2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_dbg.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_driver.h>
24 #include <scsi/scsi_eh.h>
25 #include <scsi/scsi_host.h>
26 #include <scsi/scsi_request.h>
28 #include "scsi_priv.h"
29 #include "scsi_logging.h"
32 #define SG_MEMPOOL_NR (sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33 #define SG_MEMPOOL_SIZE 32
35 struct scsi_host_sg_pool {
42 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
43 #error SCSI_MAX_PHYS_SEGMENTS is too small
46 #define SP(x) { x, "sgpool-" #x }
47 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
58 #error SCSI_MAX_PHYS_SEGMENTS is too large
68 * Function: scsi_insert_special_req()
70 * Purpose: Insert pre-formed request into request queue.
72 * Arguments: sreq - request that is ready to be queued.
73 * at_head - boolean. True if we should insert at head
74 * of queue, false if we should insert at tail.
76 * Lock status: Assumed that lock is not held upon entry.
80 * Notes: This function is called from character device and from
81 * ioctl types of functions where the caller knows exactly
82 * what SCSI command needs to be issued. The idea is that
83 * we merely inject the command into the queue (at the head
84 * for now), and then call the queue request function to actually
87 int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
90 * Because users of this function are apt to reuse requests with no
91 * modification, we have to sanitise the request flags here
93 sreq->sr_request->flags &= ~REQ_DONTPREP;
94 blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
99 static void scsi_run_queue(struct request_queue *q);
102 * Function: scsi_unprep_request()
104 * Purpose: Remove all preparation done for a request, including its
105 * associated scsi_cmnd, so that it can be requeued.
107 * Arguments: req - request to unprepare
109 * Lock status: Assumed that no locks are held upon entry.
113 static void scsi_unprep_request(struct request *req)
115 struct scsi_cmnd *cmd = req->special;
117 req->flags &= ~REQ_DONTPREP;
118 req->special = (req->flags & REQ_SPECIAL) ? cmd->sc_request : NULL;
120 scsi_put_command(cmd);
124 * Function: scsi_queue_insert()
126 * Purpose: Insert a command in the midlevel queue.
128 * Arguments: cmd - command that we are adding to queue.
129 * reason - why we are inserting command to queue.
131 * Lock status: Assumed that lock is not held upon entry.
135 * Notes: We do this for one of two cases. Either the host is busy
136 * and it cannot accept any more commands for the time being,
137 * or the device returned QUEUE_FULL and can accept no more
139 * Notes: This could be called either from an interrupt context or a
140 * normal process context.
142 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
144 struct Scsi_Host *host = cmd->device->host;
145 struct scsi_device *device = cmd->device;
146 struct request_queue *q = device->request_queue;
150 printk("Inserting command %p into mlqueue\n", cmd));
153 * Set the appropriate busy bit for the device/host.
155 * If the host/device isn't busy, assume that something actually
156 * completed, and that we should be able to queue a command now.
158 * Note that the prior mid-layer assumption that any host could
159 * always queue at least one command is now broken. The mid-layer
160 * will implement a user specifiable stall (see
161 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
162 * if a command is requeued with no other commands outstanding
163 * either for the device or for the host.
165 if (reason == SCSI_MLQUEUE_HOST_BUSY)
166 host->host_blocked = host->max_host_blocked;
167 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
168 device->device_blocked = device->max_device_blocked;
171 * Decrement the counters, since these commands are no longer
172 * active on the host/device.
174 scsi_device_unbusy(device);
177 * Requeue this command. It will go before all other commands
178 * that are already in the queue.
180 * NOTE: there is magic here about the way the queue is plugged if
181 * we have no outstanding commands.
183 * Although we *don't* plug the queue, we call the request
184 * function. The SCSI request function detects the blocked condition
185 * and plugs the queue appropriately.
187 spin_lock_irqsave(q->queue_lock, flags);
188 blk_requeue_request(q, cmd->request);
189 spin_unlock_irqrestore(q->queue_lock, flags);
197 * Function: scsi_do_req
199 * Purpose: Queue a SCSI request
201 * Arguments: sreq - command descriptor.
202 * cmnd - actual SCSI command to be performed.
203 * buffer - data buffer.
204 * bufflen - size of data buffer.
205 * done - completion function to be run.
206 * timeout - how long to let it run before timeout.
207 * retries - number of retries we allow.
209 * Lock status: No locks held upon entry.
213 * Notes: This function is only used for queueing requests for things
214 * like ioctls and character device requests - this is because
215 * we essentially just inject a request into the queue for the
218 * In order to support the scsi_device_quiesce function, we
219 * now inject requests on the *head* of the device queue
220 * rather than the tail.
222 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
223 void *buffer, unsigned bufflen,
224 void (*done)(struct scsi_cmnd *),
225 int timeout, int retries)
228 * If the upper level driver is reusing these things, then
229 * we should release the low-level block now. Another one will
230 * be allocated later when this request is getting queued.
232 __scsi_release_request(sreq);
235 * Our own function scsi_done (which marks the host as not busy,
236 * disables the timeout counter, etc) will be called by us or by the
237 * scsi_hosts[host].queuecommand() function needs to also call
238 * the completion function for the high level driver.
240 memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
241 sreq->sr_bufflen = bufflen;
242 sreq->sr_buffer = buffer;
243 sreq->sr_allowed = retries;
244 sreq->sr_done = done;
245 sreq->sr_timeout_per_command = timeout;
247 if (sreq->sr_cmd_len == 0)
248 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
251 * head injection *required* here otherwise quiesce won't work
253 scsi_insert_special_req(sreq, 1);
255 EXPORT_SYMBOL(scsi_do_req);
258 * scsi_execute - insert request and wait for the result
261 * @data_direction: data direction
262 * @buffer: data buffer
263 * @bufflen: len of buffer
264 * @sense: optional sense buffer
265 * @timeout: request timeout in seconds
266 * @retries: number of times to retry request
267 * @flags: or into request flags;
269 * returns the req->errors value which is the the scsi_cmnd result
272 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
273 int data_direction, void *buffer, unsigned bufflen,
274 unsigned char *sense, int timeout, int retries, int flags)
277 int write = (data_direction == DMA_TO_DEVICE);
278 int ret = DRIVER_ERROR << 24;
280 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
282 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
283 buffer, bufflen, __GFP_WAIT))
286 req->cmd_len = COMMAND_SIZE(cmd[0]);
287 memcpy(req->cmd, cmd, req->cmd_len);
290 req->timeout = timeout;
291 req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
294 * head injection *required* here otherwise quiesce won't work
296 blk_execute_rq(req->q, NULL, req, 1);
300 blk_put_request(req);
304 EXPORT_SYMBOL(scsi_execute);
307 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
308 int data_direction, void *buffer, unsigned bufflen,
309 struct scsi_sense_hdr *sshdr, int timeout, int retries)
315 sense = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
317 return DRIVER_ERROR << 24;
318 memset(sense, 0, SCSI_SENSE_BUFFERSIZE);
320 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
321 sense, timeout, retries, 0);
323 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
328 EXPORT_SYMBOL(scsi_execute_req);
331 * Function: scsi_init_cmd_errh()
333 * Purpose: Initialize cmd fields related to error handling.
335 * Arguments: cmd - command that is ready to be queued.
339 * Notes: This function has the job of initializing a number of
340 * fields related to error handling. Typically this will
341 * be called once for each command, as required.
343 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
345 cmd->serial_number = 0;
347 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
349 if (cmd->cmd_len == 0)
350 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
353 * We need saved copies of a number of fields - this is because
354 * error handling may need to overwrite these with different values
355 * to run different commands, and once error handling is complete,
356 * we will need to restore these values prior to running the actual
359 cmd->old_use_sg = cmd->use_sg;
360 cmd->old_cmd_len = cmd->cmd_len;
361 cmd->sc_old_data_direction = cmd->sc_data_direction;
362 cmd->old_underflow = cmd->underflow;
363 memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
364 cmd->buffer = cmd->request_buffer;
365 cmd->bufflen = cmd->request_bufflen;
371 * Function: scsi_setup_cmd_retry()
373 * Purpose: Restore the command state for a retry
375 * Arguments: cmd - command to be restored
379 * Notes: Immediately prior to retrying a command, we need
380 * to restore certain fields that we saved above.
382 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
384 memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
385 cmd->request_buffer = cmd->buffer;
386 cmd->request_bufflen = cmd->bufflen;
387 cmd->use_sg = cmd->old_use_sg;
388 cmd->cmd_len = cmd->old_cmd_len;
389 cmd->sc_data_direction = cmd->sc_old_data_direction;
390 cmd->underflow = cmd->old_underflow;
393 void scsi_device_unbusy(struct scsi_device *sdev)
395 struct Scsi_Host *shost = sdev->host;
398 spin_lock_irqsave(shost->host_lock, flags);
400 if (unlikely(scsi_host_in_recovery(shost) &&
402 scsi_eh_wakeup(shost);
403 spin_unlock(shost->host_lock);
404 spin_lock(sdev->request_queue->queue_lock);
406 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
410 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
411 * and call blk_run_queue for all the scsi_devices on the target -
412 * including current_sdev first.
414 * Called with *no* scsi locks held.
416 static void scsi_single_lun_run(struct scsi_device *current_sdev)
418 struct Scsi_Host *shost = current_sdev->host;
419 struct scsi_device *sdev, *tmp;
420 struct scsi_target *starget = scsi_target(current_sdev);
423 spin_lock_irqsave(shost->host_lock, flags);
424 starget->starget_sdev_user = NULL;
425 spin_unlock_irqrestore(shost->host_lock, flags);
428 * Call blk_run_queue for all LUNs on the target, starting with
429 * current_sdev. We race with others (to set starget_sdev_user),
430 * but in most cases, we will be first. Ideally, each LU on the
431 * target would get some limited time or requests on the target.
433 blk_run_queue(current_sdev->request_queue);
435 spin_lock_irqsave(shost->host_lock, flags);
436 if (starget->starget_sdev_user)
438 list_for_each_entry_safe(sdev, tmp, &starget->devices,
439 same_target_siblings) {
440 if (sdev == current_sdev)
442 if (scsi_device_get(sdev))
445 spin_unlock_irqrestore(shost->host_lock, flags);
446 blk_run_queue(sdev->request_queue);
447 spin_lock_irqsave(shost->host_lock, flags);
449 scsi_device_put(sdev);
452 spin_unlock_irqrestore(shost->host_lock, flags);
456 * Function: scsi_run_queue()
458 * Purpose: Select a proper request queue to serve next
460 * Arguments: q - last request's queue
464 * Notes: The previous command was completely finished, start
465 * a new one if possible.
467 static void scsi_run_queue(struct request_queue *q)
469 struct scsi_device *sdev = q->queuedata;
470 struct Scsi_Host *shost = sdev->host;
473 if (sdev->single_lun)
474 scsi_single_lun_run(sdev);
476 spin_lock_irqsave(shost->host_lock, flags);
477 while (!list_empty(&shost->starved_list) &&
478 !shost->host_blocked && !shost->host_self_blocked &&
479 !((shost->can_queue > 0) &&
480 (shost->host_busy >= shost->can_queue))) {
482 * As long as shost is accepting commands and we have
483 * starved queues, call blk_run_queue. scsi_request_fn
484 * drops the queue_lock and can add us back to the
487 * host_lock protects the starved_list and starved_entry.
488 * scsi_request_fn must get the host_lock before checking
489 * or modifying starved_list or starved_entry.
491 sdev = list_entry(shost->starved_list.next,
492 struct scsi_device, starved_entry);
493 list_del_init(&sdev->starved_entry);
494 spin_unlock_irqrestore(shost->host_lock, flags);
496 blk_run_queue(sdev->request_queue);
498 spin_lock_irqsave(shost->host_lock, flags);
499 if (unlikely(!list_empty(&sdev->starved_entry)))
501 * sdev lost a race, and was put back on the
502 * starved list. This is unlikely but without this
503 * in theory we could loop forever.
507 spin_unlock_irqrestore(shost->host_lock, flags);
513 * Function: scsi_requeue_command()
515 * Purpose: Handle post-processing of completed commands.
517 * Arguments: q - queue to operate on
518 * cmd - command that may need to be requeued.
522 * Notes: After command completion, there may be blocks left
523 * over which weren't finished by the previous command
524 * this can be for a number of reasons - the main one is
525 * I/O errors in the middle of the request, in which case
526 * we need to request the blocks that come after the bad
528 * Notes: Upon return, cmd is a stale pointer.
530 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
532 struct request *req = cmd->request;
535 scsi_unprep_request(req);
536 spin_lock_irqsave(q->queue_lock, flags);
537 blk_requeue_request(q, req);
538 spin_unlock_irqrestore(q->queue_lock, flags);
543 void scsi_next_command(struct scsi_cmnd *cmd)
545 struct scsi_device *sdev = cmd->device;
546 struct request_queue *q = sdev->request_queue;
548 /* need to hold a reference on the device before we let go of the cmd */
549 get_device(&sdev->sdev_gendev);
551 scsi_put_command(cmd);
554 /* ok to remove device now */
555 put_device(&sdev->sdev_gendev);
558 void scsi_run_host_queues(struct Scsi_Host *shost)
560 struct scsi_device *sdev;
562 shost_for_each_device(sdev, shost)
563 scsi_run_queue(sdev->request_queue);
567 * Function: scsi_end_request()
569 * Purpose: Post-processing of completed commands (usually invoked at end
570 * of upper level post-processing and scsi_io_completion).
572 * Arguments: cmd - command that is complete.
573 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
574 * bytes - number of bytes of completed I/O
575 * requeue - indicates whether we should requeue leftovers.
577 * Lock status: Assumed that lock is not held upon entry.
579 * Returns: cmd if requeue required, NULL otherwise.
581 * Notes: This is called for block device requests in order to
582 * mark some number of sectors as complete.
584 * We are guaranteeing that the request queue will be goosed
585 * at some point during this call.
586 * Notes: If cmd was requeued, upon return it will be a stale pointer.
588 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
589 int bytes, int requeue)
591 request_queue_t *q = cmd->device->request_queue;
592 struct request *req = cmd->request;
596 * If there are blocks left over at the end, set up the command
597 * to queue the remainder of them.
599 if (end_that_request_chunk(req, uptodate, bytes)) {
600 int leftover = (req->hard_nr_sectors << 9);
602 if (blk_pc_request(req))
603 leftover = req->data_len;
605 /* kill remainder if no retrys */
606 if (!uptodate && blk_noretry_request(req))
607 end_that_request_chunk(req, 0, leftover);
611 * Bleah. Leftovers again. Stick the
612 * leftovers in the front of the
613 * queue, and goose the queue again.
615 scsi_requeue_command(q, cmd);
622 add_disk_randomness(req->rq_disk);
624 spin_lock_irqsave(q->queue_lock, flags);
625 if (blk_rq_tagged(req))
626 blk_queue_end_tag(q, req);
627 end_that_request_last(req);
628 spin_unlock_irqrestore(q->queue_lock, flags);
631 * This will goose the queue request function at the end, so we don't
632 * need to worry about launching another command.
634 scsi_next_command(cmd);
638 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
640 struct scsi_host_sg_pool *sgp;
641 struct scatterlist *sgl;
643 BUG_ON(!cmd->use_sg);
645 switch (cmd->use_sg) {
655 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
659 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
663 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
674 sgp = scsi_sg_pools + cmd->sglist_len;
675 sgl = mempool_alloc(sgp->pool, gfp_mask);
679 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
681 struct scsi_host_sg_pool *sgp;
683 BUG_ON(index >= SG_MEMPOOL_NR);
685 sgp = scsi_sg_pools + index;
686 mempool_free(sgl, sgp->pool);
690 * Function: scsi_release_buffers()
692 * Purpose: Completion processing for block device I/O requests.
694 * Arguments: cmd - command that we are bailing.
696 * Lock status: Assumed that no lock is held upon entry.
700 * Notes: In the event that an upper level driver rejects a
701 * command, we must release resources allocated during
702 * the __init_io() function. Primarily this would involve
703 * the scatter-gather table, and potentially any bounce
706 static void scsi_release_buffers(struct scsi_cmnd *cmd)
708 struct request *req = cmd->request;
711 * Free up any indirection buffers we allocated for DMA purposes.
714 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
715 else if (cmd->request_buffer != req->buffer)
716 kfree(cmd->request_buffer);
719 * Zero these out. They now point to freed memory, and it is
720 * dangerous to hang onto the pointers.
724 cmd->request_buffer = NULL;
725 cmd->request_bufflen = 0;
729 * Function: scsi_io_completion()
731 * Purpose: Completion processing for block device I/O requests.
733 * Arguments: cmd - command that is finished.
735 * Lock status: Assumed that no lock is held upon entry.
739 * Notes: This function is matched in terms of capabilities to
740 * the function that created the scatter-gather list.
741 * In other words, if there are no bounce buffers
742 * (the normal case for most drivers), we don't need
743 * the logic to deal with cleaning up afterwards.
745 * We must do one of several things here:
747 * a) Call scsi_end_request. This will finish off the
748 * specified number of sectors. If we are done, the
749 * command block will be released, and the queue
750 * function will be goosed. If we are not done, then
751 * scsi_end_request will directly goose the queue.
753 * b) We can just use scsi_requeue_command() here. This would
754 * be used if we just wanted to retry, for example.
756 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
757 unsigned int block_bytes)
759 int result = cmd->result;
760 int this_count = cmd->bufflen;
761 request_queue_t *q = cmd->device->request_queue;
762 struct request *req = cmd->request;
763 int clear_errors = 1;
764 struct scsi_sense_hdr sshdr;
766 int sense_deferred = 0;
768 if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
772 * Free up any indirection buffers we allocated for DMA purposes.
773 * For the case of a READ, we need to copy the data out of the
774 * bounce buffer and into the real buffer.
777 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
778 else if (cmd->buffer != req->buffer) {
779 if (rq_data_dir(req) == READ) {
781 char *to = bio_kmap_irq(req->bio, &flags);
782 memcpy(to, cmd->buffer, cmd->bufflen);
783 bio_kunmap_irq(to, &flags);
789 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
791 sense_deferred = scsi_sense_is_deferred(&sshdr);
793 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
794 req->errors = result;
797 if (sense_valid && req->sense) {
799 * SG_IO wants current and deferred errors
801 int len = 8 + cmd->sense_buffer[7];
803 if (len > SCSI_SENSE_BUFFERSIZE)
804 len = SCSI_SENSE_BUFFERSIZE;
805 memcpy(req->sense, cmd->sense_buffer, len);
806 req->sense_len = len;
809 req->data_len = cmd->resid;
813 * Zero these out. They now point to freed memory, and it is
814 * dangerous to hang onto the pointers.
818 cmd->request_buffer = NULL;
819 cmd->request_bufflen = 0;
822 * Next deal with any sectors which we were able to correctly
825 if (good_bytes >= 0) {
826 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
827 req->nr_sectors, good_bytes));
828 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
833 * If multiple sectors are requested in one buffer, then
834 * they will have been finished off by the first command.
835 * If not, then we have a multi-buffer command.
837 * If block_bytes != 0, it means we had a medium error
838 * of some sort, and that we want to mark some number of
839 * sectors as not uptodate. Thus we want to inhibit
840 * requeueing right here - we will requeue down below
841 * when we handle the bad sectors.
845 * If the command completed without error, then either
846 * finish off the rest of the command, or start a new one.
848 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
852 * Now, if we were good little boys and girls, Santa left us a request
853 * sense buffer. We can extract information from this, so we
854 * can choose a block to remap, etc.
856 if (sense_valid && !sense_deferred) {
857 switch (sshdr.sense_key) {
859 if (cmd->device->removable) {
860 /* detected disc change. set a bit
861 * and quietly refuse further access.
863 cmd->device->changed = 1;
864 scsi_end_request(cmd, 0,
869 * Must have been a power glitch, or a
870 * bus reset. Could not have been a
871 * media change, so we just retry the
872 * request and see what happens.
874 scsi_requeue_command(q, cmd);
878 case ILLEGAL_REQUEST:
880 * If we had an ILLEGAL REQUEST returned, then we may
881 * have performed an unsupported command. The only
882 * thing this should be would be a ten byte read where
883 * only a six byte read was supported. Also, on a
884 * system where READ CAPACITY failed, we may have read
885 * past the end of the disk.
887 if (cmd->device->use_10_for_rw &&
888 (cmd->cmnd[0] == READ_10 ||
889 cmd->cmnd[0] == WRITE_10)) {
890 cmd->device->use_10_for_rw = 0;
892 * This will cause a retry with a 6-byte
895 scsi_requeue_command(q, cmd);
898 scsi_end_request(cmd, 0, this_count, 1);
904 * If the device is in the process of becoming ready,
907 if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
908 scsi_requeue_command(q, cmd);
911 if (!(req->flags & REQ_QUIET))
912 scmd_printk(KERN_INFO, cmd,
913 "Device not ready.\n");
914 scsi_end_request(cmd, 0, this_count, 1);
916 case VOLUME_OVERFLOW:
917 if (!(req->flags & REQ_QUIET)) {
918 scmd_printk(KERN_INFO, cmd,
919 "Volume overflow, CDB: ");
920 __scsi_print_command(cmd->data_cmnd);
921 scsi_print_sense("", cmd);
923 scsi_end_request(cmd, 0, block_bytes, 1);
928 } /* driver byte != 0 */
929 if (host_byte(result) == DID_RESET) {
931 * Third party bus reset or reset for error
932 * recovery reasons. Just retry the request
933 * and see what happens.
935 scsi_requeue_command(q, cmd);
939 if (!(req->flags & REQ_QUIET)) {
940 scmd_printk(KERN_INFO, cmd,
941 "SCSI error: return code = 0x%x\n", result);
943 if (driver_byte(result) & DRIVER_SENSE)
944 scsi_print_sense("", cmd);
947 * Mark a single buffer as not uptodate. Queue the remainder.
948 * We sometimes get this cruft in the event that a medium error
949 * isn't properly reported.
951 block_bytes = req->hard_cur_sectors << 9;
953 block_bytes = req->data_len;
954 scsi_end_request(cmd, 0, block_bytes, 1);
957 EXPORT_SYMBOL(scsi_io_completion);
960 * Function: scsi_init_io()
962 * Purpose: SCSI I/O initialize function.
964 * Arguments: cmd - Command descriptor we wish to initialize
966 * Returns: 0 on success
967 * BLKPREP_DEFER if the failure is retryable
968 * BLKPREP_KILL if the failure is fatal
970 static int scsi_init_io(struct scsi_cmnd *cmd)
972 struct request *req = cmd->request;
973 struct scatterlist *sgpnt;
977 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
979 if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
980 cmd->request_bufflen = req->data_len;
981 cmd->request_buffer = req->data;
982 req->buffer = req->data;
988 * we used to not use scatter-gather for single segment request,
989 * but now we do (it makes highmem I/O easier to support without
992 cmd->use_sg = req->nr_phys_segments;
995 * if sg table allocation fails, requeue request later.
997 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
998 if (unlikely(!sgpnt)) {
999 scsi_unprep_request(req);
1000 return BLKPREP_DEFER;
1003 cmd->request_buffer = (char *) sgpnt;
1004 cmd->request_bufflen = req->nr_sectors << 9;
1005 if (blk_pc_request(req))
1006 cmd->request_bufflen = req->data_len;
1010 * Next, walk the list, and fill in the addresses and sizes of
1013 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1016 * mapped well, send it off
1018 if (likely(count <= cmd->use_sg)) {
1019 cmd->use_sg = count;
1023 printk(KERN_ERR "Incorrect number of segments after building list\n");
1024 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1025 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1026 req->current_nr_sectors);
1028 /* release the command and kill it */
1029 scsi_release_buffers(cmd);
1030 scsi_put_command(cmd);
1031 return BLKPREP_KILL;
1034 static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
1036 struct scsi_device *sdev = q->queuedata;
1037 struct scsi_driver *drv;
1039 if (sdev->sdev_state == SDEV_RUNNING) {
1040 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1042 if (drv->prepare_flush)
1043 return drv->prepare_flush(q, rq);
1049 static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
1051 struct scsi_device *sdev = q->queuedata;
1052 struct request *flush_rq = rq->end_io_data;
1053 struct scsi_driver *drv;
1055 if (flush_rq->errors) {
1056 printk("scsi: barrier error, disabling flush support\n");
1057 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1060 if (sdev->sdev_state == SDEV_RUNNING) {
1061 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1062 drv->end_flush(q, rq);
1066 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1067 sector_t *error_sector)
1069 struct scsi_device *sdev = q->queuedata;
1070 struct scsi_driver *drv;
1072 if (sdev->sdev_state != SDEV_RUNNING)
1075 drv = *(struct scsi_driver **) disk->private_data;
1076 if (drv->issue_flush)
1077 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1082 static void scsi_generic_done(struct scsi_cmnd *cmd)
1084 BUG_ON(!blk_pc_request(cmd->request));
1085 scsi_io_completion(cmd, cmd->result == 0 ? cmd->bufflen : 0, 0);
1088 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1090 struct scsi_device *sdev = q->queuedata;
1091 struct scsi_cmnd *cmd;
1092 int specials_only = 0;
1095 * Just check to see if the device is online. If it isn't, we
1096 * refuse to process any commands. The device must be brought
1097 * online before trying any recovery commands
1099 if (unlikely(!scsi_device_online(sdev))) {
1100 sdev_printk(KERN_ERR, sdev,
1101 "rejecting I/O to offline device\n");
1104 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1105 /* OK, we're not in a running state don't prep
1107 if (sdev->sdev_state == SDEV_DEL) {
1108 /* Device is fully deleted, no commands
1109 * at all allowed down */
1110 sdev_printk(KERN_ERR, sdev,
1111 "rejecting I/O to dead device\n");
1114 /* OK, we only allow special commands (i.e. not
1115 * user initiated ones */
1116 specials_only = sdev->sdev_state;
1120 * Find the actual device driver associated with this command.
1121 * The SPECIAL requests are things like character device or
1122 * ioctls, which did not originate from ll_rw_blk. Note that
1123 * the special field is also used to indicate the cmd for
1124 * the remainder of a partially fulfilled request that can
1125 * come up when there is a medium error. We have to treat
1126 * these two cases differently. We differentiate by looking
1127 * at request->cmd, as this tells us the real story.
1129 if (req->flags & REQ_SPECIAL && req->special) {
1130 struct scsi_request *sreq = req->special;
1132 if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1133 cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1136 scsi_init_cmd_from_req(cmd, sreq);
1139 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1141 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1142 if(specials_only == SDEV_QUIESCE ||
1143 specials_only == SDEV_BLOCK)
1146 sdev_printk(KERN_ERR, sdev,
1147 "rejecting I/O to device being removed\n");
1153 * Now try and find a command block that we can use.
1155 if (!req->special) {
1156 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1162 /* pull a tag out of the request if we have one */
1163 cmd->tag = req->tag;
1165 blk_dump_rq_flags(req, "SCSI bad req");
1169 /* note the overloading of req->special. When the tag
1170 * is active it always means cmd. If the tag goes
1171 * back for re-queueing, it may be reset */
1176 * FIXME: drop the lock here because the functions below
1177 * expect to be called without the queue lock held. Also,
1178 * previously, we dequeued the request before dropping the
1179 * lock. We hope REQ_STARTED prevents anything untoward from
1182 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1183 struct scsi_driver *drv;
1187 * This will do a couple of things:
1188 * 1) Fill in the actual SCSI command.
1189 * 2) Fill in any other upper-level specific fields
1192 * If this returns 0, it means that the request failed
1193 * (reading past end of disk, reading offline device,
1194 * etc). This won't actually talk to the device, but
1195 * some kinds of consistency checking may cause the
1196 * request to be rejected immediately.
1200 * This sets up the scatter-gather table (allocating if
1203 ret = scsi_init_io(cmd);
1205 /* For BLKPREP_KILL/DEFER the cmd was released */
1213 * Initialize the actual SCSI command for this request.
1216 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1217 if (unlikely(!drv->init_command(cmd))) {
1218 scsi_release_buffers(cmd);
1219 scsi_put_command(cmd);
1223 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1224 cmd->cmd_len = req->cmd_len;
1225 if (rq_data_dir(req) == WRITE)
1226 cmd->sc_data_direction = DMA_TO_DEVICE;
1227 else if (req->data_len)
1228 cmd->sc_data_direction = DMA_FROM_DEVICE;
1230 cmd->sc_data_direction = DMA_NONE;
1232 cmd->transfersize = req->data_len;
1234 cmd->timeout_per_command = req->timeout;
1235 cmd->done = scsi_generic_done;
1240 * The request is now prepped, no need to come back here
1242 req->flags |= REQ_DONTPREP;
1246 /* If we defer, the elv_next_request() returns NULL, but the
1247 * queue must be restarted, so we plug here if no returning
1248 * command will automatically do that. */
1249 if (sdev->device_busy == 0)
1251 return BLKPREP_DEFER;
1253 req->errors = DID_NO_CONNECT << 16;
1254 return BLKPREP_KILL;
1258 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1261 * Called with the queue_lock held.
1263 static inline int scsi_dev_queue_ready(struct request_queue *q,
1264 struct scsi_device *sdev)
1266 if (sdev->device_busy >= sdev->queue_depth)
1268 if (sdev->device_busy == 0 && sdev->device_blocked) {
1270 * unblock after device_blocked iterates to zero
1272 if (--sdev->device_blocked == 0) {
1274 sdev_printk(KERN_INFO, sdev,
1275 "unblocking device at zero depth\n"));
1281 if (sdev->device_blocked)
1288 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1289 * return 0. We must end up running the queue again whenever 0 is
1290 * returned, else IO can hang.
1292 * Called with host_lock held.
1294 static inline int scsi_host_queue_ready(struct request_queue *q,
1295 struct Scsi_Host *shost,
1296 struct scsi_device *sdev)
1298 if (scsi_host_in_recovery(shost))
1300 if (shost->host_busy == 0 && shost->host_blocked) {
1302 * unblock after host_blocked iterates to zero
1304 if (--shost->host_blocked == 0) {
1306 printk("scsi%d unblocking host at zero depth\n",
1313 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1314 shost->host_blocked || shost->host_self_blocked) {
1315 if (list_empty(&sdev->starved_entry))
1316 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1320 /* We're OK to process the command, so we can't be starved */
1321 if (!list_empty(&sdev->starved_entry))
1322 list_del_init(&sdev->starved_entry);
1328 * Kill a request for a dead device
1330 static void scsi_kill_request(struct request *req, request_queue_t *q)
1332 struct scsi_cmnd *cmd = req->special;
1334 blkdev_dequeue_request(req);
1336 if (unlikely(cmd == NULL)) {
1337 printk(KERN_CRIT "impossible request in %s.\n",
1342 scsi_init_cmd_errh(cmd);
1343 cmd->result = DID_NO_CONNECT << 16;
1344 atomic_inc(&cmd->device->iorequest_cnt);
1349 * Function: scsi_request_fn()
1351 * Purpose: Main strategy routine for SCSI.
1353 * Arguments: q - Pointer to actual queue.
1357 * Lock status: IO request lock assumed to be held when called.
1359 static void scsi_request_fn(struct request_queue *q)
1361 struct scsi_device *sdev = q->queuedata;
1362 struct Scsi_Host *shost;
1363 struct scsi_cmnd *cmd;
1364 struct request *req;
1367 printk("scsi: killing requests for dead queue\n");
1368 while ((req = elv_next_request(q)) != NULL)
1369 scsi_kill_request(req, q);
1373 if(!get_device(&sdev->sdev_gendev))
1374 /* We must be tearing the block queue down already */
1378 * To start with, we keep looping until the queue is empty, or until
1379 * the host is no longer able to accept any more requests.
1382 while (!blk_queue_plugged(q)) {
1385 * get next queueable request. We do this early to make sure
1386 * that the request is fully prepared even if we cannot
1389 req = elv_next_request(q);
1390 if (!req || !scsi_dev_queue_ready(q, sdev))
1393 if (unlikely(!scsi_device_online(sdev))) {
1394 sdev_printk(KERN_ERR, sdev,
1395 "rejecting I/O to offline device\n");
1396 scsi_kill_request(req, q);
1402 * Remove the request from the request list.
1404 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1405 blkdev_dequeue_request(req);
1406 sdev->device_busy++;
1408 spin_unlock(q->queue_lock);
1410 if (unlikely(cmd == NULL)) {
1411 printk(KERN_CRIT "impossible request in %s.\n"
1412 "please mail a stack trace to "
1413 "linux-scsi@vger.kernel.org",
1417 spin_lock(shost->host_lock);
1419 if (!scsi_host_queue_ready(q, shost, sdev))
1421 if (sdev->single_lun) {
1422 if (scsi_target(sdev)->starget_sdev_user &&
1423 scsi_target(sdev)->starget_sdev_user != sdev)
1425 scsi_target(sdev)->starget_sdev_user = sdev;
1430 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1431 * take the lock again.
1433 spin_unlock_irq(shost->host_lock);
1436 * Finally, initialize any error handling parameters, and set up
1437 * the timers for timeouts.
1439 scsi_init_cmd_errh(cmd);
1442 * Dispatch the command to the low-level driver.
1444 rtn = scsi_dispatch_cmd(cmd);
1445 spin_lock_irq(q->queue_lock);
1447 /* we're refusing the command; because of
1448 * the way locks get dropped, we need to
1449 * check here if plugging is required */
1450 if(sdev->device_busy == 0)
1460 spin_unlock_irq(shost->host_lock);
1463 * lock q, handle tag, requeue req, and decrement device_busy. We
1464 * must return with queue_lock held.
1466 * Decrementing device_busy without checking it is OK, as all such
1467 * cases (host limits or settings) should run the queue at some
1470 spin_lock_irq(q->queue_lock);
1471 blk_requeue_request(q, req);
1472 sdev->device_busy--;
1473 if(sdev->device_busy == 0)
1476 /* must be careful here...if we trigger the ->remove() function
1477 * we cannot be holding the q lock */
1478 spin_unlock_irq(q->queue_lock);
1479 put_device(&sdev->sdev_gendev);
1480 spin_lock_irq(q->queue_lock);
1483 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1485 struct device *host_dev;
1486 u64 bounce_limit = 0xffffffff;
1488 if (shost->unchecked_isa_dma)
1489 return BLK_BOUNCE_ISA;
1491 * Platforms with virtual-DMA translation
1492 * hardware have no practical limit.
1494 if (!PCI_DMA_BUS_IS_PHYS)
1495 return BLK_BOUNCE_ANY;
1497 host_dev = scsi_get_device(shost);
1498 if (host_dev && host_dev->dma_mask)
1499 bounce_limit = *host_dev->dma_mask;
1501 return bounce_limit;
1503 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1505 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1507 struct Scsi_Host *shost = sdev->host;
1508 struct request_queue *q;
1510 q = blk_init_queue(scsi_request_fn, NULL);
1514 blk_queue_prep_rq(q, scsi_prep_fn);
1516 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1517 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1518 blk_queue_max_sectors(q, shost->max_sectors);
1519 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1520 blk_queue_segment_boundary(q, shost->dma_boundary);
1521 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1524 * ordered tags are superior to flush ordering
1526 if (shost->ordered_tag)
1527 blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1528 else if (shost->ordered_flush) {
1529 blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1530 q->prepare_flush_fn = scsi_prepare_flush_fn;
1531 q->end_flush_fn = scsi_end_flush_fn;
1534 if (!shost->use_clustering)
1535 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1539 void scsi_free_queue(struct request_queue *q)
1541 blk_cleanup_queue(q);
1545 * Function: scsi_block_requests()
1547 * Purpose: Utility function used by low-level drivers to prevent further
1548 * commands from being queued to the device.
1550 * Arguments: shost - Host in question
1554 * Lock status: No locks are assumed held.
1556 * Notes: There is no timer nor any other means by which the requests
1557 * get unblocked other than the low-level driver calling
1558 * scsi_unblock_requests().
1560 void scsi_block_requests(struct Scsi_Host *shost)
1562 shost->host_self_blocked = 1;
1564 EXPORT_SYMBOL(scsi_block_requests);
1567 * Function: scsi_unblock_requests()
1569 * Purpose: Utility function used by low-level drivers to allow further
1570 * commands from being queued to the device.
1572 * Arguments: shost - Host in question
1576 * Lock status: No locks are assumed held.
1578 * Notes: There is no timer nor any other means by which the requests
1579 * get unblocked other than the low-level driver calling
1580 * scsi_unblock_requests().
1582 * This is done as an API function so that changes to the
1583 * internals of the scsi mid-layer won't require wholesale
1584 * changes to drivers that use this feature.
1586 void scsi_unblock_requests(struct Scsi_Host *shost)
1588 shost->host_self_blocked = 0;
1589 scsi_run_host_queues(shost);
1591 EXPORT_SYMBOL(scsi_unblock_requests);
1593 int __init scsi_init_queue(void)
1597 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1598 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1599 int size = sgp->size * sizeof(struct scatterlist);
1601 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1602 SLAB_HWCACHE_ALIGN, NULL, NULL);
1604 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1608 sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1609 mempool_alloc_slab, mempool_free_slab,
1612 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1620 void scsi_exit_queue(void)
1624 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1625 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1626 mempool_destroy(sgp->pool);
1627 kmem_cache_destroy(sgp->slab);
1631 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1632 * six bytes if necessary.
1633 * @sdev: SCSI device to be queried
1634 * @dbd: set if mode sense will allow block descriptors to be returned
1635 * @modepage: mode page being requested
1636 * @buffer: request buffer (may not be smaller than eight bytes)
1637 * @len: length of request buffer.
1638 * @timeout: command timeout
1639 * @retries: number of retries before failing
1640 * @data: returns a structure abstracting the mode header data
1641 * @sense: place to put sense data (or NULL if no sense to be collected).
1642 * must be SCSI_SENSE_BUFFERSIZE big.
1644 * Returns zero if unsuccessful, or the header offset (either 4
1645 * or 8 depending on whether a six or ten byte command was
1646 * issued) if successful.
1649 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1650 unsigned char *buffer, int len, int timeout, int retries,
1651 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) {
1652 unsigned char cmd[12];
1656 struct scsi_sense_hdr my_sshdr;
1658 memset(data, 0, sizeof(*data));
1659 memset(&cmd[0], 0, 12);
1660 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1663 /* caller might not be interested in sense, but we need it */
1668 use_10_for_ms = sdev->use_10_for_ms;
1670 if (use_10_for_ms) {
1674 cmd[0] = MODE_SENSE_10;
1681 cmd[0] = MODE_SENSE;
1686 memset(buffer, 0, len);
1688 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1689 sshdr, timeout, retries);
1691 /* This code looks awful: what it's doing is making sure an
1692 * ILLEGAL REQUEST sense return identifies the actual command
1693 * byte as the problem. MODE_SENSE commands can return
1694 * ILLEGAL REQUEST if the code page isn't supported */
1696 if (use_10_for_ms && !scsi_status_is_good(result) &&
1697 (driver_byte(result) & DRIVER_SENSE)) {
1698 if (scsi_sense_valid(sshdr)) {
1699 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1700 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1702 * Invalid command operation code
1704 sdev->use_10_for_ms = 0;
1710 if(scsi_status_is_good(result)) {
1711 data->header_length = header_length;
1713 data->length = buffer[0]*256 + buffer[1] + 2;
1714 data->medium_type = buffer[2];
1715 data->device_specific = buffer[3];
1716 data->longlba = buffer[4] & 0x01;
1717 data->block_descriptor_length = buffer[6]*256
1720 data->length = buffer[0] + 1;
1721 data->medium_type = buffer[1];
1722 data->device_specific = buffer[2];
1723 data->block_descriptor_length = buffer[3];
1729 EXPORT_SYMBOL(scsi_mode_sense);
1732 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1735 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1737 struct scsi_sense_hdr sshdr;
1740 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1743 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1745 if ((scsi_sense_valid(&sshdr)) &&
1746 ((sshdr.sense_key == UNIT_ATTENTION) ||
1747 (sshdr.sense_key == NOT_READY))) {
1754 EXPORT_SYMBOL(scsi_test_unit_ready);
1757 * scsi_device_set_state - Take the given device through the device
1759 * @sdev: scsi device to change the state of.
1760 * @state: state to change to.
1762 * Returns zero if unsuccessful or an error if the requested
1763 * transition is illegal.
1766 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1768 enum scsi_device_state oldstate = sdev->sdev_state;
1770 if (state == oldstate)
1775 /* There are no legal states that come back to
1776 * created. This is the manually initialised start
1846 sdev->sdev_state = state;
1850 SCSI_LOG_ERROR_RECOVERY(1,
1851 sdev_printk(KERN_ERR, sdev,
1852 "Illegal state transition %s->%s\n",
1853 scsi_device_state_name(oldstate),
1854 scsi_device_state_name(state))
1858 EXPORT_SYMBOL(scsi_device_set_state);
1861 * scsi_device_quiesce - Block user issued commands.
1862 * @sdev: scsi device to quiesce.
1864 * This works by trying to transition to the SDEV_QUIESCE state
1865 * (which must be a legal transition). When the device is in this
1866 * state, only special requests will be accepted, all others will
1867 * be deferred. Since special requests may also be requeued requests,
1868 * a successful return doesn't guarantee the device will be
1869 * totally quiescent.
1871 * Must be called with user context, may sleep.
1873 * Returns zero if unsuccessful or an error if not.
1876 scsi_device_quiesce(struct scsi_device *sdev)
1878 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1882 scsi_run_queue(sdev->request_queue);
1883 while (sdev->device_busy) {
1884 msleep_interruptible(200);
1885 scsi_run_queue(sdev->request_queue);
1889 EXPORT_SYMBOL(scsi_device_quiesce);
1892 * scsi_device_resume - Restart user issued commands to a quiesced device.
1893 * @sdev: scsi device to resume.
1895 * Moves the device from quiesced back to running and restarts the
1898 * Must be called with user context, may sleep.
1901 scsi_device_resume(struct scsi_device *sdev)
1903 if(scsi_device_set_state(sdev, SDEV_RUNNING))
1905 scsi_run_queue(sdev->request_queue);
1907 EXPORT_SYMBOL(scsi_device_resume);
1910 device_quiesce_fn(struct scsi_device *sdev, void *data)
1912 scsi_device_quiesce(sdev);
1916 scsi_target_quiesce(struct scsi_target *starget)
1918 starget_for_each_device(starget, NULL, device_quiesce_fn);
1920 EXPORT_SYMBOL(scsi_target_quiesce);
1923 device_resume_fn(struct scsi_device *sdev, void *data)
1925 scsi_device_resume(sdev);
1929 scsi_target_resume(struct scsi_target *starget)
1931 starget_for_each_device(starget, NULL, device_resume_fn);
1933 EXPORT_SYMBOL(scsi_target_resume);
1936 * scsi_internal_device_block - internal function to put a device
1937 * temporarily into the SDEV_BLOCK state
1938 * @sdev: device to block
1940 * Block request made by scsi lld's to temporarily stop all
1941 * scsi commands on the specified device. Called from interrupt
1942 * or normal process context.
1944 * Returns zero if successful or error if not
1947 * This routine transitions the device to the SDEV_BLOCK state
1948 * (which must be a legal transition). When the device is in this
1949 * state, all commands are deferred until the scsi lld reenables
1950 * the device with scsi_device_unblock or device_block_tmo fires.
1951 * This routine assumes the host_lock is held on entry.
1954 scsi_internal_device_block(struct scsi_device *sdev)
1956 request_queue_t *q = sdev->request_queue;
1957 unsigned long flags;
1960 err = scsi_device_set_state(sdev, SDEV_BLOCK);
1965 * The device has transitioned to SDEV_BLOCK. Stop the
1966 * block layer from calling the midlayer with this device's
1969 spin_lock_irqsave(q->queue_lock, flags);
1971 spin_unlock_irqrestore(q->queue_lock, flags);
1975 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1978 * scsi_internal_device_unblock - resume a device after a block request
1979 * @sdev: device to resume
1981 * Called by scsi lld's or the midlayer to restart the device queue
1982 * for the previously suspended scsi device. Called from interrupt or
1983 * normal process context.
1985 * Returns zero if successful or error if not.
1988 * This routine transitions the device to the SDEV_RUNNING state
1989 * (which must be a legal transition) allowing the midlayer to
1990 * goose the queue for this device. This routine assumes the
1991 * host_lock is held upon entry.
1994 scsi_internal_device_unblock(struct scsi_device *sdev)
1996 request_queue_t *q = sdev->request_queue;
1998 unsigned long flags;
2001 * Try to transition the scsi device to SDEV_RUNNING
2002 * and goose the device queue if successful.
2004 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2008 spin_lock_irqsave(q->queue_lock, flags);
2010 spin_unlock_irqrestore(q->queue_lock, flags);
2014 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2017 device_block(struct scsi_device *sdev, void *data)
2019 scsi_internal_device_block(sdev);
2023 target_block(struct device *dev, void *data)
2025 if (scsi_is_target_device(dev))
2026 starget_for_each_device(to_scsi_target(dev), NULL,
2032 scsi_target_block(struct device *dev)
2034 if (scsi_is_target_device(dev))
2035 starget_for_each_device(to_scsi_target(dev), NULL,
2038 device_for_each_child(dev, NULL, target_block);
2040 EXPORT_SYMBOL_GPL(scsi_target_block);
2043 device_unblock(struct scsi_device *sdev, void *data)
2045 scsi_internal_device_unblock(sdev);
2049 target_unblock(struct device *dev, void *data)
2051 if (scsi_is_target_device(dev))
2052 starget_for_each_device(to_scsi_target(dev), NULL,
2058 scsi_target_unblock(struct device *dev)
2060 if (scsi_is_target_device(dev))
2061 starget_for_each_device(to_scsi_target(dev), NULL,
2064 device_for_each_child(dev, NULL, target_unblock);
2066 EXPORT_SYMBOL_GPL(scsi_target_unblock);