UBI: rework scrubbing messages
[linux-2.6] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical* eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44  * an "optimal" physical eraseblock. For example, when it is known that the
45  * physical eraseblock will be "put" soon because it contains short-term data,
46  * the WL sub-system may pick a free physical eraseblock with low erase
47  * counter, and so forth.
48  *
49  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
50  * bad.
51  *
52  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53  * in a physical eraseblock, it has to be moved. Technically this is the same
54  * as moving it for wear-leveling reasons.
55  *
56  * As it was said, for the UBI sub-system all physical eraseblocks are either
57  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
58  * used eraseblocks are kept in a set of different RB-trees: @wl->used,
59  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
60  *
61  * Note, in this implementation, we keep a small in-RAM object for each physical
62  * eraseblock. This is surely not a scalable solution. But it appears to be good
63  * enough for moderately large flashes and it is simple. In future, one may
64  * re-work this sub-system and make it more scalable.
65  *
66  * At the moment this sub-system does not utilize the sequence number, which
67  * was introduced relatively recently. But it would be wise to do this because
68  * the sequence number of a logical eraseblock characterizes how old is it. For
69  * example, when we move a PEB with low erase counter, and we need to pick the
70  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
71  * pick target PEB with an average EC if our PEB is not very "old". This is a
72  * room for future re-works of the WL sub-system.
73  *
74  * Note: the stuff with protection trees looks too complex and is difficult to
75  * understand. Should be fixed.
76  */
77
78 #include <linux/slab.h>
79 #include <linux/crc32.h>
80 #include <linux/freezer.h>
81 #include <linux/kthread.h>
82 #include "ubi.h"
83
84 /* Number of physical eraseblocks reserved for wear-leveling purposes */
85 #define WL_RESERVED_PEBS 1
86
87 /*
88  * How many erase cycles are short term, unknown, and long term physical
89  * eraseblocks protected.
90  */
91 #define ST_PROTECTION 16
92 #define U_PROTECTION  10
93 #define LT_PROTECTION 4
94
95 /*
96  * Maximum difference between two erase counters. If this threshold is
97  * exceeded, the WL sub-system starts moving data from used physical
98  * eraseblocks with low erase counter to free physical eraseblocks with high
99  * erase counter.
100  */
101 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
102
103 /*
104  * When a physical eraseblock is moved, the WL sub-system has to pick the target
105  * physical eraseblock to move to. The simplest way would be just to pick the
106  * one with the highest erase counter. But in certain workloads this could lead
107  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
108  * situation when the picked physical eraseblock is constantly erased after the
109  * data is written to it. So, we have a constant which limits the highest erase
110  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
111  * does not pick eraseblocks with erase counter greater then the lowest erase
112  * counter plus %WL_FREE_MAX_DIFF.
113  */
114 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
115
116 /*
117  * Maximum number of consecutive background thread failures which is enough to
118  * switch to read-only mode.
119  */
120 #define WL_MAX_FAILURES 32
121
122 /**
123  * struct ubi_wl_prot_entry - PEB protection entry.
124  * @rb_pnum: link in the @wl->prot.pnum RB-tree
125  * @rb_aec: link in the @wl->prot.aec RB-tree
126  * @abs_ec: the absolute erase counter value when the protection ends
127  * @e: the wear-leveling entry of the physical eraseblock under protection
128  *
129  * When the WL sub-system returns a physical eraseblock, the physical
130  * eraseblock is protected from being moved for some "time". For this reason,
131  * the physical eraseblock is not directly moved from the @wl->free tree to the
132  * @wl->used tree. There is one more tree in between where this physical
133  * eraseblock is temporarily stored (@wl->prot).
134  *
135  * All this protection stuff is needed because:
136  *  o we don't want to move physical eraseblocks just after we have given them
137  *    to the user; instead, we first want to let users fill them up with data;
138  *
139  *  o there is a chance that the user will put the physical eraseblock very
140  *    soon, so it makes sense not to move it for some time, but wait; this is
141  *    especially important in case of "short term" physical eraseblocks.
142  *
143  * Physical eraseblocks stay protected only for limited time. But the "time" is
144  * measured in erase cycles in this case. This is implemented with help of the
145  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
146  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
147  * the @wl->used tree.
148  *
149  * Protected physical eraseblocks are searched by physical eraseblock number
150  * (when they are put) and by the absolute erase counter (to check if it is
151  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
152  * storing the protected physical eraseblocks: @wl->prot.pnum and
153  * @wl->prot.aec. They are referred to as the "protection" trees. The
154  * first one is indexed by the physical eraseblock number. The second one is
155  * indexed by the absolute erase counter. Both trees store
156  * &struct ubi_wl_prot_entry objects.
157  *
158  * Each physical eraseblock has 2 main states: free and used. The former state
159  * corresponds to the @wl->free tree. The latter state is split up on several
160  * sub-states:
161  * o the WL movement is allowed (@wl->used tree);
162  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
163  * @wl->prot.aec trees);
164  * o scrubbing is needed (@wl->scrub tree).
165  *
166  * Depending on the sub-state, wear-leveling entries of the used physical
167  * eraseblocks may be kept in one of those trees.
168  */
169 struct ubi_wl_prot_entry {
170         struct rb_node rb_pnum;
171         struct rb_node rb_aec;
172         unsigned long long abs_ec;
173         struct ubi_wl_entry *e;
174 };
175
176 /**
177  * struct ubi_work - UBI work description data structure.
178  * @list: a link in the list of pending works
179  * @func: worker function
180  * @priv: private data of the worker function
181  * @e: physical eraseblock to erase
182  * @torture: if the physical eraseblock has to be tortured
183  *
184  * The @func pointer points to the worker function. If the @cancel argument is
185  * not zero, the worker has to free the resources and exit immediately. The
186  * worker has to return zero in case of success and a negative error code in
187  * case of failure.
188  */
189 struct ubi_work {
190         struct list_head list;
191         int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
192         /* The below fields are only relevant to erasure works */
193         struct ubi_wl_entry *e;
194         int torture;
195 };
196
197 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
198 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
199 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
200                                      struct rb_root *root);
201 #else
202 #define paranoid_check_ec(ubi, pnum, ec) 0
203 #define paranoid_check_in_wl_tree(e, root)
204 #endif
205
206 /**
207  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
208  * @e: the wear-leveling entry to add
209  * @root: the root of the tree
210  *
211  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
212  * the @ubi->used and @ubi->free RB-trees.
213  */
214 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
215 {
216         struct rb_node **p, *parent = NULL;
217
218         p = &root->rb_node;
219         while (*p) {
220                 struct ubi_wl_entry *e1;
221
222                 parent = *p;
223                 e1 = rb_entry(parent, struct ubi_wl_entry, rb);
224
225                 if (e->ec < e1->ec)
226                         p = &(*p)->rb_left;
227                 else if (e->ec > e1->ec)
228                         p = &(*p)->rb_right;
229                 else {
230                         ubi_assert(e->pnum != e1->pnum);
231                         if (e->pnum < e1->pnum)
232                                 p = &(*p)->rb_left;
233                         else
234                                 p = &(*p)->rb_right;
235                 }
236         }
237
238         rb_link_node(&e->rb, parent, p);
239         rb_insert_color(&e->rb, root);
240 }
241
242 /**
243  * do_work - do one pending work.
244  * @ubi: UBI device description object
245  *
246  * This function returns zero in case of success and a negative error code in
247  * case of failure.
248  */
249 static int do_work(struct ubi_device *ubi)
250 {
251         int err;
252         struct ubi_work *wrk;
253
254         cond_resched();
255
256         /*
257          * @ubi->work_sem is used to synchronize with the workers. Workers take
258          * it in read mode, so many of them may be doing works at a time. But
259          * the queue flush code has to be sure the whole queue of works is
260          * done, and it takes the mutex in write mode.
261          */
262         down_read(&ubi->work_sem);
263         spin_lock(&ubi->wl_lock);
264         if (list_empty(&ubi->works)) {
265                 spin_unlock(&ubi->wl_lock);
266                 up_read(&ubi->work_sem);
267                 return 0;
268         }
269
270         wrk = list_entry(ubi->works.next, struct ubi_work, list);
271         list_del(&wrk->list);
272         ubi->works_count -= 1;
273         ubi_assert(ubi->works_count >= 0);
274         spin_unlock(&ubi->wl_lock);
275
276         /*
277          * Call the worker function. Do not touch the work structure
278          * after this call as it will have been freed or reused by that
279          * time by the worker function.
280          */
281         err = wrk->func(ubi, wrk, 0);
282         if (err)
283                 ubi_err("work failed with error code %d", err);
284         up_read(&ubi->work_sem);
285
286         return err;
287 }
288
289 /**
290  * produce_free_peb - produce a free physical eraseblock.
291  * @ubi: UBI device description object
292  *
293  * This function tries to make a free PEB by means of synchronous execution of
294  * pending works. This may be needed if, for example the background thread is
295  * disabled. Returns zero in case of success and a negative error code in case
296  * of failure.
297  */
298 static int produce_free_peb(struct ubi_device *ubi)
299 {
300         int err;
301
302         spin_lock(&ubi->wl_lock);
303         while (!ubi->free.rb_node) {
304                 spin_unlock(&ubi->wl_lock);
305
306                 dbg_wl("do one work synchronously");
307                 err = do_work(ubi);
308                 if (err)
309                         return err;
310
311                 spin_lock(&ubi->wl_lock);
312         }
313         spin_unlock(&ubi->wl_lock);
314
315         return 0;
316 }
317
318 /**
319  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
320  * @e: the wear-leveling entry to check
321  * @root: the root of the tree
322  *
323  * This function returns non-zero if @e is in the @root RB-tree and zero if it
324  * is not.
325  */
326 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
327 {
328         struct rb_node *p;
329
330         p = root->rb_node;
331         while (p) {
332                 struct ubi_wl_entry *e1;
333
334                 e1 = rb_entry(p, struct ubi_wl_entry, rb);
335
336                 if (e->pnum == e1->pnum) {
337                         ubi_assert(e == e1);
338                         return 1;
339                 }
340
341                 if (e->ec < e1->ec)
342                         p = p->rb_left;
343                 else if (e->ec > e1->ec)
344                         p = p->rb_right;
345                 else {
346                         ubi_assert(e->pnum != e1->pnum);
347                         if (e->pnum < e1->pnum)
348                                 p = p->rb_left;
349                         else
350                                 p = p->rb_right;
351                 }
352         }
353
354         return 0;
355 }
356
357 /**
358  * prot_tree_add - add physical eraseblock to protection trees.
359  * @ubi: UBI device description object
360  * @e: the physical eraseblock to add
361  * @pe: protection entry object to use
362  * @abs_ec: absolute erase counter value when this physical eraseblock has
363  * to be removed from the protection trees.
364  *
365  * @wl->lock has to be locked.
366  */
367 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
368                           struct ubi_wl_prot_entry *pe, int abs_ec)
369 {
370         struct rb_node **p, *parent = NULL;
371         struct ubi_wl_prot_entry *pe1;
372
373         pe->e = e;
374         pe->abs_ec = ubi->abs_ec + abs_ec;
375
376         p = &ubi->prot.pnum.rb_node;
377         while (*p) {
378                 parent = *p;
379                 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
380
381                 if (e->pnum < pe1->e->pnum)
382                         p = &(*p)->rb_left;
383                 else
384                         p = &(*p)->rb_right;
385         }
386         rb_link_node(&pe->rb_pnum, parent, p);
387         rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
388
389         p = &ubi->prot.aec.rb_node;
390         parent = NULL;
391         while (*p) {
392                 parent = *p;
393                 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
394
395                 if (pe->abs_ec < pe1->abs_ec)
396                         p = &(*p)->rb_left;
397                 else
398                         p = &(*p)->rb_right;
399         }
400         rb_link_node(&pe->rb_aec, parent, p);
401         rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
402 }
403
404 /**
405  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
406  * @root: the RB-tree where to look for
407  * @max: highest possible erase counter
408  *
409  * This function looks for a wear leveling entry with erase counter closest to
410  * @max and less then @max.
411  */
412 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
413 {
414         struct rb_node *p;
415         struct ubi_wl_entry *e;
416
417         e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
418         max += e->ec;
419
420         p = root->rb_node;
421         while (p) {
422                 struct ubi_wl_entry *e1;
423
424                 e1 = rb_entry(p, struct ubi_wl_entry, rb);
425                 if (e1->ec >= max)
426                         p = p->rb_left;
427                 else {
428                         p = p->rb_right;
429                         e = e1;
430                 }
431         }
432
433         return e;
434 }
435
436 /**
437  * ubi_wl_get_peb - get a physical eraseblock.
438  * @ubi: UBI device description object
439  * @dtype: type of data which will be stored in this physical eraseblock
440  *
441  * This function returns a physical eraseblock in case of success and a
442  * negative error code in case of failure. Might sleep.
443  */
444 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
445 {
446         int err, protect, medium_ec;
447         struct ubi_wl_entry *e, *first, *last;
448         struct ubi_wl_prot_entry *pe;
449
450         ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
451                    dtype == UBI_UNKNOWN);
452
453         pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
454         if (!pe)
455                 return -ENOMEM;
456
457 retry:
458         spin_lock(&ubi->wl_lock);
459         if (!ubi->free.rb_node) {
460                 if (ubi->works_count == 0) {
461                         ubi_assert(list_empty(&ubi->works));
462                         ubi_err("no free eraseblocks");
463                         spin_unlock(&ubi->wl_lock);
464                         kfree(pe);
465                         return -ENOSPC;
466                 }
467                 spin_unlock(&ubi->wl_lock);
468
469                 err = produce_free_peb(ubi);
470                 if (err < 0) {
471                         kfree(pe);
472                         return err;
473                 }
474                 goto retry;
475         }
476
477         switch (dtype) {
478                 case UBI_LONGTERM:
479                         /*
480                          * For long term data we pick a physical eraseblock
481                          * with high erase counter. But the highest erase
482                          * counter we can pick is bounded by the the lowest
483                          * erase counter plus %WL_FREE_MAX_DIFF.
484                          */
485                         e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
486                         protect = LT_PROTECTION;
487                         break;
488                 case UBI_UNKNOWN:
489                         /*
490                          * For unknown data we pick a physical eraseblock with
491                          * medium erase counter. But we by no means can pick a
492                          * physical eraseblock with erase counter greater or
493                          * equivalent than the lowest erase counter plus
494                          * %WL_FREE_MAX_DIFF.
495                          */
496                         first = rb_entry(rb_first(&ubi->free),
497                                          struct ubi_wl_entry, rb);
498                         last = rb_entry(rb_last(&ubi->free),
499                                         struct ubi_wl_entry, rb);
500
501                         if (last->ec - first->ec < WL_FREE_MAX_DIFF)
502                                 e = rb_entry(ubi->free.rb_node,
503                                                 struct ubi_wl_entry, rb);
504                         else {
505                                 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
506                                 e = find_wl_entry(&ubi->free, medium_ec);
507                         }
508                         protect = U_PROTECTION;
509                         break;
510                 case UBI_SHORTTERM:
511                         /*
512                          * For short term data we pick a physical eraseblock
513                          * with the lowest erase counter as we expect it will
514                          * be erased soon.
515                          */
516                         e = rb_entry(rb_first(&ubi->free),
517                                      struct ubi_wl_entry, rb);
518                         protect = ST_PROTECTION;
519                         break;
520                 default:
521                         protect = 0;
522                         e = NULL;
523                         BUG();
524         }
525
526         /*
527          * Move the physical eraseblock to the protection trees where it will
528          * be protected from being moved for some time.
529          */
530         paranoid_check_in_wl_tree(e, &ubi->free);
531         rb_erase(&e->rb, &ubi->free);
532         prot_tree_add(ubi, e, pe, protect);
533
534         dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
535         spin_unlock(&ubi->wl_lock);
536
537         return e->pnum;
538 }
539
540 /**
541  * prot_tree_del - remove a physical eraseblock from the protection trees
542  * @ubi: UBI device description object
543  * @pnum: the physical eraseblock to remove
544  *
545  * This function returns PEB @pnum from the protection trees and returns zero
546  * in case of success and %-ENODEV if the PEB was not found in the protection
547  * trees.
548  */
549 static int prot_tree_del(struct ubi_device *ubi, int pnum)
550 {
551         struct rb_node *p;
552         struct ubi_wl_prot_entry *pe = NULL;
553
554         p = ubi->prot.pnum.rb_node;
555         while (p) {
556
557                 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
558
559                 if (pnum == pe->e->pnum)
560                         goto found;
561
562                 if (pnum < pe->e->pnum)
563                         p = p->rb_left;
564                 else
565                         p = p->rb_right;
566         }
567
568         return -ENODEV;
569
570 found:
571         ubi_assert(pe->e->pnum == pnum);
572         rb_erase(&pe->rb_aec, &ubi->prot.aec);
573         rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
574         kfree(pe);
575         return 0;
576 }
577
578 /**
579  * sync_erase - synchronously erase a physical eraseblock.
580  * @ubi: UBI device description object
581  * @e: the the physical eraseblock to erase
582  * @torture: if the physical eraseblock has to be tortured
583  *
584  * This function returns zero in case of success and a negative error code in
585  * case of failure.
586  */
587 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
588 {
589         int err;
590         struct ubi_ec_hdr *ec_hdr;
591         unsigned long long ec = e->ec;
592
593         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
594
595         err = paranoid_check_ec(ubi, e->pnum, e->ec);
596         if (err > 0)
597                 return -EINVAL;
598
599         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
600         if (!ec_hdr)
601                 return -ENOMEM;
602
603         err = ubi_io_sync_erase(ubi, e->pnum, torture);
604         if (err < 0)
605                 goto out_free;
606
607         ec += err;
608         if (ec > UBI_MAX_ERASECOUNTER) {
609                 /*
610                  * Erase counter overflow. Upgrade UBI and use 64-bit
611                  * erase counters internally.
612                  */
613                 ubi_err("erase counter overflow at PEB %d, EC %llu",
614                         e->pnum, ec);
615                 err = -EINVAL;
616                 goto out_free;
617         }
618
619         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
620
621         ec_hdr->ec = cpu_to_be64(ec);
622
623         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
624         if (err)
625                 goto out_free;
626
627         e->ec = ec;
628         spin_lock(&ubi->wl_lock);
629         if (e->ec > ubi->max_ec)
630                 ubi->max_ec = e->ec;
631         spin_unlock(&ubi->wl_lock);
632
633 out_free:
634         kfree(ec_hdr);
635         return err;
636 }
637
638 /**
639  * check_protection_over - check if it is time to stop protecting some
640  * physical eraseblocks.
641  * @ubi: UBI device description object
642  *
643  * This function is called after each erase operation, when the absolute erase
644  * counter is incremented, to check if some physical eraseblock  have not to be
645  * protected any longer. These physical eraseblocks are moved from the
646  * protection trees to the used tree.
647  */
648 static void check_protection_over(struct ubi_device *ubi)
649 {
650         struct ubi_wl_prot_entry *pe;
651
652         /*
653          * There may be several protected physical eraseblock to remove,
654          * process them all.
655          */
656         while (1) {
657                 spin_lock(&ubi->wl_lock);
658                 if (!ubi->prot.aec.rb_node) {
659                         spin_unlock(&ubi->wl_lock);
660                         break;
661                 }
662
663                 pe = rb_entry(rb_first(&ubi->prot.aec),
664                               struct ubi_wl_prot_entry, rb_aec);
665
666                 if (pe->abs_ec > ubi->abs_ec) {
667                         spin_unlock(&ubi->wl_lock);
668                         break;
669                 }
670
671                 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
672                        pe->e->pnum, ubi->abs_ec, pe->abs_ec);
673                 rb_erase(&pe->rb_aec, &ubi->prot.aec);
674                 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
675                 wl_tree_add(pe->e, &ubi->used);
676                 spin_unlock(&ubi->wl_lock);
677
678                 kfree(pe);
679                 cond_resched();
680         }
681 }
682
683 /**
684  * schedule_ubi_work - schedule a work.
685  * @ubi: UBI device description object
686  * @wrk: the work to schedule
687  *
688  * This function enqueues a work defined by @wrk to the tail of the pending
689  * works list.
690  */
691 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
692 {
693         spin_lock(&ubi->wl_lock);
694         list_add_tail(&wrk->list, &ubi->works);
695         ubi_assert(ubi->works_count >= 0);
696         ubi->works_count += 1;
697         if (ubi->thread_enabled)
698                 wake_up_process(ubi->bgt_thread);
699         spin_unlock(&ubi->wl_lock);
700 }
701
702 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
703                         int cancel);
704
705 /**
706  * schedule_erase - schedule an erase work.
707  * @ubi: UBI device description object
708  * @e: the WL entry of the physical eraseblock to erase
709  * @torture: if the physical eraseblock has to be tortured
710  *
711  * This function returns zero in case of success and a %-ENOMEM in case of
712  * failure.
713  */
714 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
715                           int torture)
716 {
717         struct ubi_work *wl_wrk;
718
719         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
720                e->pnum, e->ec, torture);
721
722         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
723         if (!wl_wrk)
724                 return -ENOMEM;
725
726         wl_wrk->func = &erase_worker;
727         wl_wrk->e = e;
728         wl_wrk->torture = torture;
729
730         schedule_ubi_work(ubi, wl_wrk);
731         return 0;
732 }
733
734 /**
735  * wear_leveling_worker - wear-leveling worker function.
736  * @ubi: UBI device description object
737  * @wrk: the work object
738  * @cancel: non-zero if the worker has to free memory and exit
739  *
740  * This function copies a more worn out physical eraseblock to a less worn out
741  * one. Returns zero in case of success and a negative error code in case of
742  * failure.
743  */
744 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
745                                 int cancel)
746 {
747         int err, put = 0, scrubbing = 0, protect = 0;
748         struct ubi_wl_prot_entry *uninitialized_var(pe);
749         struct ubi_wl_entry *e1, *e2;
750         struct ubi_vid_hdr *vid_hdr;
751
752         kfree(wrk);
753
754         if (cancel)
755                 return 0;
756
757         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
758         if (!vid_hdr)
759                 return -ENOMEM;
760
761         mutex_lock(&ubi->move_mutex);
762         spin_lock(&ubi->wl_lock);
763         ubi_assert(!ubi->move_from && !ubi->move_to);
764         ubi_assert(!ubi->move_to_put);
765
766         if (!ubi->free.rb_node ||
767             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
768                 /*
769                  * No free physical eraseblocks? Well, they must be waiting in
770                  * the queue to be erased. Cancel movement - it will be
771                  * triggered again when a free physical eraseblock appears.
772                  *
773                  * No used physical eraseblocks? They must be temporarily
774                  * protected from being moved. They will be moved to the
775                  * @ubi->used tree later and the wear-leveling will be
776                  * triggered again.
777                  */
778                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
779                        !ubi->free.rb_node, !ubi->used.rb_node);
780                 goto out_cancel;
781         }
782
783         if (!ubi->scrub.rb_node) {
784                 /*
785                  * Now pick the least worn-out used physical eraseblock and a
786                  * highly worn-out free physical eraseblock. If the erase
787                  * counters differ much enough, start wear-leveling.
788                  */
789                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
790                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
791
792                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
793                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
794                                e1->ec, e2->ec);
795                         goto out_cancel;
796                 }
797                 paranoid_check_in_wl_tree(e1, &ubi->used);
798                 rb_erase(&e1->rb, &ubi->used);
799                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
800                        e1->pnum, e1->ec, e2->pnum, e2->ec);
801         } else {
802                 /* Perform scrubbing */
803                 scrubbing = 1;
804                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
805                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
806                 paranoid_check_in_wl_tree(e1, &ubi->scrub);
807                 rb_erase(&e1->rb, &ubi->scrub);
808                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
809         }
810
811         paranoid_check_in_wl_tree(e2, &ubi->free);
812         rb_erase(&e2->rb, &ubi->free);
813         ubi->move_from = e1;
814         ubi->move_to = e2;
815         spin_unlock(&ubi->wl_lock);
816
817         /*
818          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
819          * We so far do not know which logical eraseblock our physical
820          * eraseblock (@e1) belongs to. We have to read the volume identifier
821          * header first.
822          *
823          * Note, we are protected from this PEB being unmapped and erased. The
824          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
825          * which is being moved was unmapped.
826          */
827
828         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
829         if (err && err != UBI_IO_BITFLIPS) {
830                 if (err == UBI_IO_PEB_FREE) {
831                         /*
832                          * We are trying to move PEB without a VID header. UBI
833                          * always write VID headers shortly after the PEB was
834                          * given, so we have a situation when it did not have
835                          * chance to write it down because it was preempted.
836                          * Just re-schedule the work, so that next time it will
837                          * likely have the VID header in place.
838                          */
839                         dbg_wl("PEB %d has no VID header", e1->pnum);
840                         goto out_not_moved;
841                 }
842
843                 ubi_err("error %d while reading VID header from PEB %d",
844                         err, e1->pnum);
845                 if (err > 0)
846                         err = -EIO;
847                 goto out_error;
848         }
849
850         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
851         if (err) {
852
853                 if (err < 0)
854                         goto out_error;
855                 if (err == 1)
856                         goto out_not_moved;
857
858                 /*
859                  * For some reason the LEB was not moved - it might be because
860                  * the volume is being deleted. We should prevent this PEB from
861                  * being selected for wear-levelling movement for some "time",
862                  * so put it to the protection tree.
863                  */
864
865                 dbg_wl("cancelled moving PEB %d", e1->pnum);
866                 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
867                 if (!pe) {
868                         err = -ENOMEM;
869                         goto out_error;
870                 }
871
872                 protect = 1;
873         }
874
875         ubi_free_vid_hdr(ubi, vid_hdr);
876         if (scrubbing && !protect)
877                 ubi_msg("scrubbed PEB %d, data moved to PEB %d",
878                         e1->pnum, e2->pnum);
879
880         spin_lock(&ubi->wl_lock);
881         if (protect)
882                 prot_tree_add(ubi, e1, pe, protect);
883         if (!ubi->move_to_put)
884                 wl_tree_add(e2, &ubi->used);
885         else
886                 put = 1;
887         ubi->move_from = ubi->move_to = NULL;
888         ubi->move_to_put = ubi->wl_scheduled = 0;
889         spin_unlock(&ubi->wl_lock);
890
891         if (put) {
892                 /*
893                  * Well, the target PEB was put meanwhile, schedule it for
894                  * erasure.
895                  */
896                 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
897                 err = schedule_erase(ubi, e2, 0);
898                 if (err)
899                         goto out_error;
900         }
901
902         if (!protect) {
903                 err = schedule_erase(ubi, e1, 0);
904                 if (err)
905                         goto out_error;
906         }
907
908
909         dbg_wl("done");
910         mutex_unlock(&ubi->move_mutex);
911         return 0;
912
913         /*
914          * For some reasons the LEB was not moved, might be an error, might be
915          * something else. @e1 was not changed, so return it back. @e2 might
916          * be changed, schedule it for erasure.
917          */
918 out_not_moved:
919         ubi_free_vid_hdr(ubi, vid_hdr);
920         spin_lock(&ubi->wl_lock);
921         if (scrubbing)
922                 wl_tree_add(e1, &ubi->scrub);
923         else
924                 wl_tree_add(e1, &ubi->used);
925         ubi->move_from = ubi->move_to = NULL;
926         ubi->move_to_put = ubi->wl_scheduled = 0;
927         spin_unlock(&ubi->wl_lock);
928
929         err = schedule_erase(ubi, e2, 0);
930         if (err)
931                 goto out_error;
932
933         mutex_unlock(&ubi->move_mutex);
934         return 0;
935
936 out_error:
937         ubi_err("error %d while moving PEB %d to PEB %d",
938                 err, e1->pnum, e2->pnum);
939
940         ubi_free_vid_hdr(ubi, vid_hdr);
941         spin_lock(&ubi->wl_lock);
942         ubi->move_from = ubi->move_to = NULL;
943         ubi->move_to_put = ubi->wl_scheduled = 0;
944         spin_unlock(&ubi->wl_lock);
945
946         kmem_cache_free(ubi_wl_entry_slab, e1);
947         kmem_cache_free(ubi_wl_entry_slab, e2);
948         ubi_ro_mode(ubi);
949
950         mutex_unlock(&ubi->move_mutex);
951         return err;
952
953 out_cancel:
954         ubi->wl_scheduled = 0;
955         spin_unlock(&ubi->wl_lock);
956         mutex_unlock(&ubi->move_mutex);
957         ubi_free_vid_hdr(ubi, vid_hdr);
958         return 0;
959 }
960
961 /**
962  * ensure_wear_leveling - schedule wear-leveling if it is needed.
963  * @ubi: UBI device description object
964  *
965  * This function checks if it is time to start wear-leveling and schedules it
966  * if yes. This function returns zero in case of success and a negative error
967  * code in case of failure.
968  */
969 static int ensure_wear_leveling(struct ubi_device *ubi)
970 {
971         int err = 0;
972         struct ubi_wl_entry *e1;
973         struct ubi_wl_entry *e2;
974         struct ubi_work *wrk;
975
976         spin_lock(&ubi->wl_lock);
977         if (ubi->wl_scheduled)
978                 /* Wear-leveling is already in the work queue */
979                 goto out_unlock;
980
981         /*
982          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
983          * the WL worker has to be scheduled anyway.
984          */
985         if (!ubi->scrub.rb_node) {
986                 if (!ubi->used.rb_node || !ubi->free.rb_node)
987                         /* No physical eraseblocks - no deal */
988                         goto out_unlock;
989
990                 /*
991                  * We schedule wear-leveling only if the difference between the
992                  * lowest erase counter of used physical eraseblocks and a high
993                  * erase counter of free physical eraseblocks is greater then
994                  * %UBI_WL_THRESHOLD.
995                  */
996                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
997                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
998
999                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1000                         goto out_unlock;
1001                 dbg_wl("schedule wear-leveling");
1002         } else
1003                 dbg_wl("schedule scrubbing");
1004
1005         ubi->wl_scheduled = 1;
1006         spin_unlock(&ubi->wl_lock);
1007
1008         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1009         if (!wrk) {
1010                 err = -ENOMEM;
1011                 goto out_cancel;
1012         }
1013
1014         wrk->func = &wear_leveling_worker;
1015         schedule_ubi_work(ubi, wrk);
1016         return err;
1017
1018 out_cancel:
1019         spin_lock(&ubi->wl_lock);
1020         ubi->wl_scheduled = 0;
1021 out_unlock:
1022         spin_unlock(&ubi->wl_lock);
1023         return err;
1024 }
1025
1026 /**
1027  * erase_worker - physical eraseblock erase worker function.
1028  * @ubi: UBI device description object
1029  * @wl_wrk: the work object
1030  * @cancel: non-zero if the worker has to free memory and exit
1031  *
1032  * This function erases a physical eraseblock and perform torture testing if
1033  * needed. It also takes care about marking the physical eraseblock bad if
1034  * needed. Returns zero in case of success and a negative error code in case of
1035  * failure.
1036  */
1037 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1038                         int cancel)
1039 {
1040         struct ubi_wl_entry *e = wl_wrk->e;
1041         int pnum = e->pnum, err, need;
1042
1043         if (cancel) {
1044                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1045                 kfree(wl_wrk);
1046                 kmem_cache_free(ubi_wl_entry_slab, e);
1047                 return 0;
1048         }
1049
1050         dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1051
1052         err = sync_erase(ubi, e, wl_wrk->torture);
1053         if (!err) {
1054                 /* Fine, we've erased it successfully */
1055                 kfree(wl_wrk);
1056
1057                 spin_lock(&ubi->wl_lock);
1058                 ubi->abs_ec += 1;
1059                 wl_tree_add(e, &ubi->free);
1060                 spin_unlock(&ubi->wl_lock);
1061
1062                 /*
1063                  * One more erase operation has happened, take care about protected
1064                  * physical eraseblocks.
1065                  */
1066                 check_protection_over(ubi);
1067
1068                 /* And take care about wear-leveling */
1069                 err = ensure_wear_leveling(ubi);
1070                 return err;
1071         }
1072
1073         ubi_err("failed to erase PEB %d, error %d", pnum, err);
1074         kfree(wl_wrk);
1075         kmem_cache_free(ubi_wl_entry_slab, e);
1076
1077         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1078             err == -EBUSY) {
1079                 int err1;
1080
1081                 /* Re-schedule the LEB for erasure */
1082                 err1 = schedule_erase(ubi, e, 0);
1083                 if (err1) {
1084                         err = err1;
1085                         goto out_ro;
1086                 }
1087                 return err;
1088         } else if (err != -EIO) {
1089                 /*
1090                  * If this is not %-EIO, we have no idea what to do. Scheduling
1091                  * this physical eraseblock for erasure again would cause
1092                  * errors again and again. Well, lets switch to RO mode.
1093                  */
1094                 goto out_ro;
1095         }
1096
1097         /* It is %-EIO, the PEB went bad */
1098
1099         if (!ubi->bad_allowed) {
1100                 ubi_err("bad physical eraseblock %d detected", pnum);
1101                 goto out_ro;
1102         }
1103
1104         spin_lock(&ubi->volumes_lock);
1105         need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1106         if (need > 0) {
1107                 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1108                 ubi->avail_pebs -= need;
1109                 ubi->rsvd_pebs += need;
1110                 ubi->beb_rsvd_pebs += need;
1111                 if (need > 0)
1112                         ubi_msg("reserve more %d PEBs", need);
1113         }
1114
1115         if (ubi->beb_rsvd_pebs == 0) {
1116                 spin_unlock(&ubi->volumes_lock);
1117                 ubi_err("no reserved physical eraseblocks");
1118                 goto out_ro;
1119         }
1120
1121         spin_unlock(&ubi->volumes_lock);
1122         ubi_msg("mark PEB %d as bad", pnum);
1123
1124         err = ubi_io_mark_bad(ubi, pnum);
1125         if (err)
1126                 goto out_ro;
1127
1128         spin_lock(&ubi->volumes_lock);
1129         ubi->beb_rsvd_pebs -= 1;
1130         ubi->bad_peb_count += 1;
1131         ubi->good_peb_count -= 1;
1132         ubi_calculate_reserved(ubi);
1133         if (ubi->beb_rsvd_pebs == 0)
1134                 ubi_warn("last PEB from the reserved pool was used");
1135         spin_unlock(&ubi->volumes_lock);
1136
1137         return err;
1138
1139 out_ro:
1140         ubi_ro_mode(ubi);
1141         return err;
1142 }
1143
1144 /**
1145  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1146  * @ubi: UBI device description object
1147  * @pnum: physical eraseblock to return
1148  * @torture: if this physical eraseblock has to be tortured
1149  *
1150  * This function is called to return physical eraseblock @pnum to the pool of
1151  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1152  * occurred to this @pnum and it has to be tested. This function returns zero
1153  * in case of success, and a negative error code in case of failure.
1154  */
1155 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1156 {
1157         int err;
1158         struct ubi_wl_entry *e;
1159
1160         dbg_wl("PEB %d", pnum);
1161         ubi_assert(pnum >= 0);
1162         ubi_assert(pnum < ubi->peb_count);
1163
1164 retry:
1165         spin_lock(&ubi->wl_lock);
1166         e = ubi->lookuptbl[pnum];
1167         if (e == ubi->move_from) {
1168                 /*
1169                  * User is putting the physical eraseblock which was selected to
1170                  * be moved. It will be scheduled for erasure in the
1171                  * wear-leveling worker.
1172                  */
1173                 dbg_wl("PEB %d is being moved, wait", pnum);
1174                 spin_unlock(&ubi->wl_lock);
1175
1176                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1177                 mutex_lock(&ubi->move_mutex);
1178                 mutex_unlock(&ubi->move_mutex);
1179                 goto retry;
1180         } else if (e == ubi->move_to) {
1181                 /*
1182                  * User is putting the physical eraseblock which was selected
1183                  * as the target the data is moved to. It may happen if the EBA
1184                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1185                  * but the WL sub-system has not put the PEB to the "used" tree
1186                  * yet, but it is about to do this. So we just set a flag which
1187                  * will tell the WL worker that the PEB is not needed anymore
1188                  * and should be scheduled for erasure.
1189                  */
1190                 dbg_wl("PEB %d is the target of data moving", pnum);
1191                 ubi_assert(!ubi->move_to_put);
1192                 ubi->move_to_put = 1;
1193                 spin_unlock(&ubi->wl_lock);
1194                 return 0;
1195         } else {
1196                 if (in_wl_tree(e, &ubi->used)) {
1197                         paranoid_check_in_wl_tree(e, &ubi->used);
1198                         rb_erase(&e->rb, &ubi->used);
1199                 } else if (in_wl_tree(e, &ubi->scrub)) {
1200                         paranoid_check_in_wl_tree(e, &ubi->scrub);
1201                         rb_erase(&e->rb, &ubi->scrub);
1202                 } else {
1203                         err = prot_tree_del(ubi, e->pnum);
1204                         if (err) {
1205                                 ubi_err("PEB %d not found", pnum);
1206                                 ubi_ro_mode(ubi);
1207                                 spin_unlock(&ubi->wl_lock);
1208                                 return err;
1209                         }
1210                 }
1211         }
1212         spin_unlock(&ubi->wl_lock);
1213
1214         err = schedule_erase(ubi, e, torture);
1215         if (err) {
1216                 spin_lock(&ubi->wl_lock);
1217                 wl_tree_add(e, &ubi->used);
1218                 spin_unlock(&ubi->wl_lock);
1219         }
1220
1221         return err;
1222 }
1223
1224 /**
1225  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1226  * @ubi: UBI device description object
1227  * @pnum: the physical eraseblock to schedule
1228  *
1229  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1230  * needs scrubbing. This function schedules a physical eraseblock for
1231  * scrubbing which is done in background. This function returns zero in case of
1232  * success and a negative error code in case of failure.
1233  */
1234 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1235 {
1236         struct ubi_wl_entry *e;
1237
1238         dbg_msg("schedule PEB %d for scrubbing", pnum);
1239
1240 retry:
1241         spin_lock(&ubi->wl_lock);
1242         e = ubi->lookuptbl[pnum];
1243         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1244                 spin_unlock(&ubi->wl_lock);
1245                 return 0;
1246         }
1247
1248         if (e == ubi->move_to) {
1249                 /*
1250                  * This physical eraseblock was used to move data to. The data
1251                  * was moved but the PEB was not yet inserted to the proper
1252                  * tree. We should just wait a little and let the WL worker
1253                  * proceed.
1254                  */
1255                 spin_unlock(&ubi->wl_lock);
1256                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1257                 yield();
1258                 goto retry;
1259         }
1260
1261         if (in_wl_tree(e, &ubi->used)) {
1262                 paranoid_check_in_wl_tree(e, &ubi->used);
1263                 rb_erase(&e->rb, &ubi->used);
1264         } else {
1265                 int err;
1266
1267                 err = prot_tree_del(ubi, e->pnum);
1268                 if (err) {
1269                         ubi_err("PEB %d not found", pnum);
1270                         ubi_ro_mode(ubi);
1271                         spin_unlock(&ubi->wl_lock);
1272                         return err;
1273                 }
1274         }
1275
1276         wl_tree_add(e, &ubi->scrub);
1277         spin_unlock(&ubi->wl_lock);
1278
1279         /*
1280          * Technically scrubbing is the same as wear-leveling, so it is done
1281          * by the WL worker.
1282          */
1283         return ensure_wear_leveling(ubi);
1284 }
1285
1286 /**
1287  * ubi_wl_flush - flush all pending works.
1288  * @ubi: UBI device description object
1289  *
1290  * This function returns zero in case of success and a negative error code in
1291  * case of failure.
1292  */
1293 int ubi_wl_flush(struct ubi_device *ubi)
1294 {
1295         int err;
1296
1297         /*
1298          * Erase while the pending works queue is not empty, but not more then
1299          * the number of currently pending works.
1300          */
1301         dbg_wl("flush (%d pending works)", ubi->works_count);
1302         while (ubi->works_count) {
1303                 err = do_work(ubi);
1304                 if (err)
1305                         return err;
1306         }
1307
1308         /*
1309          * Make sure all the works which have been done in parallel are
1310          * finished.
1311          */
1312         down_write(&ubi->work_sem);
1313         up_write(&ubi->work_sem);
1314
1315         /*
1316          * And in case last was the WL worker and it cancelled the LEB
1317          * movement, flush again.
1318          */
1319         while (ubi->works_count) {
1320                 dbg_wl("flush more (%d pending works)", ubi->works_count);
1321                 err = do_work(ubi);
1322                 if (err)
1323                         return err;
1324         }
1325
1326         return 0;
1327 }
1328
1329 /**
1330  * tree_destroy - destroy an RB-tree.
1331  * @root: the root of the tree to destroy
1332  */
1333 static void tree_destroy(struct rb_root *root)
1334 {
1335         struct rb_node *rb;
1336         struct ubi_wl_entry *e;
1337
1338         rb = root->rb_node;
1339         while (rb) {
1340                 if (rb->rb_left)
1341                         rb = rb->rb_left;
1342                 else if (rb->rb_right)
1343                         rb = rb->rb_right;
1344                 else {
1345                         e = rb_entry(rb, struct ubi_wl_entry, rb);
1346
1347                         rb = rb_parent(rb);
1348                         if (rb) {
1349                                 if (rb->rb_left == &e->rb)
1350                                         rb->rb_left = NULL;
1351                                 else
1352                                         rb->rb_right = NULL;
1353                         }
1354
1355                         kmem_cache_free(ubi_wl_entry_slab, e);
1356                 }
1357         }
1358 }
1359
1360 /**
1361  * ubi_thread - UBI background thread.
1362  * @u: the UBI device description object pointer
1363  */
1364 int ubi_thread(void *u)
1365 {
1366         int failures = 0;
1367         struct ubi_device *ubi = u;
1368
1369         ubi_msg("background thread \"%s\" started, PID %d",
1370                 ubi->bgt_name, task_pid_nr(current));
1371
1372         set_freezable();
1373         for (;;) {
1374                 int err;
1375
1376                 if (kthread_should_stop())
1377                         break;
1378
1379                 if (try_to_freeze())
1380                         continue;
1381
1382                 spin_lock(&ubi->wl_lock);
1383                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1384                                !ubi->thread_enabled) {
1385                         set_current_state(TASK_INTERRUPTIBLE);
1386                         spin_unlock(&ubi->wl_lock);
1387                         schedule();
1388                         continue;
1389                 }
1390                 spin_unlock(&ubi->wl_lock);
1391
1392                 err = do_work(ubi);
1393                 if (err) {
1394                         ubi_err("%s: work failed with error code %d",
1395                                 ubi->bgt_name, err);
1396                         if (failures++ > WL_MAX_FAILURES) {
1397                                 /*
1398                                  * Too many failures, disable the thread and
1399                                  * switch to read-only mode.
1400                                  */
1401                                 ubi_msg("%s: %d consecutive failures",
1402                                         ubi->bgt_name, WL_MAX_FAILURES);
1403                                 ubi_ro_mode(ubi);
1404                                 break;
1405                         }
1406                 } else
1407                         failures = 0;
1408
1409                 cond_resched();
1410         }
1411
1412         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1413         return 0;
1414 }
1415
1416 /**
1417  * cancel_pending - cancel all pending works.
1418  * @ubi: UBI device description object
1419  */
1420 static void cancel_pending(struct ubi_device *ubi)
1421 {
1422         while (!list_empty(&ubi->works)) {
1423                 struct ubi_work *wrk;
1424
1425                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1426                 list_del(&wrk->list);
1427                 wrk->func(ubi, wrk, 1);
1428                 ubi->works_count -= 1;
1429                 ubi_assert(ubi->works_count >= 0);
1430         }
1431 }
1432
1433 /**
1434  * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1435  * @ubi: UBI device description object
1436  * @si: scanning information
1437  *
1438  * This function returns zero in case of success, and a negative error code in
1439  * case of failure.
1440  */
1441 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1442 {
1443         int err;
1444         struct rb_node *rb1, *rb2;
1445         struct ubi_scan_volume *sv;
1446         struct ubi_scan_leb *seb, *tmp;
1447         struct ubi_wl_entry *e;
1448
1449
1450         ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1451         ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1452         spin_lock_init(&ubi->wl_lock);
1453         mutex_init(&ubi->move_mutex);
1454         init_rwsem(&ubi->work_sem);
1455         ubi->max_ec = si->max_ec;
1456         INIT_LIST_HEAD(&ubi->works);
1457
1458         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1459
1460         err = -ENOMEM;
1461         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1462         if (!ubi->lookuptbl)
1463                 return err;
1464
1465         list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1466                 cond_resched();
1467
1468                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1469                 if (!e)
1470                         goto out_free;
1471
1472                 e->pnum = seb->pnum;
1473                 e->ec = seb->ec;
1474                 ubi->lookuptbl[e->pnum] = e;
1475                 if (schedule_erase(ubi, e, 0)) {
1476                         kmem_cache_free(ubi_wl_entry_slab, e);
1477                         goto out_free;
1478                 }
1479         }
1480
1481         list_for_each_entry(seb, &si->free, u.list) {
1482                 cond_resched();
1483
1484                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1485                 if (!e)
1486                         goto out_free;
1487
1488                 e->pnum = seb->pnum;
1489                 e->ec = seb->ec;
1490                 ubi_assert(e->ec >= 0);
1491                 wl_tree_add(e, &ubi->free);
1492                 ubi->lookuptbl[e->pnum] = e;
1493         }
1494
1495         list_for_each_entry(seb, &si->corr, u.list) {
1496                 cond_resched();
1497
1498                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1499                 if (!e)
1500                         goto out_free;
1501
1502                 e->pnum = seb->pnum;
1503                 e->ec = seb->ec;
1504                 ubi->lookuptbl[e->pnum] = e;
1505                 if (schedule_erase(ubi, e, 0)) {
1506                         kmem_cache_free(ubi_wl_entry_slab, e);
1507                         goto out_free;
1508                 }
1509         }
1510
1511         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1512                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1513                         cond_resched();
1514
1515                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1516                         if (!e)
1517                                 goto out_free;
1518
1519                         e->pnum = seb->pnum;
1520                         e->ec = seb->ec;
1521                         ubi->lookuptbl[e->pnum] = e;
1522                         if (!seb->scrub) {
1523                                 dbg_wl("add PEB %d EC %d to the used tree",
1524                                        e->pnum, e->ec);
1525                                 wl_tree_add(e, &ubi->used);
1526                         } else {
1527                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1528                                        e->pnum, e->ec);
1529                                 wl_tree_add(e, &ubi->scrub);
1530                         }
1531                 }
1532         }
1533
1534         if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1535                 ubi_err("no enough physical eraseblocks (%d, need %d)",
1536                         ubi->avail_pebs, WL_RESERVED_PEBS);
1537                 goto out_free;
1538         }
1539         ubi->avail_pebs -= WL_RESERVED_PEBS;
1540         ubi->rsvd_pebs += WL_RESERVED_PEBS;
1541
1542         /* Schedule wear-leveling if needed */
1543         err = ensure_wear_leveling(ubi);
1544         if (err)
1545                 goto out_free;
1546
1547         return 0;
1548
1549 out_free:
1550         cancel_pending(ubi);
1551         tree_destroy(&ubi->used);
1552         tree_destroy(&ubi->free);
1553         tree_destroy(&ubi->scrub);
1554         kfree(ubi->lookuptbl);
1555         return err;
1556 }
1557
1558 /**
1559  * protection_trees_destroy - destroy the protection RB-trees.
1560  * @ubi: UBI device description object
1561  */
1562 static void protection_trees_destroy(struct ubi_device *ubi)
1563 {
1564         struct rb_node *rb;
1565         struct ubi_wl_prot_entry *pe;
1566
1567         rb = ubi->prot.aec.rb_node;
1568         while (rb) {
1569                 if (rb->rb_left)
1570                         rb = rb->rb_left;
1571                 else if (rb->rb_right)
1572                         rb = rb->rb_right;
1573                 else {
1574                         pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1575
1576                         rb = rb_parent(rb);
1577                         if (rb) {
1578                                 if (rb->rb_left == &pe->rb_aec)
1579                                         rb->rb_left = NULL;
1580                                 else
1581                                         rb->rb_right = NULL;
1582                         }
1583
1584                         kmem_cache_free(ubi_wl_entry_slab, pe->e);
1585                         kfree(pe);
1586                 }
1587         }
1588 }
1589
1590 /**
1591  * ubi_wl_close - close the wear-leveling sub-system.
1592  * @ubi: UBI device description object
1593  */
1594 void ubi_wl_close(struct ubi_device *ubi)
1595 {
1596         dbg_wl("close the WL sub-system");
1597         cancel_pending(ubi);
1598         protection_trees_destroy(ubi);
1599         tree_destroy(&ubi->used);
1600         tree_destroy(&ubi->free);
1601         tree_destroy(&ubi->scrub);
1602         kfree(ubi->lookuptbl);
1603 }
1604
1605 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1606
1607 /**
1608  * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1609  * is correct.
1610  * @ubi: UBI device description object
1611  * @pnum: the physical eraseblock number to check
1612  * @ec: the erase counter to check
1613  *
1614  * This function returns zero if the erase counter of physical eraseblock @pnum
1615  * is equivalent to @ec, %1 if not, and a negative error code if an error
1616  * occurred.
1617  */
1618 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1619 {
1620         int err;
1621         long long read_ec;
1622         struct ubi_ec_hdr *ec_hdr;
1623
1624         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1625         if (!ec_hdr)
1626                 return -ENOMEM;
1627
1628         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1629         if (err && err != UBI_IO_BITFLIPS) {
1630                 /* The header does not have to exist */
1631                 err = 0;
1632                 goto out_free;
1633         }
1634
1635         read_ec = be64_to_cpu(ec_hdr->ec);
1636         if (ec != read_ec) {
1637                 ubi_err("paranoid check failed for PEB %d", pnum);
1638                 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1639                 ubi_dbg_dump_stack();
1640                 err = 1;
1641         } else
1642                 err = 0;
1643
1644 out_free:
1645         kfree(ec_hdr);
1646         return err;
1647 }
1648
1649 /**
1650  * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1651  * in a WL RB-tree.
1652  * @e: the wear-leveling entry to check
1653  * @root: the root of the tree
1654  *
1655  * This function returns zero if @e is in the @root RB-tree and %1 if it
1656  * is not.
1657  */
1658 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1659                                      struct rb_root *root)
1660 {
1661         if (in_wl_tree(e, root))
1662                 return 0;
1663
1664         ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1665                 e->pnum, e->ec, root);
1666         ubi_dbg_dump_stack();
1667         return 1;
1668 }
1669
1670 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */