1456 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1458 kmem_add_cache_size(mtu);
1462 static inline void skb_split_inside_header(struct sk_buff *skb,
1463 struct sk_buff* skb1,
1464 const u32 len, const int pos)
1468 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1470 /* And move data appendix as is. */
1471 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1472 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1474 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1475 skb_shinfo(skb)->nr_frags = 0;
1476 skb1->data_len = skb->data_len;
1477 skb1->len += skb1->data_len;
1480 skb->tail = skb->data + len;
1483 static inline void skb_split_no_header(struct sk_buff *skb,
1484 struct sk_buff* skb1,
1485 const u32 len, int pos)
1488 const int nfrags = skb_shinfo(skb)->nr_frags;
1490 skb_shinfo(skb)->nr_frags = 0;
1491 skb1->len = skb1->data_len = skb->len - len;
1493 skb->data_len = len - pos;
1495 for (i = 0; i < nfrags; i++) {
1496 int size = skb_shinfo(skb)->frags[i].size;
1498 if (pos + size > len) {
1499 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1503 * We have two variants in this case:
1504 * 1. Move all the frag to the second
1505 * part, if it is possible. F.e.
1506 * this approach is mandatory for TUX,
1507 * where splitting is expensive.
1508 * 2. Split is accurately. We make this.
1510 get_page(skb_shinfo(skb)->frags[i].page);
1511 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1512 skb_shinfo(skb1)->frags[0].size -= len - pos;
1513 skb_shinfo(skb)->frags[i].size = len - pos;
1514 skb_shinfo(skb)->nr_frags++;
1518 skb_shinfo(skb)->nr_frags++;
1521 skb_shinfo(skb1)->nr_frags = k;
1525 * skb_split - Split fragmented skb to two parts at length len.
1526 * @skb: the buffer to split
1527 * @skb1: the buffer to receive the second part
1528 * @len: new length for skb
1530 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1532 int pos = skb_headlen(skb);
1534 if (len < pos) /* Split line is inside header. */
1535 skb_split_inside_header(skb, skb1, len, pos);
1536 else /* Second chunk has no header, nothing to copy. */
1537 skb_split_no_header(skb, skb1, len, pos);
1541 * skb_prepare_seq_read - Prepare a sequential read of skb data
1542 * @skb: the buffer to read
1543 * @from: lower offset of data to be read
1544 * @to: upper offset of data to be read
1545 * @st: state variable
1547 * Initializes the specified state variable. Must be called before
1548 * invoking skb_seq_read() for the first time.
1550 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1551 unsigned int to, struct skb_seq_state *st)
1553 st->lower_offset = from;
1554 st->upper_offset = to;
1555 st->root_skb = st->cur_skb = skb;
1556 st->frag_idx = st->stepped_offset = 0;
1557 st->frag_data = NULL;
1561 * skb_seq_read - Sequentially read skb data
1562 * @consumed: number of bytes consumed by the caller so far
1563 * @data: destination pointer for data to be returned
1564 * @st: state variable
1566 * Reads a block of skb data at &consumed relative to the
1567 * lower offset specified to skb_prepare_seq_read(). Assigns
1568 * the head of the data block to &data and returns the length
1569 * of the block or 0 if the end of the skb data or the upper
1570 * offset has been reached.
1572 * The caller is not required to consume all of the data
1573 * returned, i.e. &consumed is typically set to the number
1574 * of bytes already consumed and the next call to
1575 * skb_seq_read() will return the remaining part of the block.
1577 * Note: The size of each block of data returned can be arbitary,
1578 * this limitation is the cost for zerocopy seqeuental
1579 * reads of potentially non linear data.
1581 * Note: Fragment lists within fragments are not implemented
1582 * at the moment, state->root_skb could be replaced with
1583 * a stack for this purpose.
1585 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1586 struct skb_seq_state *st)
1588 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1591 if (unlikely(abs_offset >= st->upper_offset))
1595 block_limit = skb_headlen(st->cur_skb);
1597 if (abs_offset < block_limit) {
1598 *data = st->cur_skb->data + abs_offset;
1599 return block_limit - abs_offset;
1602 if (st->frag_idx == 0 && !st->frag_data)
1603 st->stepped_offset += skb_headlen(st->cur_skb);
1605 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1606 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1607 block_limit = frag->size + st->stepped_offset;
1609 if (abs_offset < block_limit) {
1611 st->frag_data = kmap_skb_frag(frag);
1613 *data = (u8 *) st->frag_data + frag->page_offset +
1614 (abs_offset - st->stepped_offset);
1616 return block_limit - abs_offset;
1619 if (st->frag_data) {
1620 kunmap_skb_frag(st->frag_data);
1621 st->frag_data = NULL;
1625 st->stepped_offset += frag->size;
1628 if (st->cur_skb->next) {
1629 st->cur_skb = st->cur_skb->next;
1632 } else if (st->root_skb == st->cur_skb &&
1633 skb_shinfo(st->root_skb)->frag_list) {
1634 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1642 * skb_abort_seq_read - Abort a sequential read of skb data
1643 * @st: state variable
1645 * Must be called if skb_seq_read() was not called until it
1648 void skb_abort_seq_read(struct skb_seq_state *st)
1651 kunmap_skb_frag(st->frag_data);
1654 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1656 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1657 struct ts_config *conf,
1658 struct ts_state *state)
1660 return skb_seq_read(offset, text, TS_SKB_CB(state));
1663 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1665 skb_abort_seq_read(TS_SKB_CB(state));
1669 * skb_find_text - Find a text pattern in skb data
1670 * @skb: the buffer to look in
1671 * @from: search offset
1673 * @config: textsearch configuration
1674 * @state: uninitialized textsearch state variable
1676 * Finds a pattern in the skb data according to the specified
1677 * textsearch configuration. Use textsearch_next() to retrieve
1678 * subsequent occurrences of the pattern. Returns the offset
1679 * to the first occurrence or UINT_MAX if no match was found.
1681 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1682 unsigned int to, struct ts_config *config,
1683 struct ts_state *state)
1685 config->get_next_block = skb_ts_get_next_block;
1686 config->finish = skb_ts_finish;
1688 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1690 return textsearch_find(config, state);
1693 void __init skb_init(void)
1695 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1696 sizeof(struct sk_buff),
1700 if (!skbuff_head_cache)
1701 panic("cannot create skbuff cache");
1703 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1704 (2*sizeof(struct sk_buff)) +
1709 if (!skbuff_fclone_cache)
1710 panic("cannot create skbuff cache");
1712 do_gettimeofday(&skb_tv_base);
1715 EXPORT_SYMBOL(___pskb_trim);
1716 EXPORT_SYMBOL(__kfree_skb);
1717 EXPORT_SYMBOL(__pskb_pull_tail);
1718 EXPORT_SYMBOL(__alloc_skb);
1719 EXPORT_SYMBOL(pskb_copy);
1720 EXPORT_SYMBOL(pskb_expand_head);
1721 EXPORT_SYMBOL(skb_checksum);
1722 EXPORT_SYMBOL(skb_clone);
1723 EXPORT_SYMBOL(skb_clone_fraglist);
1724 EXPORT_SYMBOL(skb_copy);
1725 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1726 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1727 EXPORT_SYMBOL(skb_copy_bits);
1728 EXPORT_SYMBOL(skb_copy_expand);
1729 EXPORT_SYMBOL(skb_over_panic);
1730 EXPORT_SYMBOL(skb_pad);
1731 EXPORT_SYMBOL(skb_realloc_headroom);
1732 EXPORT_SYMBOL(skb_under_panic);
1733 EXPORT_SYMBOL(skb_dequeue);
1734 EXPORT_SYMBOL(skb_dequeue_tail);
1735 EXPORT_SYMBOL(skb_insert);
1736 EXPORT_SYMBOL(skb_queue_purge);
1737 EXPORT_SYMBOL(skb_queue_head);
1738 EXPORT_SYMBOL(skb_queue_tail);
1739 EXPORT_SYMBOL(skb_unlink);
1740 EXPORT_SYMBOL(skb_append);
1741 EXPORT_SYMBOL(skb_split);
1742 EXPORT_SYMBOL(skb_prepare_seq_read);
1743 EXPORT_SYMBOL(skb_seq_read);
1744 EXPORT_SYMBOL(skb_abort_seq_read);
1745 EXPORT_SYMBOL(skb_find_text);
1746 EXPORT_SYMBOL(skb_tv_base);