2 * PowerPC memory management structures
4 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
16 #include <linux/config.h>
23 #define STE_ESID_V 0x80
24 #define STE_ESID_KS 0x20
25 #define STE_ESID_KP 0x10
26 #define STE_ESID_N 0x08
28 #define STE_VSID_SHIFT 12
30 /* Location of cpu0's segment table */
31 #define STAB0_PAGE 0x9
32 #define STAB0_PHYS_ADDR (STAB0_PAGE<<PAGE_SHIFT)
33 #define STAB0_VIRT_ADDR (KERNELBASE+STAB0_PHYS_ADDR)
39 #define SLB_NUM_BOLTED 3
40 #define SLB_CACHE_ENTRIES 8
42 /* Bits in the SLB ESID word */
43 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
45 /* Bits in the SLB VSID word */
46 #define SLB_VSID_SHIFT 12
47 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
48 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
49 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
50 #define SLB_VSID_L ASM_CONST(0x0000000000000100) /* largepage */
51 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
52 #define SLB_VSID_LS ASM_CONST(0x0000000000000070) /* size of largepage */
54 #define SLB_VSID_KERNEL (SLB_VSID_KP|SLB_VSID_C)
55 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS)
61 #define HPTES_PER_GROUP 8
63 #define HPTE_V_AVPN_SHIFT 7
64 #define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80)
65 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
66 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
67 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
68 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
69 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
70 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
72 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
73 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
74 #define HPTE_R_RPN_SHIFT 12
75 #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
76 #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
77 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
79 /* Values for PP (assumes Ks=0, Kp=1) */
80 /* pp0 will always be 0 for linux */
81 #define PP_RWXX 0 /* Supervisor read/write, User none */
82 #define PP_RWRX 1 /* Supervisor read/write, User read */
83 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
84 #define PP_RXRX 3 /* Supervisor read, User read */
93 extern hpte_t *htab_address;
94 extern unsigned long htab_hash_mask;
96 static inline unsigned long hpt_hash(unsigned long vpn, int large)
109 return (vsid & 0x7fffffffffUL) ^ page;
112 static inline void __tlbie(unsigned long va, int large)
114 /* clear top 16 bits, non SLS segment */
115 va &= ~(0xffffULL << 48);
119 asm volatile("tlbie %0,1" : : "r"(va) : "memory");
122 asm volatile("tlbie %0,0" : : "r"(va) : "memory");
126 static inline void tlbie(unsigned long va, int large)
128 asm volatile("ptesync": : :"memory");
130 asm volatile("eieio; tlbsync; ptesync": : :"memory");
133 static inline void __tlbiel(unsigned long va)
135 /* clear top 16 bits, non SLS segment */
136 va &= ~(0xffffULL << 48);
140 * Thanks to Alan Modra we are now able to use machine specific
141 * assembly instructions (like tlbiel) by using the gas -many flag.
142 * However we have to support older toolchains so for the moment
146 asm volatile("tlbiel %0" : : "r"(va) : "memory");
148 asm volatile(".long 0x7c000224 | (%0 << 11)" : : "r"(va) : "memory");
152 static inline void tlbiel(unsigned long va)
154 asm volatile("ptesync": : :"memory");
156 asm volatile("ptesync": : :"memory");
159 static inline unsigned long slot2va(unsigned long hpte_v, unsigned long slot)
161 unsigned long avpn = HPTE_V_AVPN_VAL(hpte_v);
166 if (! (hpte_v & HPTE_V_LARGE)) {
167 unsigned long vpi, pteg;
169 pteg = slot / HPTES_PER_GROUP;
170 if (hpte_v & HPTE_V_SECONDARY)
173 vpi = ((va >> 28) ^ pteg) & htab_hash_mask;
175 va |= vpi << PAGE_SHIFT;
182 * Handle a fault by adding an HPTE. If the address can't be determined
183 * to be valid via Linux page tables, return 1. If handled return 0
185 extern int __hash_page(unsigned long ea, unsigned long access,
186 unsigned long vsid, pte_t *ptep, unsigned long trap,
189 extern void htab_finish_init(void);
191 extern void hpte_init_native(void);
192 extern void hpte_init_lpar(void);
193 extern void hpte_init_iSeries(void);
195 extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
196 unsigned long va, unsigned long prpn,
197 unsigned long vflags,
198 unsigned long rflags);
199 extern long native_hpte_insert(unsigned long hpte_group, unsigned long va,
201 unsigned long vflags, unsigned long rflags);
203 extern void stabs_alloc(void);
205 #endif /* __ASSEMBLY__ */
210 * We first generate a 36-bit "proto-VSID". For kernel addresses this
211 * is equal to the ESID, for user addresses it is:
212 * (context << 15) | (esid & 0x7fff)
214 * The two forms are distinguishable because the top bit is 0 for user
215 * addresses, whereas the top two bits are 1 for kernel addresses.
216 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
219 * The proto-VSIDs are then scrambled into real VSIDs with the
220 * multiplicative hash:
222 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
223 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
224 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
226 * This scramble is only well defined for proto-VSIDs below
227 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
228 * reserved. VSID_MULTIPLIER is prime, so in particular it is
229 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
230 * Because the modulus is 2^n-1 we can compute it efficiently without
231 * a divide or extra multiply (see below).
233 * This scheme has several advantages over older methods:
235 * - We have VSIDs allocated for every kernel address
236 * (i.e. everything above 0xC000000000000000), except the very top
237 * segment, which simplifies several things.
239 * - We allow for 15 significant bits of ESID and 20 bits of
240 * context for user addresses. i.e. 8T (43 bits) of address space for
241 * up to 1M contexts (although the page table structure and context
242 * allocation will need changes to take advantage of this).
244 * - The scramble function gives robust scattering in the hash
245 * table (at least based on some initial results). The previous
246 * method was more susceptible to pathological cases giving excessive
250 * WARNING - If you change these you must make sure the asm
251 * implementations in slb_allocate (slb_low.S), do_stab_bolted
252 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
254 * You'll also need to change the precomputed VSID values in head.S
255 * which are used by the iSeries firmware.
258 #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
260 #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
262 #define CONTEXT_BITS 20
263 #define USER_ESID_BITS 15
266 * This macro generates asm code to compute the VSID scramble
267 * function. Used in slb_allocate() and do_stab_bolted. The function
268 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
270 * rt = register continaing the proto-VSID and into which the
271 * VSID will be stored
272 * rx = scratch register (clobbered)
274 * - rt and rx must be different registers
275 * - The answer will end up in the low 36 bits of rt. The higher
276 * bits may contain other garbage, so you may need to mask the
279 #define ASM_VSID_SCRAMBLE(rt, rx) \
280 lis rx,VSID_MULTIPLIER@h; \
281 ori rx,rx,VSID_MULTIPLIER@l; \
282 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
284 srdi rx,rt,VSID_BITS; \
285 clrldi rt,rt,(64-VSID_BITS); \
286 add rt,rt,rx; /* add high and low bits */ \
287 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
288 * 2^36-1+2^28-1. That in particular means that if r3 >= \
289 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
290 * the bit clear, r3 already has the answer we want, if it \
291 * doesn't, the answer is the low 36 bits of r3+1. So in all \
292 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
294 srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
300 typedef unsigned long mm_context_id_t;
304 #ifdef CONFIG_HUGETLB_PAGE
306 u16 htlb_segs; /* bitmask */
311 static inline unsigned long vsid_scramble(unsigned long protovsid)
314 /* The code below is equivalent to this function for arguments
315 * < 2^VSID_BITS, which is all this should ever be called
316 * with. However gcc is not clever enough to compute the
317 * modulus (2^n-1) without a second multiply. */
318 return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
322 x = protovsid * VSID_MULTIPLIER;
323 x = (x >> VSID_BITS) + (x & VSID_MODULUS);
324 return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
328 /* This is only valid for addresses >= KERNELBASE */
329 static inline unsigned long get_kernel_vsid(unsigned long ea)
331 return vsid_scramble(ea >> SID_SHIFT);
334 /* This is only valid for user addresses (which are below 2^41) */
335 static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
337 return vsid_scramble((context << USER_ESID_BITS)
338 | (ea >> SID_SHIFT));
341 #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
342 #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
344 #endif /* __ASSEMBLY */
346 #endif /* _PPC64_MMU_H_ */