2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
43 #include <linux/interrupt.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
59 #include <net/protocol.h>
62 #include <net/checksum.h>
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
74 struct pipe_buffer *buf)
79 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
80 struct pipe_buffer *buf)
85 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
92 /* Pipe buffer operations for a socket. */
93 static struct pipe_buf_operations sock_pipe_buf_ops = {
95 .map = generic_pipe_buf_map,
96 .unmap = generic_pipe_buf_unmap,
97 .confirm = generic_pipe_buf_confirm,
98 .release = sock_pipe_buf_release,
99 .steal = sock_pipe_buf_steal,
100 .get = sock_pipe_buf_get,
104 * Keep out-of-line to prevent kernel bloat.
105 * __builtin_return_address is not used because it is not always
110 * skb_over_panic - private function
115 * Out of line support code for skb_put(). Not user callable.
117 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
119 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
120 "data:%p tail:%#lx end:%#lx dev:%s\n",
121 here, skb->len, sz, skb->head, skb->data,
122 (unsigned long)skb->tail, (unsigned long)skb->end,
123 skb->dev ? skb->dev->name : "<NULL>");
128 * skb_under_panic - private function
133 * Out of line support code for skb_push(). Not user callable.
136 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
138 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
139 "data:%p tail:%#lx end:%#lx dev:%s\n",
140 here, skb->len, sz, skb->head, skb->data,
141 (unsigned long)skb->tail, (unsigned long)skb->end,
142 skb->dev ? skb->dev->name : "<NULL>");
146 void skb_truesize_bug(struct sk_buff *skb)
148 WARN(net_ratelimit(), KERN_ERR "SKB BUG: Invalid truesize (%u) "
149 "len=%u, sizeof(sk_buff)=%Zd\n",
150 skb->truesize, skb->len, sizeof(struct sk_buff));
152 EXPORT_SYMBOL(skb_truesize_bug);
154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
161 * __alloc_skb - allocate a network buffer
162 * @size: size to allocate
163 * @gfp_mask: allocation mask
164 * @fclone: allocate from fclone cache instead of head cache
165 * and allocate a cloned (child) skb
166 * @node: numa node to allocate memory on
168 * Allocate a new &sk_buff. The returned buffer has no headroom and a
169 * tail room of size bytes. The object has a reference count of one.
170 * The return is the buffer. On a failure the return is %NULL.
172 * Buffers may only be allocated from interrupts using a @gfp_mask of
175 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
176 int fclone, int node)
178 struct kmem_cache *cache;
179 struct skb_shared_info *shinfo;
183 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
186 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
190 size = SKB_DATA_ALIGN(size);
191 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
197 * Only clear those fields we need to clear, not those that we will
198 * actually initialise below. Hence, don't put any more fields after
199 * the tail pointer in struct sk_buff!
201 memset(skb, 0, offsetof(struct sk_buff, tail));
202 skb->truesize = size + sizeof(struct sk_buff);
203 atomic_set(&skb->users, 1);
206 skb_reset_tail_pointer(skb);
207 skb->end = skb->tail + size;
208 /* make sure we initialize shinfo sequentially */
209 shinfo = skb_shinfo(skb);
210 atomic_set(&shinfo->dataref, 1);
211 shinfo->nr_frags = 0;
212 shinfo->gso_size = 0;
213 shinfo->gso_segs = 0;
214 shinfo->gso_type = 0;
215 shinfo->ip6_frag_id = 0;
216 shinfo->frag_list = NULL;
219 struct sk_buff *child = skb + 1;
220 atomic_t *fclone_ref = (atomic_t *) (child + 1);
222 skb->fclone = SKB_FCLONE_ORIG;
223 atomic_set(fclone_ref, 1);
225 child->fclone = SKB_FCLONE_UNAVAILABLE;
230 kmem_cache_free(cache, skb);
236 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
237 * @dev: network device to receive on
238 * @length: length to allocate
239 * @gfp_mask: get_free_pages mask, passed to alloc_skb
241 * Allocate a new &sk_buff and assign it a usage count of one. The
242 * buffer has unspecified headroom built in. Users should allocate
243 * the headroom they think they need without accounting for the
244 * built in space. The built in space is used for optimisations.
246 * %NULL is returned if there is no free memory.
248 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
249 unsigned int length, gfp_t gfp_mask)
251 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
254 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
256 skb_reserve(skb, NET_SKB_PAD);
262 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
264 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
267 page = alloc_pages_node(node, gfp_mask, 0);
270 EXPORT_SYMBOL(__netdev_alloc_page);
272 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
275 skb_fill_page_desc(skb, i, page, off, size);
277 skb->data_len += size;
278 skb->truesize += size;
280 EXPORT_SYMBOL(skb_add_rx_frag);
283 * dev_alloc_skb - allocate an skbuff for receiving
284 * @length: length to allocate
286 * Allocate a new &sk_buff and assign it a usage count of one. The
287 * buffer has unspecified headroom built in. Users should allocate
288 * the headroom they think they need without accounting for the
289 * built in space. The built in space is used for optimisations.
291 * %NULL is returned if there is no free memory. Although this function
292 * allocates memory it can be called from an interrupt.
294 struct sk_buff *dev_alloc_skb(unsigned int length)
297 * There is more code here than it seems:
298 * __dev_alloc_skb is an inline
300 return __dev_alloc_skb(length, GFP_ATOMIC);
302 EXPORT_SYMBOL(dev_alloc_skb);
304 static void skb_drop_list(struct sk_buff **listp)
306 struct sk_buff *list = *listp;
311 struct sk_buff *this = list;
317 static inline void skb_drop_fraglist(struct sk_buff *skb)
319 skb_drop_list(&skb_shinfo(skb)->frag_list);
322 static void skb_clone_fraglist(struct sk_buff *skb)
324 struct sk_buff *list;
326 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
330 static void skb_release_data(struct sk_buff *skb)
333 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
334 &skb_shinfo(skb)->dataref)) {
335 if (skb_shinfo(skb)->nr_frags) {
337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
338 put_page(skb_shinfo(skb)->frags[i].page);
341 if (skb_shinfo(skb)->frag_list)
342 skb_drop_fraglist(skb);
349 * Free an skbuff by memory without cleaning the state.
351 static void kfree_skbmem(struct sk_buff *skb)
353 struct sk_buff *other;
354 atomic_t *fclone_ref;
356 switch (skb->fclone) {
357 case SKB_FCLONE_UNAVAILABLE:
358 kmem_cache_free(skbuff_head_cache, skb);
361 case SKB_FCLONE_ORIG:
362 fclone_ref = (atomic_t *) (skb + 2);
363 if (atomic_dec_and_test(fclone_ref))
364 kmem_cache_free(skbuff_fclone_cache, skb);
367 case SKB_FCLONE_CLONE:
368 fclone_ref = (atomic_t *) (skb + 1);
371 /* The clone portion is available for
372 * fast-cloning again.
374 skb->fclone = SKB_FCLONE_UNAVAILABLE;
376 if (atomic_dec_and_test(fclone_ref))
377 kmem_cache_free(skbuff_fclone_cache, other);
382 static void skb_release_head_state(struct sk_buff *skb)
384 dst_release(skb->dst);
386 secpath_put(skb->sp);
388 if (skb->destructor) {
390 skb->destructor(skb);
392 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
393 nf_conntrack_put(skb->nfct);
394 nf_conntrack_put_reasm(skb->nfct_reasm);
396 #ifdef CONFIG_BRIDGE_NETFILTER
397 nf_bridge_put(skb->nf_bridge);
399 /* XXX: IS this still necessary? - JHS */
400 #ifdef CONFIG_NET_SCHED
402 #ifdef CONFIG_NET_CLS_ACT
408 /* Free everything but the sk_buff shell. */
409 static void skb_release_all(struct sk_buff *skb)
411 skb_release_head_state(skb);
412 skb_release_data(skb);
416 * __kfree_skb - private function
419 * Free an sk_buff. Release anything attached to the buffer.
420 * Clean the state. This is an internal helper function. Users should
421 * always call kfree_skb
424 void __kfree_skb(struct sk_buff *skb)
426 skb_release_all(skb);
431 * kfree_skb - free an sk_buff
432 * @skb: buffer to free
434 * Drop a reference to the buffer and free it if the usage count has
437 void kfree_skb(struct sk_buff *skb)
441 if (likely(atomic_read(&skb->users) == 1))
443 else if (likely(!atomic_dec_and_test(&skb->users)))
449 * skb_recycle_check - check if skb can be reused for receive
451 * @skb_size: minimum receive buffer size
453 * Checks that the skb passed in is not shared or cloned, and
454 * that it is linear and its head portion at least as large as
455 * skb_size so that it can be recycled as a receive buffer.
456 * If these conditions are met, this function does any necessary
457 * reference count dropping and cleans up the skbuff as if it
458 * just came from __alloc_skb().
460 int skb_recycle_check(struct sk_buff *skb, int skb_size)
462 struct skb_shared_info *shinfo;
464 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
467 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
468 if (skb_end_pointer(skb) - skb->head < skb_size)
471 if (skb_shared(skb) || skb_cloned(skb))
474 skb_release_head_state(skb);
475 shinfo = skb_shinfo(skb);
476 atomic_set(&shinfo->dataref, 1);
477 shinfo->nr_frags = 0;
478 shinfo->gso_size = 0;
479 shinfo->gso_segs = 0;
480 shinfo->gso_type = 0;
481 shinfo->ip6_frag_id = 0;
482 shinfo->frag_list = NULL;
484 memset(skb, 0, offsetof(struct sk_buff, tail));
485 skb->data = skb->head + NET_SKB_PAD;
486 skb_reset_tail_pointer(skb);
490 EXPORT_SYMBOL(skb_recycle_check);
492 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
494 new->tstamp = old->tstamp;
496 new->transport_header = old->transport_header;
497 new->network_header = old->network_header;
498 new->mac_header = old->mac_header;
499 new->dst = dst_clone(old->dst);
501 new->sp = secpath_get(old->sp);
503 memcpy(new->cb, old->cb, sizeof(old->cb));
504 new->csum_start = old->csum_start;
505 new->csum_offset = old->csum_offset;
506 new->local_df = old->local_df;
507 new->pkt_type = old->pkt_type;
508 new->ip_summed = old->ip_summed;
509 skb_copy_queue_mapping(new, old);
510 new->priority = old->priority;
511 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
512 new->ipvs_property = old->ipvs_property;
514 new->protocol = old->protocol;
515 new->mark = old->mark;
517 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
518 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
519 new->nf_trace = old->nf_trace;
521 #ifdef CONFIG_NET_SCHED
522 new->tc_index = old->tc_index;
523 #ifdef CONFIG_NET_CLS_ACT
524 new->tc_verd = old->tc_verd;
527 new->vlan_tci = old->vlan_tci;
529 skb_copy_secmark(new, old);
532 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
534 #define C(x) n->x = skb->x
536 n->next = n->prev = NULL;
538 __copy_skb_header(n, skb);
543 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
546 n->destructor = NULL;
553 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
557 atomic_set(&n->users, 1);
559 atomic_inc(&(skb_shinfo(skb)->dataref));
567 * skb_morph - morph one skb into another
568 * @dst: the skb to receive the contents
569 * @src: the skb to supply the contents
571 * This is identical to skb_clone except that the target skb is
572 * supplied by the user.
574 * The target skb is returned upon exit.
576 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
578 skb_release_all(dst);
579 return __skb_clone(dst, src);
581 EXPORT_SYMBOL_GPL(skb_morph);
584 * skb_clone - duplicate an sk_buff
585 * @skb: buffer to clone
586 * @gfp_mask: allocation priority
588 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
589 * copies share the same packet data but not structure. The new
590 * buffer has a reference count of 1. If the allocation fails the
591 * function returns %NULL otherwise the new buffer is returned.
593 * If this function is called from an interrupt gfp_mask() must be
597 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
602 if (skb->fclone == SKB_FCLONE_ORIG &&
603 n->fclone == SKB_FCLONE_UNAVAILABLE) {
604 atomic_t *fclone_ref = (atomic_t *) (n + 1);
605 n->fclone = SKB_FCLONE_CLONE;
606 atomic_inc(fclone_ref);
608 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
611 n->fclone = SKB_FCLONE_UNAVAILABLE;
614 return __skb_clone(n, skb);
617 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
619 #ifndef NET_SKBUFF_DATA_USES_OFFSET
621 * Shift between the two data areas in bytes
623 unsigned long offset = new->data - old->data;
626 __copy_skb_header(new, old);
628 #ifndef NET_SKBUFF_DATA_USES_OFFSET
629 /* {transport,network,mac}_header are relative to skb->head */
630 new->transport_header += offset;
631 new->network_header += offset;
632 new->mac_header += offset;
634 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
635 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
636 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
640 * skb_copy - create private copy of an sk_buff
641 * @skb: buffer to copy
642 * @gfp_mask: allocation priority
644 * Make a copy of both an &sk_buff and its data. This is used when the
645 * caller wishes to modify the data and needs a private copy of the
646 * data to alter. Returns %NULL on failure or the pointer to the buffer
647 * on success. The returned buffer has a reference count of 1.
649 * As by-product this function converts non-linear &sk_buff to linear
650 * one, so that &sk_buff becomes completely private and caller is allowed
651 * to modify all the data of returned buffer. This means that this
652 * function is not recommended for use in circumstances when only
653 * header is going to be modified. Use pskb_copy() instead.
656 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
658 int headerlen = skb->data - skb->head;
660 * Allocate the copy buffer
663 #ifdef NET_SKBUFF_DATA_USES_OFFSET
664 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
666 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
671 /* Set the data pointer */
672 skb_reserve(n, headerlen);
673 /* Set the tail pointer and length */
674 skb_put(n, skb->len);
676 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
679 copy_skb_header(n, skb);
685 * pskb_copy - create copy of an sk_buff with private head.
686 * @skb: buffer to copy
687 * @gfp_mask: allocation priority
689 * Make a copy of both an &sk_buff and part of its data, located
690 * in header. Fragmented data remain shared. This is used when
691 * the caller wishes to modify only header of &sk_buff and needs
692 * private copy of the header to alter. Returns %NULL on failure
693 * or the pointer to the buffer on success.
694 * The returned buffer has a reference count of 1.
697 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
700 * Allocate the copy buffer
703 #ifdef NET_SKBUFF_DATA_USES_OFFSET
704 n = alloc_skb(skb->end, gfp_mask);
706 n = alloc_skb(skb->end - skb->head, gfp_mask);
711 /* Set the data pointer */
712 skb_reserve(n, skb->data - skb->head);
713 /* Set the tail pointer and length */
714 skb_put(n, skb_headlen(skb));
716 skb_copy_from_linear_data(skb, n->data, n->len);
718 n->truesize += skb->data_len;
719 n->data_len = skb->data_len;
722 if (skb_shinfo(skb)->nr_frags) {
725 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
726 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
727 get_page(skb_shinfo(n)->frags[i].page);
729 skb_shinfo(n)->nr_frags = i;
732 if (skb_shinfo(skb)->frag_list) {
733 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
734 skb_clone_fraglist(n);
737 copy_skb_header(n, skb);
743 * pskb_expand_head - reallocate header of &sk_buff
744 * @skb: buffer to reallocate
745 * @nhead: room to add at head
746 * @ntail: room to add at tail
747 * @gfp_mask: allocation priority
749 * Expands (or creates identical copy, if &nhead and &ntail are zero)
750 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
751 * reference count of 1. Returns zero in the case of success or error,
752 * if expansion failed. In the last case, &sk_buff is not changed.
754 * All the pointers pointing into skb header may change and must be
755 * reloaded after call to this function.
758 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
763 #ifdef NET_SKBUFF_DATA_USES_OFFSET
764 int size = nhead + skb->end + ntail;
766 int size = nhead + (skb->end - skb->head) + ntail;
775 size = SKB_DATA_ALIGN(size);
777 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
781 /* Copy only real data... and, alas, header. This should be
782 * optimized for the cases when header is void. */
783 #ifdef NET_SKBUFF_DATA_USES_OFFSET
784 memcpy(data + nhead, skb->head, skb->tail);
786 memcpy(data + nhead, skb->head, skb->tail - skb->head);
788 memcpy(data + size, skb_end_pointer(skb),
789 sizeof(struct skb_shared_info));
791 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
792 get_page(skb_shinfo(skb)->frags[i].page);
794 if (skb_shinfo(skb)->frag_list)
795 skb_clone_fraglist(skb);
797 skb_release_data(skb);
799 off = (data + nhead) - skb->head;
803 #ifdef NET_SKBUFF_DATA_USES_OFFSET
807 skb->end = skb->head + size;
809 /* {transport,network,mac}_header and tail are relative to skb->head */
811 skb->transport_header += off;
812 skb->network_header += off;
813 skb->mac_header += off;
814 skb->csum_start += nhead;
818 atomic_set(&skb_shinfo(skb)->dataref, 1);
825 /* Make private copy of skb with writable head and some headroom */
827 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
829 struct sk_buff *skb2;
830 int delta = headroom - skb_headroom(skb);
833 skb2 = pskb_copy(skb, GFP_ATOMIC);
835 skb2 = skb_clone(skb, GFP_ATOMIC);
836 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
847 * skb_copy_expand - copy and expand sk_buff
848 * @skb: buffer to copy
849 * @newheadroom: new free bytes at head
850 * @newtailroom: new free bytes at tail
851 * @gfp_mask: allocation priority
853 * Make a copy of both an &sk_buff and its data and while doing so
854 * allocate additional space.
856 * This is used when the caller wishes to modify the data and needs a
857 * private copy of the data to alter as well as more space for new fields.
858 * Returns %NULL on failure or the pointer to the buffer
859 * on success. The returned buffer has a reference count of 1.
861 * You must pass %GFP_ATOMIC as the allocation priority if this function
862 * is called from an interrupt.
864 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
865 int newheadroom, int newtailroom,
869 * Allocate the copy buffer
871 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
873 int oldheadroom = skb_headroom(skb);
874 int head_copy_len, head_copy_off;
880 skb_reserve(n, newheadroom);
882 /* Set the tail pointer and length */
883 skb_put(n, skb->len);
885 head_copy_len = oldheadroom;
887 if (newheadroom <= head_copy_len)
888 head_copy_len = newheadroom;
890 head_copy_off = newheadroom - head_copy_len;
892 /* Copy the linear header and data. */
893 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
894 skb->len + head_copy_len))
897 copy_skb_header(n, skb);
899 off = newheadroom - oldheadroom;
900 n->csum_start += off;
901 #ifdef NET_SKBUFF_DATA_USES_OFFSET
902 n->transport_header += off;
903 n->network_header += off;
904 n->mac_header += off;
911 * skb_pad - zero pad the tail of an skb
912 * @skb: buffer to pad
915 * Ensure that a buffer is followed by a padding area that is zero
916 * filled. Used by network drivers which may DMA or transfer data
917 * beyond the buffer end onto the wire.
919 * May return error in out of memory cases. The skb is freed on error.
922 int skb_pad(struct sk_buff *skb, int pad)
927 /* If the skbuff is non linear tailroom is always zero.. */
928 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
929 memset(skb->data+skb->len, 0, pad);
933 ntail = skb->data_len + pad - (skb->end - skb->tail);
934 if (likely(skb_cloned(skb) || ntail > 0)) {
935 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
940 /* FIXME: The use of this function with non-linear skb's really needs
943 err = skb_linearize(skb);
947 memset(skb->data + skb->len, 0, pad);
956 * skb_put - add data to a buffer
957 * @skb: buffer to use
958 * @len: amount of data to add
960 * This function extends the used data area of the buffer. If this would
961 * exceed the total buffer size the kernel will panic. A pointer to the
962 * first byte of the extra data is returned.
964 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
966 unsigned char *tmp = skb_tail_pointer(skb);
967 SKB_LINEAR_ASSERT(skb);
970 if (unlikely(skb->tail > skb->end))
971 skb_over_panic(skb, len, __builtin_return_address(0));
974 EXPORT_SYMBOL(skb_put);
977 * skb_push - add data to the start of a buffer
978 * @skb: buffer to use
979 * @len: amount of data to add
981 * This function extends the used data area of the buffer at the buffer
982 * start. If this would exceed the total buffer headroom the kernel will
983 * panic. A pointer to the first byte of the extra data is returned.
985 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
989 if (unlikely(skb->data<skb->head))
990 skb_under_panic(skb, len, __builtin_return_address(0));
993 EXPORT_SYMBOL(skb_push);
996 * skb_pull - remove data from the start of a buffer
997 * @skb: buffer to use
998 * @len: amount of data to remove
1000 * This function removes data from the start of a buffer, returning
1001 * the memory to the headroom. A pointer to the next data in the buffer
1002 * is returned. Once the data has been pulled future pushes will overwrite
1005 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1007 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1009 EXPORT_SYMBOL(skb_pull);
1012 * skb_trim - remove end from a buffer
1013 * @skb: buffer to alter
1016 * Cut the length of a buffer down by removing data from the tail. If
1017 * the buffer is already under the length specified it is not modified.
1018 * The skb must be linear.
1020 void skb_trim(struct sk_buff *skb, unsigned int len)
1023 __skb_trim(skb, len);
1025 EXPORT_SYMBOL(skb_trim);
1027 /* Trims skb to length len. It can change skb pointers.
1030 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1032 struct sk_buff **fragp;
1033 struct sk_buff *frag;
1034 int offset = skb_headlen(skb);
1035 int nfrags = skb_shinfo(skb)->nr_frags;
1039 if (skb_cloned(skb) &&
1040 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1047 for (; i < nfrags; i++) {
1048 int end = offset + skb_shinfo(skb)->frags[i].size;
1055 skb_shinfo(skb)->frags[i++].size = len - offset;
1058 skb_shinfo(skb)->nr_frags = i;
1060 for (; i < nfrags; i++)
1061 put_page(skb_shinfo(skb)->frags[i].page);
1063 if (skb_shinfo(skb)->frag_list)
1064 skb_drop_fraglist(skb);
1068 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1069 fragp = &frag->next) {
1070 int end = offset + frag->len;
1072 if (skb_shared(frag)) {
1073 struct sk_buff *nfrag;
1075 nfrag = skb_clone(frag, GFP_ATOMIC);
1076 if (unlikely(!nfrag))
1079 nfrag->next = frag->next;
1091 unlikely((err = pskb_trim(frag, len - offset))))
1095 skb_drop_list(&frag->next);
1100 if (len > skb_headlen(skb)) {
1101 skb->data_len -= skb->len - len;
1106 skb_set_tail_pointer(skb, len);
1113 * __pskb_pull_tail - advance tail of skb header
1114 * @skb: buffer to reallocate
1115 * @delta: number of bytes to advance tail
1117 * The function makes a sense only on a fragmented &sk_buff,
1118 * it expands header moving its tail forward and copying necessary
1119 * data from fragmented part.
1121 * &sk_buff MUST have reference count of 1.
1123 * Returns %NULL (and &sk_buff does not change) if pull failed
1124 * or value of new tail of skb in the case of success.
1126 * All the pointers pointing into skb header may change and must be
1127 * reloaded after call to this function.
1130 /* Moves tail of skb head forward, copying data from fragmented part,
1131 * when it is necessary.
1132 * 1. It may fail due to malloc failure.
1133 * 2. It may change skb pointers.
1135 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1137 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1139 /* If skb has not enough free space at tail, get new one
1140 * plus 128 bytes for future expansions. If we have enough
1141 * room at tail, reallocate without expansion only if skb is cloned.
1143 int i, k, eat = (skb->tail + delta) - skb->end;
1145 if (eat > 0 || skb_cloned(skb)) {
1146 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1151 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1154 /* Optimization: no fragments, no reasons to preestimate
1155 * size of pulled pages. Superb.
1157 if (!skb_shinfo(skb)->frag_list)
1160 /* Estimate size of pulled pages. */
1162 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1163 if (skb_shinfo(skb)->frags[i].size >= eat)
1165 eat -= skb_shinfo(skb)->frags[i].size;
1168 /* If we need update frag list, we are in troubles.
1169 * Certainly, it possible to add an offset to skb data,
1170 * but taking into account that pulling is expected to
1171 * be very rare operation, it is worth to fight against
1172 * further bloating skb head and crucify ourselves here instead.
1173 * Pure masohism, indeed. 8)8)
1176 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1177 struct sk_buff *clone = NULL;
1178 struct sk_buff *insp = NULL;
1183 if (list->len <= eat) {
1184 /* Eaten as whole. */
1189 /* Eaten partially. */
1191 if (skb_shared(list)) {
1192 /* Sucks! We need to fork list. :-( */
1193 clone = skb_clone(list, GFP_ATOMIC);
1199 /* This may be pulled without
1203 if (!pskb_pull(list, eat)) {
1212 /* Free pulled out fragments. */
1213 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1214 skb_shinfo(skb)->frag_list = list->next;
1217 /* And insert new clone at head. */
1220 skb_shinfo(skb)->frag_list = clone;
1223 /* Success! Now we may commit changes to skb data. */
1228 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1229 if (skb_shinfo(skb)->frags[i].size <= eat) {
1230 put_page(skb_shinfo(skb)->frags[i].page);
1231 eat -= skb_shinfo(skb)->frags[i].size;
1233 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1235 skb_shinfo(skb)->frags[k].page_offset += eat;
1236 skb_shinfo(skb)->frags[k].size -= eat;
1242 skb_shinfo(skb)->nr_frags = k;
1245 skb->data_len -= delta;
1247 return skb_tail_pointer(skb);
1250 /* Copy some data bits from skb to kernel buffer. */
1252 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1255 int start = skb_headlen(skb);
1257 if (offset > (int)skb->len - len)
1261 if ((copy = start - offset) > 0) {
1264 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1265 if ((len -= copy) == 0)
1271 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1274 WARN_ON(start > offset + len);
1276 end = start + skb_shinfo(skb)->frags[i].size;
1277 if ((copy = end - offset) > 0) {
1283 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1285 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1286 offset - start, copy);
1287 kunmap_skb_frag(vaddr);
1289 if ((len -= copy) == 0)
1297 if (skb_shinfo(skb)->frag_list) {
1298 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1300 for (; list; list = list->next) {
1303 WARN_ON(start > offset + len);
1305 end = start + list->len;
1306 if ((copy = end - offset) > 0) {
1309 if (skb_copy_bits(list, offset - start,
1312 if ((len -= copy) == 0)
1328 * Callback from splice_to_pipe(), if we need to release some pages
1329 * at the end of the spd in case we error'ed out in filling the pipe.
1331 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1333 put_page(spd->pages[i]);
1336 static inline struct page *linear_to_page(struct page *page, unsigned int len,
1337 unsigned int offset)
1339 struct page *p = alloc_pages(GFP_KERNEL, 0);
1343 memcpy(page_address(p) + offset, page_address(page) + offset, len);
1349 * Fill page/offset/length into spd, if it can hold more pages.
1351 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1352 unsigned int len, unsigned int offset,
1353 struct sk_buff *skb, int linear)
1355 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1359 page = linear_to_page(page, len, offset);
1365 spd->pages[spd->nr_pages] = page;
1366 spd->partial[spd->nr_pages].len = len;
1367 spd->partial[spd->nr_pages].offset = offset;
1373 static inline void __segment_seek(struct page **page, unsigned int *poff,
1374 unsigned int *plen, unsigned int off)
1377 *page += *poff / PAGE_SIZE;
1378 *poff = *poff % PAGE_SIZE;
1382 static inline int __splice_segment(struct page *page, unsigned int poff,
1383 unsigned int plen, unsigned int *off,
1384 unsigned int *len, struct sk_buff *skb,
1385 struct splice_pipe_desc *spd, int linear)
1390 /* skip this segment if already processed */
1396 /* ignore any bits we already processed */
1398 __segment_seek(&page, &poff, &plen, *off);
1403 unsigned int flen = min(*len, plen);
1405 /* the linear region may spread across several pages */
1406 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1408 if (spd_fill_page(spd, page, flen, poff, skb, linear))
1411 __segment_seek(&page, &poff, &plen, flen);
1414 } while (*len && plen);
1420 * Map linear and fragment data from the skb to spd. It reports failure if the
1421 * pipe is full or if we already spliced the requested length.
1423 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1425 struct splice_pipe_desc *spd)
1430 * map the linear part
1432 if (__splice_segment(virt_to_page(skb->data),
1433 (unsigned long) skb->data & (PAGE_SIZE - 1),
1435 offset, len, skb, spd, 1))
1439 * then map the fragments
1441 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1442 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1444 if (__splice_segment(f->page, f->page_offset, f->size,
1445 offset, len, skb, spd, 0))
1453 * Map data from the skb to a pipe. Should handle both the linear part,
1454 * the fragments, and the frag list. It does NOT handle frag lists within
1455 * the frag list, if such a thing exists. We'd probably need to recurse to
1456 * handle that cleanly.
1458 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1459 struct pipe_inode_info *pipe, unsigned int tlen,
1462 struct partial_page partial[PIPE_BUFFERS];
1463 struct page *pages[PIPE_BUFFERS];
1464 struct splice_pipe_desc spd = {
1468 .ops = &sock_pipe_buf_ops,
1469 .spd_release = sock_spd_release,
1473 * __skb_splice_bits() only fails if the output has no room left,
1474 * so no point in going over the frag_list for the error case.
1476 if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1482 * now see if we have a frag_list to map
1484 if (skb_shinfo(skb)->frag_list) {
1485 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1487 for (; list && tlen; list = list->next) {
1488 if (__skb_splice_bits(list, &offset, &tlen, &spd))
1495 struct sock *sk = skb->sk;
1499 * Drop the socket lock, otherwise we have reverse
1500 * locking dependencies between sk_lock and i_mutex
1501 * here as compared to sendfile(). We enter here
1502 * with the socket lock held, and splice_to_pipe() will
1503 * grab the pipe inode lock. For sendfile() emulation,
1504 * we call into ->sendpage() with the i_mutex lock held
1505 * and networking will grab the socket lock.
1508 ret = splice_to_pipe(pipe, &spd);
1517 * skb_store_bits - store bits from kernel buffer to skb
1518 * @skb: destination buffer
1519 * @offset: offset in destination
1520 * @from: source buffer
1521 * @len: number of bytes to copy
1523 * Copy the specified number of bytes from the source buffer to the
1524 * destination skb. This function handles all the messy bits of
1525 * traversing fragment lists and such.
1528 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1531 int start = skb_headlen(skb);
1533 if (offset > (int)skb->len - len)
1536 if ((copy = start - offset) > 0) {
1539 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1540 if ((len -= copy) == 0)
1546 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1547 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1550 WARN_ON(start > offset + len);
1552 end = start + frag->size;
1553 if ((copy = end - offset) > 0) {
1559 vaddr = kmap_skb_frag(frag);
1560 memcpy(vaddr + frag->page_offset + offset - start,
1562 kunmap_skb_frag(vaddr);
1564 if ((len -= copy) == 0)
1572 if (skb_shinfo(skb)->frag_list) {
1573 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1575 for (; list; list = list->next) {
1578 WARN_ON(start > offset + len);
1580 end = start + list->len;
1581 if ((copy = end - offset) > 0) {
1584 if (skb_store_bits(list, offset - start,
1587 if ((len -= copy) == 0)
1602 EXPORT_SYMBOL(skb_store_bits);
1604 /* Checksum skb data. */
1606 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1607 int len, __wsum csum)
1609 int start = skb_headlen(skb);
1610 int i, copy = start - offset;
1613 /* Checksum header. */
1617 csum = csum_partial(skb->data + offset, copy, csum);
1618 if ((len -= copy) == 0)
1624 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1627 WARN_ON(start > offset + len);
1629 end = start + skb_shinfo(skb)->frags[i].size;
1630 if ((copy = end - offset) > 0) {
1633 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1637 vaddr = kmap_skb_frag(frag);
1638 csum2 = csum_partial(vaddr + frag->page_offset +
1639 offset - start, copy, 0);
1640 kunmap_skb_frag(vaddr);
1641 csum = csum_block_add(csum, csum2, pos);
1650 if (skb_shinfo(skb)->frag_list) {
1651 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1653 for (; list; list = list->next) {
1656 WARN_ON(start > offset + len);
1658 end = start + list->len;
1659 if ((copy = end - offset) > 0) {
1663 csum2 = skb_checksum(list, offset - start,
1665 csum = csum_block_add(csum, csum2, pos);
1666 if ((len -= copy) == 0)
1679 /* Both of above in one bottle. */
1681 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1682 u8 *to, int len, __wsum csum)
1684 int start = skb_headlen(skb);
1685 int i, copy = start - offset;
1692 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1694 if ((len -= copy) == 0)
1701 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1704 WARN_ON(start > offset + len);
1706 end = start + skb_shinfo(skb)->frags[i].size;
1707 if ((copy = end - offset) > 0) {
1710 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1714 vaddr = kmap_skb_frag(frag);
1715 csum2 = csum_partial_copy_nocheck(vaddr +
1719 kunmap_skb_frag(vaddr);
1720 csum = csum_block_add(csum, csum2, pos);
1730 if (skb_shinfo(skb)->frag_list) {
1731 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1733 for (; list; list = list->next) {
1737 WARN_ON(start > offset + len);
1739 end = start + list->len;
1740 if ((copy = end - offset) > 0) {
1743 csum2 = skb_copy_and_csum_bits(list,
1746 csum = csum_block_add(csum, csum2, pos);
1747 if ((len -= copy) == 0)
1760 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1765 if (skb->ip_summed == CHECKSUM_PARTIAL)
1766 csstart = skb->csum_start - skb_headroom(skb);
1768 csstart = skb_headlen(skb);
1770 BUG_ON(csstart > skb_headlen(skb));
1772 skb_copy_from_linear_data(skb, to, csstart);
1775 if (csstart != skb->len)
1776 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1777 skb->len - csstart, 0);
1779 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1780 long csstuff = csstart + skb->csum_offset;
1782 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1787 * skb_dequeue - remove from the head of the queue
1788 * @list: list to dequeue from
1790 * Remove the head of the list. The list lock is taken so the function
1791 * may be used safely with other locking list functions. The head item is
1792 * returned or %NULL if the list is empty.
1795 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1797 unsigned long flags;
1798 struct sk_buff *result;
1800 spin_lock_irqsave(&list->lock, flags);
1801 result = __skb_dequeue(list);
1802 spin_unlock_irqrestore(&list->lock, flags);
1807 * skb_dequeue_tail - remove from the tail of the queue
1808 * @list: list to dequeue from
1810 * Remove the tail of the list. The list lock is taken so the function
1811 * may be used safely with other locking list functions. The tail item is
1812 * returned or %NULL if the list is empty.
1814 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1816 unsigned long flags;
1817 struct sk_buff *result;
1819 spin_lock_irqsave(&list->lock, flags);
1820 result = __skb_dequeue_tail(list);
1821 spin_unlock_irqrestore(&list->lock, flags);
1826 * skb_queue_purge - empty a list
1827 * @list: list to empty
1829 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1830 * the list and one reference dropped. This function takes the list
1831 * lock and is atomic with respect to other list locking functions.
1833 void skb_queue_purge(struct sk_buff_head *list)
1835 struct sk_buff *skb;
1836 while ((skb = skb_dequeue(list)) != NULL)
1841 * skb_queue_head - queue a buffer at the list head
1842 * @list: list to use
1843 * @newsk: buffer to queue
1845 * Queue a buffer at the start of the list. This function takes the
1846 * list lock and can be used safely with other locking &sk_buff functions
1849 * A buffer cannot be placed on two lists at the same time.
1851 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1853 unsigned long flags;
1855 spin_lock_irqsave(&list->lock, flags);
1856 __skb_queue_head(list, newsk);
1857 spin_unlock_irqrestore(&list->lock, flags);
1861 * skb_queue_tail - queue a buffer at the list tail
1862 * @list: list to use
1863 * @newsk: buffer to queue
1865 * Queue a buffer at the tail of the list. This function takes the
1866 * list lock and can be used safely with other locking &sk_buff functions
1869 * A buffer cannot be placed on two lists at the same time.
1871 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1873 unsigned long flags;
1875 spin_lock_irqsave(&list->lock, flags);
1876 __skb_queue_tail(list, newsk);
1877 spin_unlock_irqrestore(&list->lock, flags);
1881 * skb_unlink - remove a buffer from a list
1882 * @skb: buffer to remove
1883 * @list: list to use
1885 * Remove a packet from a list. The list locks are taken and this
1886 * function is atomic with respect to other list locked calls
1888 * You must know what list the SKB is on.
1890 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1892 unsigned long flags;
1894 spin_lock_irqsave(&list->lock, flags);
1895 __skb_unlink(skb, list);
1896 spin_unlock_irqrestore(&list->lock, flags);
1900 * skb_append - append a buffer
1901 * @old: buffer to insert after
1902 * @newsk: buffer to insert
1903 * @list: list to use
1905 * Place a packet after a given packet in a list. The list locks are taken
1906 * and this function is atomic with respect to other list locked calls.
1907 * A buffer cannot be placed on two lists at the same time.
1909 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1911 unsigned long flags;
1913 spin_lock_irqsave(&list->lock, flags);
1914 __skb_queue_after(list, old, newsk);
1915 spin_unlock_irqrestore(&list->lock, flags);
1920 * skb_insert - insert a buffer
1921 * @old: buffer to insert before
1922 * @newsk: buffer to insert
1923 * @list: list to use
1925 * Place a packet before a given packet in a list. The list locks are
1926 * taken and this function is atomic with respect to other list locked
1929 * A buffer cannot be placed on two lists at the same time.
1931 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1933 unsigned long flags;
1935 spin_lock_irqsave(&list->lock, flags);
1936 __skb_insert(newsk, old->prev, old, list);
1937 spin_unlock_irqrestore(&list->lock, flags);
1940 static inline void skb_split_inside_header(struct sk_buff *skb,
1941 struct sk_buff* skb1,
1942 const u32 len, const int pos)
1946 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1948 /* And move data appendix as is. */
1949 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1950 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1952 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1953 skb_shinfo(skb)->nr_frags = 0;
1954 skb1->data_len = skb->data_len;
1955 skb1->len += skb1->data_len;
1958 skb_set_tail_pointer(skb, len);
1961 static inline void skb_split_no_header(struct sk_buff *skb,
1962 struct sk_buff* skb1,
1963 const u32 len, int pos)
1966 const int nfrags = skb_shinfo(skb)->nr_frags;
1968 skb_shinfo(skb)->nr_frags = 0;
1969 skb1->len = skb1->data_len = skb->len - len;
1971 skb->data_len = len - pos;
1973 for (i = 0; i < nfrags; i++) {
1974 int size = skb_shinfo(skb)->frags[i].size;
1976 if (pos + size > len) {
1977 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1981 * We have two variants in this case:
1982 * 1. Move all the frag to the second
1983 * part, if it is possible. F.e.
1984 * this approach is mandatory for TUX,
1985 * where splitting is expensive.
1986 * 2. Split is accurately. We make this.
1988 get_page(skb_shinfo(skb)->frags[i].page);
1989 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1990 skb_shinfo(skb1)->frags[0].size -= len - pos;
1991 skb_shinfo(skb)->frags[i].size = len - pos;
1992 skb_shinfo(skb)->nr_frags++;
1996 skb_shinfo(skb)->nr_frags++;
1999 skb_shinfo(skb1)->nr_frags = k;
2003 * skb_split - Split fragmented skb to two parts at length len.
2004 * @skb: the buffer to split
2005 * @skb1: the buffer to receive the second part
2006 * @len: new length for skb
2008 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2010 int pos = skb_headlen(skb);
2012 if (len < pos) /* Split line is inside header. */
2013 skb_split_inside_header(skb, skb1, len, pos);
2014 else /* Second chunk has no header, nothing to copy. */
2015 skb_split_no_header(skb, skb1, len, pos);
2018 /* Shifting from/to a cloned skb is a no-go.
2020 * Caller cannot keep skb_shinfo related pointers past calling here!
2022 static int skb_prepare_for_shift(struct sk_buff *skb)
2024 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2028 * skb_shift - Shifts paged data partially from skb to another
2029 * @tgt: buffer into which tail data gets added
2030 * @skb: buffer from which the paged data comes from
2031 * @shiftlen: shift up to this many bytes
2033 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2034 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2035 * It's up to caller to free skb if everything was shifted.
2037 * If @tgt runs out of frags, the whole operation is aborted.
2039 * Skb cannot include anything else but paged data while tgt is allowed
2040 * to have non-paged data as well.
2042 * TODO: full sized shift could be optimized but that would need
2043 * specialized skb free'er to handle frags without up-to-date nr_frags.
2045 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2047 int from, to, merge, todo;
2048 struct skb_frag_struct *fragfrom, *fragto;
2050 BUG_ON(shiftlen > skb->len);
2051 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2055 to = skb_shinfo(tgt)->nr_frags;
2056 fragfrom = &skb_shinfo(skb)->frags[from];
2058 /* Actual merge is delayed until the point when we know we can
2059 * commit all, so that we don't have to undo partial changes
2062 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2067 todo -= fragfrom->size;
2069 if (skb_prepare_for_shift(skb) ||
2070 skb_prepare_for_shift(tgt))
2073 /* All previous frag pointers might be stale! */
2074 fragfrom = &skb_shinfo(skb)->frags[from];
2075 fragto = &skb_shinfo(tgt)->frags[merge];
2077 fragto->size += shiftlen;
2078 fragfrom->size -= shiftlen;
2079 fragfrom->page_offset += shiftlen;
2087 /* Skip full, not-fitting skb to avoid expensive operations */
2088 if ((shiftlen == skb->len) &&
2089 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2092 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2095 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2096 if (to == MAX_SKB_FRAGS)
2099 fragfrom = &skb_shinfo(skb)->frags[from];
2100 fragto = &skb_shinfo(tgt)->frags[to];
2102 if (todo >= fragfrom->size) {
2103 *fragto = *fragfrom;
2104 todo -= fragfrom->size;
2109 get_page(fragfrom->page);
2110 fragto->page = fragfrom->page;
2111 fragto->page_offset = fragfrom->page_offset;
2112 fragto->size = todo;
2114 fragfrom->page_offset += todo;
2115 fragfrom->size -= todo;
2123 /* Ready to "commit" this state change to tgt */
2124 skb_shinfo(tgt)->nr_frags = to;
2127 fragfrom = &skb_shinfo(skb)->frags[0];
2128 fragto = &skb_shinfo(tgt)->frags[merge];
2130 fragto->size += fragfrom->size;
2131 put_page(fragfrom->page);
2134 /* Reposition in the original skb */
2136 while (from < skb_shinfo(skb)->nr_frags)
2137 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2138 skb_shinfo(skb)->nr_frags = to;
2140 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2143 /* Most likely the tgt won't ever need its checksum anymore, skb on
2144 * the other hand might need it if it needs to be resent
2146 tgt->ip_summed = CHECKSUM_PARTIAL;
2147 skb->ip_summed = CHECKSUM_PARTIAL;
2149 /* Yak, is it really working this way? Some helper please? */
2150 skb->len -= shiftlen;
2151 skb->data_len -= shiftlen;
2152 skb->truesize -= shiftlen;
2153 tgt->len += shiftlen;
2154 tgt->data_len += shiftlen;
2155 tgt->truesize += shiftlen;
2161 * skb_prepare_seq_read - Prepare a sequential read of skb data
2162 * @skb: the buffer to read
2163 * @from: lower offset of data to be read
2164 * @to: upper offset of data to be read
2165 * @st: state variable
2167 * Initializes the specified state variable. Must be called before
2168 * invoking skb_seq_read() for the first time.
2170 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2171 unsigned int to, struct skb_seq_state *st)
2173 st->lower_offset = from;
2174 st->upper_offset = to;
2175 st->root_skb = st->cur_skb = skb;
2176 st->frag_idx = st->stepped_offset = 0;
2177 st->frag_data = NULL;
2181 * skb_seq_read - Sequentially read skb data
2182 * @consumed: number of bytes consumed by the caller so far
2183 * @data: destination pointer for data to be returned
2184 * @st: state variable
2186 * Reads a block of skb data at &consumed relative to the
2187 * lower offset specified to skb_prepare_seq_read(). Assigns
2188 * the head of the data block to &data and returns the length
2189 * of the block or 0 if the end of the skb data or the upper
2190 * offset has been reached.
2192 * The caller is not required to consume all of the data
2193 * returned, i.e. &consumed is typically set to the number
2194 * of bytes already consumed and the next call to
2195 * skb_seq_read() will return the remaining part of the block.
2197 * Note 1: The size of each block of data returned can be arbitary,
2198 * this limitation is the cost for zerocopy seqeuental
2199 * reads of potentially non linear data.
2201 * Note 2: Fragment lists within fragments are not implemented
2202 * at the moment, state->root_skb could be replaced with
2203 * a stack for this purpose.
2205 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2206 struct skb_seq_state *st)
2208 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2211 if (unlikely(abs_offset >= st->upper_offset))
2215 block_limit = skb_headlen(st->cur_skb);
2217 if (abs_offset < block_limit) {
2218 *data = st->cur_skb->data + abs_offset;
2219 return block_limit - abs_offset;
2222 if (st->frag_idx == 0 && !st->frag_data)
2223 st->stepped_offset += skb_headlen(st->cur_skb);
2225 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2226 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2227 block_limit = frag->size + st->stepped_offset;
2229 if (abs_offset < block_limit) {
2231 st->frag_data = kmap_skb_frag(frag);
2233 *data = (u8 *) st->frag_data + frag->page_offset +
2234 (abs_offset - st->stepped_offset);
2236 return block_limit - abs_offset;
2239 if (st->frag_data) {
2240 kunmap_skb_frag(st->frag_data);
2241 st->frag_data = NULL;
2245 st->stepped_offset += frag->size;
2248 if (st->frag_data) {
2249 kunmap_skb_frag(st->frag_data);
2250 st->frag_data = NULL;
2253 if (st->cur_skb->next) {
2254 st->cur_skb = st->cur_skb->next;
2257 } else if (st->root_skb == st->cur_skb &&
2258 skb_shinfo(st->root_skb)->frag_list) {
2259 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2267 * skb_abort_seq_read - Abort a sequential read of skb data
2268 * @st: state variable
2270 * Must be called if skb_seq_read() was not called until it
2273 void skb_abort_seq_read(struct skb_seq_state *st)
2276 kunmap_skb_frag(st->frag_data);
2279 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2281 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2282 struct ts_config *conf,
2283 struct ts_state *state)
2285 return skb_seq_read(offset, text, TS_SKB_CB(state));
2288 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2290 skb_abort_seq_read(TS_SKB_CB(state));
2294 * skb_find_text - Find a text pattern in skb data
2295 * @skb: the buffer to look in
2296 * @from: search offset
2298 * @config: textsearch configuration
2299 * @state: uninitialized textsearch state variable
2301 * Finds a pattern in the skb data according to the specified
2302 * textsearch configuration. Use textsearch_next() to retrieve
2303 * subsequent occurrences of the pattern. Returns the offset
2304 * to the first occurrence or UINT_MAX if no match was found.
2306 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2307 unsigned int to, struct ts_config *config,
2308 struct ts_state *state)
2312 config->get_next_block = skb_ts_get_next_block;
2313 config->finish = skb_ts_finish;
2315 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2317 ret = textsearch_find(config, state);
2318 return (ret <= to - from ? ret : UINT_MAX);
2322 * skb_append_datato_frags: - append the user data to a skb
2323 * @sk: sock structure
2324 * @skb: skb structure to be appened with user data.
2325 * @getfrag: call back function to be used for getting the user data
2326 * @from: pointer to user message iov
2327 * @length: length of the iov message
2329 * Description: This procedure append the user data in the fragment part
2330 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2332 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2333 int (*getfrag)(void *from, char *to, int offset,
2334 int len, int odd, struct sk_buff *skb),
2335 void *from, int length)
2338 skb_frag_t *frag = NULL;
2339 struct page *page = NULL;
2345 /* Return error if we don't have space for new frag */
2346 frg_cnt = skb_shinfo(skb)->nr_frags;
2347 if (frg_cnt >= MAX_SKB_FRAGS)
2350 /* allocate a new page for next frag */
2351 page = alloc_pages(sk->sk_allocation, 0);
2353 /* If alloc_page fails just return failure and caller will
2354 * free previous allocated pages by doing kfree_skb()
2359 /* initialize the next frag */
2360 sk->sk_sndmsg_page = page;
2361 sk->sk_sndmsg_off = 0;
2362 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2363 skb->truesize += PAGE_SIZE;
2364 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2366 /* get the new initialized frag */
2367 frg_cnt = skb_shinfo(skb)->nr_frags;
2368 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2370 /* copy the user data to page */
2371 left = PAGE_SIZE - frag->page_offset;
2372 copy = (length > left)? left : length;
2374 ret = getfrag(from, (page_address(frag->page) +
2375 frag->page_offset + frag->size),
2376 offset, copy, 0, skb);
2380 /* copy was successful so update the size parameters */
2381 sk->sk_sndmsg_off += copy;
2384 skb->data_len += copy;
2388 } while (length > 0);
2394 * skb_pull_rcsum - pull skb and update receive checksum
2395 * @skb: buffer to update
2396 * @len: length of data pulled
2398 * This function performs an skb_pull on the packet and updates
2399 * the CHECKSUM_COMPLETE checksum. It should be used on
2400 * receive path processing instead of skb_pull unless you know
2401 * that the checksum difference is zero (e.g., a valid IP header)
2402 * or you are setting ip_summed to CHECKSUM_NONE.
2404 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2406 BUG_ON(len > skb->len);
2408 BUG_ON(skb->len < skb->data_len);
2409 skb_postpull_rcsum(skb, skb->data, len);
2410 return skb->data += len;
2413 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2416 * skb_segment - Perform protocol segmentation on skb.
2417 * @skb: buffer to segment
2418 * @features: features for the output path (see dev->features)
2420 * This function performs segmentation on the given skb. It returns
2421 * a pointer to the first in a list of new skbs for the segments.
2422 * In case of error it returns ERR_PTR(err).
2424 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2426 struct sk_buff *segs = NULL;
2427 struct sk_buff *tail = NULL;
2428 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2429 unsigned int mss = skb_shinfo(skb)->gso_size;
2430 unsigned int doffset = skb->data - skb_mac_header(skb);
2431 unsigned int offset = doffset;
2432 unsigned int headroom;
2434 int sg = features & NETIF_F_SG;
2435 int nfrags = skb_shinfo(skb)->nr_frags;
2440 __skb_push(skb, doffset);
2441 headroom = skb_headroom(skb);
2442 pos = skb_headlen(skb);
2445 struct sk_buff *nskb;
2450 len = skb->len - offset;
2454 hsize = skb_headlen(skb) - offset;
2457 if (hsize > len || !sg)
2460 if (!hsize && i >= nfrags) {
2461 BUG_ON(fskb->len != len);
2464 nskb = skb_clone(fskb, GFP_ATOMIC);
2467 if (unlikely(!nskb))
2470 hsize = skb_end_pointer(nskb) - nskb->head;
2471 if (skb_cow_head(nskb, doffset + headroom)) {
2476 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2478 skb_release_head_state(nskb);
2479 __skb_push(nskb, doffset);
2481 nskb = alloc_skb(hsize + doffset + headroom,
2484 if (unlikely(!nskb))
2487 skb_reserve(nskb, headroom);
2488 __skb_put(nskb, doffset);
2497 __copy_skb_header(nskb, skb);
2498 nskb->mac_len = skb->mac_len;
2500 skb_reset_mac_header(nskb);
2501 skb_set_network_header(nskb, skb->mac_len);
2502 nskb->transport_header = (nskb->network_header +
2503 skb_network_header_len(skb));
2504 skb_copy_from_linear_data(skb, nskb->data, doffset);
2506 if (pos >= offset + len)
2510 nskb->ip_summed = CHECKSUM_NONE;
2511 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2517 frag = skb_shinfo(nskb)->frags;
2519 skb_copy_from_linear_data_offset(skb, offset,
2520 skb_put(nskb, hsize), hsize);
2522 while (pos < offset + len && i < nfrags) {
2523 *frag = skb_shinfo(skb)->frags[i];
2524 get_page(frag->page);
2528 frag->page_offset += offset - pos;
2529 frag->size -= offset - pos;
2532 skb_shinfo(nskb)->nr_frags++;
2534 if (pos + size <= offset + len) {
2538 frag->size -= pos + size - (offset + len);
2545 if (pos < offset + len) {
2546 struct sk_buff *fskb2 = fskb;
2548 BUG_ON(pos + fskb->len != offset + len);
2554 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2560 BUG_ON(skb_shinfo(nskb)->frag_list);
2561 skb_shinfo(nskb)->frag_list = fskb2;
2565 nskb->data_len = len - hsize;
2566 nskb->len += nskb->data_len;
2567 nskb->truesize += nskb->data_len;
2568 } while ((offset += len) < skb->len);
2573 while ((skb = segs)) {
2577 return ERR_PTR(err);
2580 EXPORT_SYMBOL_GPL(skb_segment);
2582 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2584 struct sk_buff *p = *head;
2585 struct sk_buff *nskb;
2586 unsigned int headroom;
2587 unsigned int hlen = p->data - skb_mac_header(p);
2588 unsigned int len = skb->len;
2590 if (hlen + p->len + len >= 65536)
2593 if (skb_shinfo(p)->frag_list)
2595 else if (!skb_headlen(p) && !skb_headlen(skb) &&
2596 skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags <
2598 memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags,
2599 skb_shinfo(skb)->frags,
2600 skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
2602 skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags;
2603 skb_shinfo(skb)->nr_frags = 0;
2605 skb->truesize -= skb->data_len;
2606 skb->len -= skb->data_len;
2609 NAPI_GRO_CB(skb)->free = 1;
2613 headroom = skb_headroom(p);
2614 nskb = netdev_alloc_skb(p->dev, headroom);
2615 if (unlikely(!nskb))
2618 __copy_skb_header(nskb, p);
2619 nskb->mac_len = p->mac_len;
2621 skb_reserve(nskb, headroom);
2623 skb_set_mac_header(nskb, -hlen);
2624 skb_set_network_header(nskb, skb_network_offset(p));
2625 skb_set_transport_header(nskb, skb_transport_offset(p));
2627 memcpy(skb_mac_header(nskb), skb_mac_header(p), hlen);
2629 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2630 skb_shinfo(nskb)->frag_list = p;
2631 skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size;
2632 skb_header_release(p);
2635 nskb->data_len += p->len;
2636 nskb->truesize += p->len;
2637 nskb->len += p->len;
2640 nskb->next = p->next;
2646 p->prev->next = skb;
2648 skb_header_release(skb);
2651 NAPI_GRO_CB(p)->count++;
2656 NAPI_GRO_CB(skb)->same_flow = 1;
2659 EXPORT_SYMBOL_GPL(skb_gro_receive);
2661 void __init skb_init(void)
2663 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2664 sizeof(struct sk_buff),
2666 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2668 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2669 (2*sizeof(struct sk_buff)) +
2672 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2677 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2678 * @skb: Socket buffer containing the buffers to be mapped
2679 * @sg: The scatter-gather list to map into
2680 * @offset: The offset into the buffer's contents to start mapping
2681 * @len: Length of buffer space to be mapped
2683 * Fill the specified scatter-gather list with mappings/pointers into a
2684 * region of the buffer space attached to a socket buffer.
2687 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2689 int start = skb_headlen(skb);
2690 int i, copy = start - offset;
2696 sg_set_buf(sg, skb->data + offset, copy);
2698 if ((len -= copy) == 0)
2703 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2706 WARN_ON(start > offset + len);
2708 end = start + skb_shinfo(skb)->frags[i].size;
2709 if ((copy = end - offset) > 0) {
2710 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2714 sg_set_page(&sg[elt], frag->page, copy,
2715 frag->page_offset+offset-start);
2724 if (skb_shinfo(skb)->frag_list) {
2725 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2727 for (; list; list = list->next) {
2730 WARN_ON(start > offset + len);
2732 end = start + list->len;
2733 if ((copy = end - offset) > 0) {
2736 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2738 if ((len -= copy) == 0)
2749 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2751 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2753 sg_mark_end(&sg[nsg - 1]);
2759 * skb_cow_data - Check that a socket buffer's data buffers are writable
2760 * @skb: The socket buffer to check.
2761 * @tailbits: Amount of trailing space to be added
2762 * @trailer: Returned pointer to the skb where the @tailbits space begins
2764 * Make sure that the data buffers attached to a socket buffer are
2765 * writable. If they are not, private copies are made of the data buffers
2766 * and the socket buffer is set to use these instead.
2768 * If @tailbits is given, make sure that there is space to write @tailbits
2769 * bytes of data beyond current end of socket buffer. @trailer will be
2770 * set to point to the skb in which this space begins.
2772 * The number of scatterlist elements required to completely map the
2773 * COW'd and extended socket buffer will be returned.
2775 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2779 struct sk_buff *skb1, **skb_p;
2781 /* If skb is cloned or its head is paged, reallocate
2782 * head pulling out all the pages (pages are considered not writable
2783 * at the moment even if they are anonymous).
2785 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2786 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2789 /* Easy case. Most of packets will go this way. */
2790 if (!skb_shinfo(skb)->frag_list) {
2791 /* A little of trouble, not enough of space for trailer.
2792 * This should not happen, when stack is tuned to generate
2793 * good frames. OK, on miss we reallocate and reserve even more
2794 * space, 128 bytes is fair. */
2796 if (skb_tailroom(skb) < tailbits &&
2797 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2805 /* Misery. We are in troubles, going to mincer fragments... */
2808 skb_p = &skb_shinfo(skb)->frag_list;
2811 while ((skb1 = *skb_p) != NULL) {
2814 /* The fragment is partially pulled by someone,
2815 * this can happen on input. Copy it and everything
2818 if (skb_shared(skb1))
2821 /* If the skb is the last, worry about trailer. */
2823 if (skb1->next == NULL && tailbits) {
2824 if (skb_shinfo(skb1)->nr_frags ||
2825 skb_shinfo(skb1)->frag_list ||
2826 skb_tailroom(skb1) < tailbits)
2827 ntail = tailbits + 128;
2833 skb_shinfo(skb1)->nr_frags ||
2834 skb_shinfo(skb1)->frag_list) {
2835 struct sk_buff *skb2;
2837 /* Fuck, we are miserable poor guys... */
2839 skb2 = skb_copy(skb1, GFP_ATOMIC);
2841 skb2 = skb_copy_expand(skb1,
2845 if (unlikely(skb2 == NULL))
2849 skb_set_owner_w(skb2, skb1->sk);
2851 /* Looking around. Are we still alive?
2852 * OK, link new skb, drop old one */
2854 skb2->next = skb1->next;
2861 skb_p = &skb1->next;
2868 * skb_partial_csum_set - set up and verify partial csum values for packet
2869 * @skb: the skb to set
2870 * @start: the number of bytes after skb->data to start checksumming.
2871 * @off: the offset from start to place the checksum.
2873 * For untrusted partially-checksummed packets, we need to make sure the values
2874 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2876 * This function checks and sets those values and skb->ip_summed: if this
2877 * returns false you should drop the packet.
2879 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2881 if (unlikely(start > skb->len - 2) ||
2882 unlikely((int)start + off > skb->len - 2)) {
2883 if (net_ratelimit())
2885 "bad partial csum: csum=%u/%u len=%u\n",
2886 start, off, skb->len);
2889 skb->ip_summed = CHECKSUM_PARTIAL;
2890 skb->csum_start = skb_headroom(skb) + start;
2891 skb->csum_offset = off;
2895 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
2897 if (net_ratelimit())
2898 pr_warning("%s: received packets cannot be forwarded"
2899 " while LRO is enabled\n", skb->dev->name);
2902 EXPORT_SYMBOL(___pskb_trim);
2903 EXPORT_SYMBOL(__kfree_skb);
2904 EXPORT_SYMBOL(kfree_skb);
2905 EXPORT_SYMBOL(__pskb_pull_tail);
2906 EXPORT_SYMBOL(__alloc_skb);
2907 EXPORT_SYMBOL(__netdev_alloc_skb);
2908 EXPORT_SYMBOL(pskb_copy);
2909 EXPORT_SYMBOL(pskb_expand_head);
2910 EXPORT_SYMBOL(skb_checksum);
2911 EXPORT_SYMBOL(skb_clone);
2912 EXPORT_SYMBOL(skb_copy);
2913 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2914 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2915 EXPORT_SYMBOL(skb_copy_bits);
2916 EXPORT_SYMBOL(skb_copy_expand);
2917 EXPORT_SYMBOL(skb_over_panic);
2918 EXPORT_SYMBOL(skb_pad);
2919 EXPORT_SYMBOL(skb_realloc_headroom);
2920 EXPORT_SYMBOL(skb_under_panic);
2921 EXPORT_SYMBOL(skb_dequeue);
2922 EXPORT_SYMBOL(skb_dequeue_tail);
2923 EXPORT_SYMBOL(skb_insert);
2924 EXPORT_SYMBOL(skb_queue_purge);
2925 EXPORT_SYMBOL(skb_queue_head);
2926 EXPORT_SYMBOL(skb_queue_tail);
2927 EXPORT_SYMBOL(skb_unlink);
2928 EXPORT_SYMBOL(skb_append);
2929 EXPORT_SYMBOL(skb_split);
2930 EXPORT_SYMBOL(skb_prepare_seq_read);
2931 EXPORT_SYMBOL(skb_seq_read);
2932 EXPORT_SYMBOL(skb_abort_seq_read);
2933 EXPORT_SYMBOL(skb_find_text);
2934 EXPORT_SYMBOL(skb_append_datato_frags);
2935 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
2937 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2938 EXPORT_SYMBOL_GPL(skb_cow_data);
2939 EXPORT_SYMBOL_GPL(skb_partial_csum_set);